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Abstract: High-precision vector magnetic field detection has been widely used in the fields of celestial
magnetic field detection, aeromagnetic detection, marine magnetic field detection and geomagnetic
navigation. Due to the large amount of data, the 3D inversion of high-precision magnetic gradient
vector data often involves a large number of computational requirements and is very time-consuming.
In this paper, a 3D magnetic gradient tensor (MGT) inversion method is developed, based on using
a convolutional neural network (CNN) to automatically predict physical parameters from the 2D
images of MGT. The information of geometry, depth and parameters such as magnetic inclination (I),
magnetic declination (D) and magnetization susceptibility of magnetic anomalies is extracted, and
a 3D model is obtained by comprehensive analysis. The method first obtains sufficient MGT data
samples by forward modeling of different magnetic anomalies. Then, we use an improved CNN with
shear layers to achieve the prediction of each magnetic parameter. The reliability of the algorithm is
verified by numerical simulations of synthetic models of multiple magnetic anomalies. MGT data
of the Tallawang magnetite diorite deposit in Australia are also predicted by using this method to
obtain a slab model that matches the known geological information. The effects of sample size and
noise level on the prediction accuracy are discussed. Compared with single-component prediction,
the results of multi-component joint prediction are more reliable. From the numerical model study
and the field data validation, we demonstrate the capability of using CNNs for inversing MGT data.

Keywords: vector magnetic field detection; magnetic gradient tensor inversion; CNN; physical
parameter extraction

1. Introduction

Tensor gradient measurement in magnetic exploration is an important detection
method [1–3]. Full tensor measurement, which can not only retain the intensity and
direction information of magnetic vectors but can also suppress the common-mode field
from the core, the regional field from the deep crust and the geomagnetic variation from
the ionosphere and magnetosphere. Magnetic gradient tensor (MGT) surveys can reflect
detailed features with higher resolution, such as superimposed anomalous bodies [4,5].
With the advantages of strong anti-interference ability and high detection accuracy, they are
widely used in the fields of celestial magnetic field detection, aeromagnetic investigation,
ocean magnetic field exploration and geomagnetic navigation [6,7], and are currently the
main method for ocean, aeromagnetic and celestial magnetic detection [8].

The inversion of magnetic data is critical for quantitative geological interpretation.
Geometric information such as the horizontal position, depth and boundary of an anomaly
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source, as well as the quantitative information of physical parameters such as magneti-
zation susceptibility, magnetic inclination and magnetic declination inside the anomaly,
can be obtained by polyhedral dissection of the irregular anomaly followed by physical
inversion [9,10]. MGT data were first used for military target detection, and MGT algo-
rithms were developed for military use in isolated magnetic dipole target detection by
Frahm [11,12]. Zhang et al. [13] extended the Eulerian inverse fold product method and
applied it to the interpretation of gravity gradient tensor data, solving the MGT inver-
sion problem for the case of multiple magnetic dipoles. Schmidt and Clark [2] further
analyzed the correspondence between the eigenvalues of the magnetic tensor matrix and
the distribution of the magnetic sources and extended the method to the interpretation of
the multi-component phase-constrained MGT data method. Zhdanov et al. [14] proposed
two-dimensional potential field migration and focused inversion [15], and later developed
a potential field migration algorithm for gravity gradient measurements [16]. Cai and
Zhdanov [17] used the principle of potential field migration to achieve multi-component
inversion of gravitation and MGTs, and improved their inversion accuracy with a focused
algorithm. Sun and Li [18] applied the method of clustered c-means to invert gravity and
magnetic potential field data and obtained high-resolution inversion results, and extended
their method to the joint inversion of gravity and magnetic law data. Zhdanov and Lin [19]
proposed an adaptive multinary inversion approach for recovering sharp models. Liu and
Hu [20] proposed an iterative algorithm for magnetization vector inversion (M-IDI) which
iteratively calculated the magnetic dipole direction after recovering the magnetization
direction from the magnetization intensity. Geng [21] used the edge probability statistics
method to realize the 3D physical inversion of potential field data, which provided new
ideas for potential field data inversion.

In recent years, deep learning techniques in the field of artificial intelligence have made
many breakthroughs in image recognition and classification, natural language processing,
etc. They have also been used for solving geophysical exploration problems. In the field
of geophysics, machine learning algorithms have been increasingly used in seismic signal
processing, data reconstruction and fault identification.

Raiche [22] proposed the early inversion of physical parameters by pattern recogni-
tion and neural network methods and developed an empirical paradigm. Spichak and
Popova [23] used artificial neural network methods for the inversion of geomagnetic macro
parameters. Sun and Li [24] proposed a multi-domain rock physical constraint inversion
and the geological discretization method based on generalized fuzzy clustering algorithms,
which strengthened the connection between rock properties and inversion results compared
to traditional inversion methods. Singh and Sharma [25] used the fuzzy clustering method
to identify different geological units from resistivity imaging results.

Puzyrev [26] used CNNs to invert the location and dimensions of subsurface anomalies
from controlled-source electromagnetic data. Noh [27] implemented a CNN-based 3D
inversion of frequency-domain airborne EM data, and the results showed that the CNN
still maintained high resolution when the amount of synthetic data was small. Liu [28]
proposed a DC resistivity fully connected network (FCN) inversion method based on
smoothing constraints and depth weighting, which effectively improved the accuracy of
the solution. Using a Unet CNN, Yang et al. [29] inverted 3D gravity data and verified that
CNNs can be used for geophysical gravity data processing. Nurindrawati and Sun [30]
extracted magnetic direction parameters (magnetic inclination (I) and magnetic declination
(D)) for magnetic total field data using a dual CNN structure classification recognition
method to improve the automatic recognition efficiency of magnetic direction parameters;
this method’s classification recognition was more suitable for the extraction of specific
sensitive information. Li [31] proposed a sample generation algorithm of simplifying and
then purifying features in cases with a lack of effective samples for geomagnetic neural
network inversion which could effectively reduce the number of original samples and
improve the sample generation efficiency. Hu and Liu [32] implemented 3D magnetic total
field inversion using an FCN and deep neural network (DNN) in deep learning; taking
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the magnetic total field data of the Galinge iron ore deposit in China as an example, the
magnetization distribution of the hidden iron ore body based on their neural network’s
inversion matched well with drilling detection results, which further verified the feasibility
and reliability of the method. Using the Linet-5 CNN architecture, He and Cai [33] proposed
a method for depth-to-basement inversion directly from gravity data which improved the
automation of converting gravity anomalies to basin depth.

Neural networks have achieved some success in geophysical inversion, but are less
often used in magnetic field tensor gradient inversion. An airborne MGT survey involves
a large amount of data acquisition, which requires a large amount of computationally in-
tensive processes such as magnetic vector data processing and 3D inversion. Furthermore,
CNNs have achieved excellent real-world results in image recognition, and the image
samples of MGT components provide a theoretical basis for the CNN image recognition
method; thus, we introduce a CNN into our MGT inversion approach. We validate the fea-
sibility and accuracy of the algorithm via two synthetic simulation models and a case study
featuring actual measurements of the Tallawang magnetite sillimanite deposit in Australia.

This paper is structured as follows. First, the method background and basic theoretical
approach are introduced in Section 2. This contains the principle of MGT forward modeling
and inversion, and the principles and process of CNN image recognition, then briefly
introduces the adopted AlexNet network [34] and our improvements. The third section of
the numerical model implementation discusses the generation of synthetic model samples,
the construction and optimization of the CNN, the identification of magnetic parameters
and the statistics of the prediction fitness of the two comprehensive simulation models
for single and double blocks. The effects of the optimization of CNN parameters, sample
noise and number of factors on the model’s recognition accuracy are discussed. The
tensor gradient components and the total field are also analyzed for the comparison of
the recognition accuracy of the physical parameters. Section 4 presents a case study of an
example model of the Tallawang magnetite diorite mine in Australia. Finally, Section 5
provides a brief summary of the application of neural networks in MGT inversion.

2. Methodology
2.1. Forward Modeling

This study is based on using the construction of MGT forward modeling to generate a
large number of sample images; thus, it is necessary to analyze the physical meaning of the
potential field data and the forwarding and inversion equations.

The target of magnetic exploration is the subsurface magnetic inhomogeneous body,
and the measurement objects are the magnetic induction intensity and spatial variation
rate. Note that the magnetic field intensity mentioned in magnetic exploration refers
to the magnetic induction intensity. The magnetic field vector is defined as B , then
its components in three orthogonal directions are described as Bx, By and Bz and the
derivatives of each axial component in the x, y and z directions can be obtained as magnetic
tensor components: Bij, i, j = x, y, z. For an arbitrary 3D anomaly, the magnetic field B is
calculated per [35–38] as:

B(r) = −Cm∇r0 Φ(r) = −Cm∇r0

∫
V

M(r0) · ∇r0

1
|r− r0|

dv, (1)

where Cm = 10−7 Henry/m is the magnetization constant, Φ is the magnetic scalar poten-
tial, r is the position vector of observation, r0 is the position vector of integration, v is the
volume element and the magnetization intensity vector is M.

The components of the magnetic field, in three orthogonal directions, are defined as:

Bx = µ0
4π

{
Mx

t

v

2(x−ξ)2−(y−η)2−(z−ζ)2

r5 dv

+My
t

v

3(x−ξ)(y−η)
r5 dv + Mz

t

v

3(x−ξ)(z−ζ)
r5 dv

} (2)
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By = µ0
4π

{
Mx

t

v

3(x−ξ)(y−η)
r5 dv + Mz

t

v

3(y−η)(z−ζ)
r5 dv

+My
t

v

2(y−η)2−(x−ξ)2−(z−ζ)2

r5 dv
} (3)

Bz =
µ0
4π

{
Mx

t

v

3(x−ξ)(z−ζ)
r5 dv + My

t

v

3(y−η)(z−ζ)
r5 dv

+Mz
t

v

2(z−ζ)2−(x−ξ)2−(y−η)2

r5 dv
} (4)

where (ξ, η and ζ) are the coordinates within the magnetic anomaly and (x, y and z) are the
observed coordinates.

Then, from the derivatives of Equations (2)–(4), respectively, the MGT matrix G can be
obtained as follows [39]:

G =

 Bxx Bxy Bxz
Byx Byy Byz
Bzx Bzy Bzz

 =


∂Bx
∂x

∂Bx
∂y

∂Bx
∂z

∂By
∂x

∂By
∂y

∂By
∂z

∂Bz
∂x

∂Bz
∂y

∂Bz
∂z

 (5)

The above, Equation (5), contains the equations of the MGT forward modeling theory.

2.2. CNN

A CNN is a special feed-forward neural network inspired by the neural mechanisms of
animal vision [34,40]. A typical CNN network structure consists of an input layer, a series
of convolutional layers, a nonlinear activation layer, a pooling layer, a fully connected layer
and an output layer. Hinton has previously set the number of network layers of a CNN
to nine in order to alleviate the local optimal solution [41]. These multilayered network
structures, which we call deep learning network structures [42], include residual neural
networks (ResNets), long short-term memory networks (LSTMs), generative adversarial
networks (GANs), etc. The CNN-based classification recognition framework used in this
study is shown in Figure 1.

Figure 1. CNN framework schematic.
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The most unique feature of CNNs is that each contains a convolutional layer. During
the learning process of the convolutional layer, a CNN learns the local information of each
image by sharing the weights of multiple convolutional kernels (or feature detectors), which
are used to construct an abstract feature map. This convolutional kernel-sharing feature
greatly reduces the number of parameters required to train the network. Since trained de-
tectors can be repeatedly used to detect abstract features in images combinatorially through
convolutional layers, CNNs require relatively fewer parameters compared to other neural
network structures, making them more suitable for complex image recognition tasks. They
have been widely used in the fields of image classification, target body localization, etc.

Neural networks can fit properties of linear or nonlinear physical variation by adjust-
ing the weight coefficients of each neuron in their hidden layer, and therefore can also fit the
partial differential equation (PDE)-solving process to achieve faster PDE solutions [43,44]. It
has been shown that shallow networks can be viewed as operators; extending this theory to
deep neural networks, the neural network model DeepONet( V0.11.2, Division of Applied
Mathematics, Brown University, Providence, RI 02912, USA ) [45], which approximates
linear and nonlinear operators, was proposed. The MGT inversion problem is a process of
solving partial differential equations (PDEs) in reverse and a neural network can quickly
solve PDEs, providing a theoretical basis for fast MGT inversion.

The main goal of this research is to predict each physical parameter and geometry
of a magnetic source based on its MGT measurements using machine learning and, in
particular, deep CNNs. To this end, we utilize independent prediction models for each
parameter prediction; in other words, the prediction order mechanism can be adjusted
to meet the needs of sensitive-parameter prediction, either distributed or independently
identified in parallel. This prediction mechanism has higher effectiveness, accuracy and
applicability. In other words, when a certain parameter of the magnetic source is of interest,
the prediction of other detailed parameters is attempted, thus saving energy compared the
overall predictions and measurements, especially when the detection result is not the target
body sought. In addition, single-parameter prediction, a single lightweight prediction
approach, is less computationally intensive and faster in training and prediction compared
to overall prediction.

To verify the feasibility of the algorithm, the relatively lightweight CNN architecture
AlexNet (University of Toronto, CAN) [34] is chosen for this study and an optimized
AlexNet network is applied to parameter prediction in this study, as shown in Figure 2.
Compared with other CNN models, this network structure has fewer layers to ensure
certain prediction accuracy, which reduces the amount of operations and is suitable for
the test platform of this study. The software testing environment is: Python (V3.5) +
TensorFlow-GPU (V2.1.0) + Keras (V2.2.4), and the testing hardware is: HP Z8G4/ Intel
Gold6148x2/ 512GBDDR4/Nvidia 208Ti x2 (Ubuntu 20.04LTS, HP, Palo Alto, CA, USA).

Figure 2. Optimized AlexNet network architecture.
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AlexNet uses ReLU as the activation function of its CNN [46], solves the gradient
dispersion problem of Sigmoid when the network is deeper [47], uses Adam optimizer [48]
and increases the training speed, but in practical tests we change the activation function to
a combination of ELU and LeakyReLU [49,50], obtaining better convergence. A Dropout
regularization mechanism is invoked during training to avoid model overfitting [51], and
in the real test we introduce two Dropout layers, both with a shear rate of 20%. In addition,
AlexNet includes a layer re-use network (LRN) layer that creates a competition mechanism
for the activity of local neurons, boosting the neurons in which the response is relatively
large and suppressing other neurons with smaller feedback, enhancing the generalization
ability of the model.

In the actual test, the original AlexNet network architecture has low prediction ac-
curacy and slow convergence speed. As such, we improve the original model as needed,
as follows.

(a) The original image sample is 560 × 420 pixels, first normalized to 420 × 420 pixels.
The amount of information around the graph is small. In order to reduce the amount of
operations, the periphery is cropped by 10 pixels to 400 × 400 pixels and then compressed
to 200 × 200 pixels for use as training samples. (b) The number of convolution kernels in
the first convolution layer is 512. The size of the convolutional kernel is 1 × 1, which is
beneficial for improving the extraction of weak information from the original sample. (c) In
the process of actual testing, the activation function can be ELU, LeackRLU or a combination
of both, which is beneficial for increasing the convergence speed. (d) Two additional layers
of shearing are added and the shearing rate reaches 20%, which is beneficial for improving
the generalization ability. (e) The learning rate is 10 × 10−6, which can prevent model
oscillation by reducing the learning rate [52]. (f) The Miner Batch Size is set to 32. The
smaller the value, the further improvement in convergence [53].

Of course, there are many optimization methods [54], but we implement only the
improvements listed above to verify the feasibility of the scheme; nonetheless, its prediction
and verification accuracy can reach more than 90% after 200 Epochs in the real test, which
satisfies the prediction accuracy requirement.

2.3. The Overall Research Framework

The overall research structure of this study is shown in Figure 3, with 2D images of
each independent component of the MGT: Bxx, Bxy, Bxz, Byy, Byz and Bzz. The 2D images
here are the images of the horizontal plane on the X and Y axis. The component images
are obtained either from the synthetic input model forward modeling or real measurement
acquisition. Each component’s image is predicted by the trained deep CNN with horizontal
geometric information and magnetic parameter information. To further obtain the inversion
results, we also need to synthesize all the predicted results with parameters and generate a
new model directly into a map, which is the inversion result we are looking for. In general,
we first judge the horizontal position; in other words, we first judge whether there is an
anomaly in the detection area. Secondly, we judge the geometry of the anomaly; that is, we
identify the type of target body. If the detected target body matches the type of target body
we are looking for, then we can predict its depth information and more detailed magnetic
parameters (magnetization susceptibility, magnetic inclination (I), magnetic declination
(D), etc.). Assuming that the object to be found is a specific target body and, in addition,
that the targeted body and boundary identification methods (based on the potential field)
are well established [7,55–58], we assume that the shape characteristics of each magnetic
anomaly are well-known.

The prediction process is shown in Figure 4. The inversion in this research work
differs from other machine learning inversions in that we do not use the profile images of
depth and horizontal axes as training samples for inversion, but directly use horizontal
2D images, which are consistent with the actual detection results projected onto maps.
In addition, instead of direct inversion, the geometric information, depth and physical
parameters of the target body are predicted first, and then the 3D inversion model is
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derived by parameter synthesis after the required information is predicted. The MGT
contains several independent components, each of which can be used to extract and invert
the physical parameters, and if the inversion results of each independent component are
combined, the joint inversion of multiple components can be realized.
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3. Method
3.1. Forward Model

Seven models are tested in this study, as shown in Table 1 below. These types include
spherical, single-block, double-block, three-block and four-block. For this work, we assume
predictions for a specific target body; i.e., only the models in the model library are probed,
and for this purpose the size of the target body is assumed to be known.

Table 1. Model types and parameter variation ranges.

Shape Tag Name Horizontal Position Depth (m) D I Magnetic
Su-Sceptibility(SI)
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Table 1. Cont.

Shape Tag Name Horizontal Position Depth (m) D I Magnetic
Su-Sceptibility(SI)
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Each independent component of the MGT of all seven models is shown in Figure 5.
The horizontal positions in the table are the numbering of the element positions (0 to 8)
in a nine-grid matrix, as shown in Figure 6. The depth defined in the table is the depth
from the center point to the surface. The magnetic declination (D), magnetic inclination (I)
and magnetization susceptibility are physical parameters, where the unit of magnetization
susceptibility is (SI). The effect of remanence is not considered separately in the model
simulation and, if not stated, is considered as a whole.
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Figure 6. The test area is divided into 9 grid areas on a 3 × 3 equally spaced grid and numbered
in order, from left to right and top to bottom. The labeled numbers 0–8 are defined as the different
horizontal and vertical positions’ point numbers.

To verify the feasibility of this method, we first set the dimensional range of the model
within a space of 500 m. The main reason for this is to prevent the number of grids from
being too large and increase the number of operations. The X-axis is the east-west axis and
the positive direction is east, and thus the Y-axis is the north-south axis and the positive
direction is north in the model area. The length, width and depth of the test area are
all 400 m, which is within a shallow surface area, and the grid of the forward model is
divided into 10 m × 10 m × 10 m cubes. Taking the Bzz component of the MGT of the
single-module Rectangle model as an example, the magnetic anomaly is a square body
with 90 m side length and its initial center position is located at the center of the set area
at coordinates (200, 200, 100). In order to simplify the model’s settings, all other magnetic
anomalies are also modeled using the same single cube, with the center point of the test
area as their symmetrically distributed center and the center point of the cube being in the
horizontal plane with a depth of 100 m. For example, the Rectangle_4 model has 4 cubes
symmetrically divided about the center point, and the two adjacent cubes are spaced 40 m
apart in both X and Y directions.

The depth prediction range is set as 40 m–360 m with a step of 80 m, i.e., the depth
prediction matrix is Equation (6), the magnetic declination (D) magnetic inclination (I)
and magnetization susceptibility prediction range can be configured according to the
prediction target. In this study, the prediction range of D is −10◦~10◦ with a step of 2◦, as
in Equation (7); the prediction range of I is (52◦–2◦) with a step of 2◦, as in Equation (8);
and the prediction range of permeability is 0.1–0.6 (SI) with a step of 0.1, as in Equation (9):

Tag_Depth =
[

40 120 200 280 360
]

(6)

Tag_D =
[
−10◦ −8◦ −6◦ −4◦ −2◦ 0◦ 2◦ 4◦ 6◦ 8◦ 10◦

]
(7)

Tag_I =
[

52◦ 56◦ 58◦ 60◦ 62◦ 64◦ 66◦ 68◦ 70◦ 72◦
]

(8)

Tag_Mag_Sus =
[

0.1 0.2 0.3 0.4 0.5 0.6
]

(9)
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3.2. Sample Generation Algorithms

Taking the sample magnetic inclination (I) as an example, the predicted label set by
Table 1 is Tag_I ∈ [ 52◦ 72◦ ], the step is Tag_I_Step = 2◦ and then the label matrix
is the prediction matrix shown in Equation (8). After determining the label matrix, the
other physical parameters can be used to generate a random one-dimensional matrix using
Equation (10):

Pi = a + (b− a)× rand(N, 1) i ∈ [1, m] (10)

where m is the type of the parameter and rand(N, 1) is a row, N, and one column, a random
matrix between (0~1). Combining the random matrices of each physical parameter, the
integrated parameter matrix, as in Equation (11), is obtained:

P =
[

P1 P2 . . . Pm
]

(11)

The matrix P is used as a loop variable and substituted into the tensor gradient
forward modeling program to iteratively generate the required data sample size. The
sample-producing algorithm’s process is shown in Algorithm 1.

Algorithm 1. Sample Produce

1: Procedure Sample (Tag_Station, Shape, Depth, Magnetic, Tag_I, Tag_D . . . )
2: e.g., Produce Tag_I
3: Initialize: Tag_I← [52 54 56 . . . 72] ∈ [52 72]; Species = 5;
4: Tag_Station← [0 1 2 . . . 8]; Number > 8000;
5: Shape← [Ball Rectangle Rectangle_2A Rectangle_2B . . . ];
6: Depth← [40 120 . . . 360];
7: Magnetic← 0.1 + 0.6(0.6 − 0.1) × rand(m,1) Magnetic ∈ [0.1 0.6]
8: Tag_D←−10 + 10(10 + 10) × rand(n,1) Tag_D ∈ [−10 10]
9: Components← [Bxx Bxy Bxz Byy Byz Bzz];
10: Pi← {Tag_Station, Shape, Depth, . . . }
11: while k1 < Number/Species do
12: while k2 < Number/Species do
13: Sample_Tag_I(i)←Mag_Tensor_Forword(P{k1,k2}, Components, . . . )
14: Tag_Record(i)← [P{k1,k2}, . . . ]
15: . . .
16: end While
17: end While
18: save Sample_Tage_I
19: save Tag_Record
20: end procedure

3.3. Network Training and Prediction

According to the parameter configuration table and grid partitioning requirements
in 3.1.1, we generate data samples for multiple models, and the number of samples for
each type of model is 8000. In the training and testing process, we use the samples after
randomly disordering them, with 60% of the samples used as the training set, 20% of the
samples as the validation set and the remaining 20% of the samples as the test set.

The following is an example of the Rectangle model and Rectangle_2B model (shown
in Figure 5), which both generate independent component samples with the same parameter
settings, and their test set prediction accuracies are shown in Tables 2 and 3.

The horizontal position and model recognition rate can reach 100% because the shape
contour variability between the horizontal position and model samples is large among all
components. In Figures 5 and 6, the variability of the independent components of each
model can be compared, and the position variability is obvious so it is very easy to identify.
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Table 2. Model prediction accuracies of Rectangle.

Predictor Bxx Bxy Bxz Byy Byz Bzz

Horizontal Position 100% 100% 100% 100% 100% 100%
Shape 100% 100% 100% 100% 100% 100%
Depth 93.1% 96.2% 94.1% 99.9% 98.9% 95.8%

D 93.6% 92.2% 91.1% 99.9% 97.9% 94.2%
I 99.9% 99.4% 98.7% 99.9% 99.8% 99.4%

Magnetic Sus-ceptibility(SI) 91.4% 90.2% 92.7% 91.1% 90.5% 93.3%

Table 3. Model prediction accuracies of Rectangle_2B.

Predictor Bxx Bxy Bxz Byy Byz Bzz

Horizontal Position 100% 100% 100% 100% 100% 100%
Shape 100% 100% 100% 100% 100% 100%
Depth 99.1% 99.2% 99.1% 99.9% 99.3% 99.9%

D 99.9% 99.9% 99.9% 99.9% 99.9% 99.9%
I 99.6% 99.4% 99.7% 99.9% 99.4% 99.3%

Magnetic Sus-ceptibility(SI) 99.3% 99.7% 99.3% 99.9% 99.8% 99.1%

The accuracy of depth prediction can reach more than 93%, thus ensuring the accu-
racy of magnetization susceptibility prediction. The change of both depth and magnetic
susceptibility affects the change of magnetic field intensity. From the magnetic forward
equation, Equation (1), it is known that the effect of depth on magnetic field intensity is
twice as large as that of magnetic susceptibility and, if the magnetic susceptibility only
changes in a small range, its change on magnetic field intensity is small relative to the
change of depth and does not affect the prediction of depth. It is also understood that
the change in magnetic field intensity caused by a small range of change in magnetic
susceptibility relative to the change in depth on magnetic field intensity is considered a
weak noise effect and can be ignored. In this study, we predict the depth first, and the
depth value is known in the magnetization prediction, which in turn ensures the accuracy
of the magnetization prediction.

Comparing Tables 2 and 3, the prediction accuracy of the double square model is
higher than that of the single square model, which is due to the fact that the former’s
magnetic gradient tensor signal intensity is greater than that of the latter, under the same
physical parameters, and contains more information on magnetic detail features.

Under the assumption that the shape and size of the detection target are known, we
attempt to extract the type and magnetic parameter information from the local part of the
image sample and also test the generalization ability of the CNN. We perform a clipping
test to predict the magnetic permeability with the Bzz component of the Rectangle model.
As shown in Figure 7, the normalized image sample size is 420 × 420 pixels; a section with
a width of 21 pixels is selected, clipping the remaining width on both sides and leaving
only the middle. The sample image’s size after clipping is 21 × 420. We select two different
parts of the image to clip as examples: Figure 7a is clipped from the middle of the image
and Figure 7b’s clipping is off-center.
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The test results are shown in Figure 8, where two sets of shear patterns and normal
patterns, each showing the accuracy and loss degree comparisons in the neural network
training process, from the comparison curve can be seen. Results indicate that: a) In the
case of a suitable shear site (Figure 7a), the convergence speed decreases as the number of
iterations increases, but a better prediction accuracy of 82% over 500 Epochs is achieved;
b) it is difficult to ensure that prediction accuracy reaches the global prediction accuracy
level; and c) the prediction accuracy is affected by the shear site. If the shear site does not
contain the trend of the anomalous body change (Figure 7b), it leads to the training being
unable to converge and the prediction accuracy being difficult to improve. As shown in
Figure 8a, the number of iterations is 500 and its training accuracy is 42%. Of course, from
another angle of analysis, we can also conclude that the local cut of the image can also
achieve predictions, indicating that the CNN has strong recognition abilities. In the real
case, shown later, the local clipping will be used for parameter prediction.
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3.4. Parametric Synthesis

In this study, the parameters extracted from the MGT image samples are only single
feature representations of the target body, but in order to obtain an overall model for
inversion, all physical parameters need to be integrated. When the prediction of information
such as model shape, depth and magnetization susceptibility is completed, the inverse
model can be displayed directly on a map. In addition, the results of each predicted
parameter can be used for correction of the inversion model, and the model becomes more
accurate when more items of parameters are predicted. This is consistent with the principle
of stepwise approximation in traditional inversion methods. The prediction of multiple
magnetic parameters also facilitates the analysis of inverse model and input model errors,
which will be presented in the subsequent error analysis.

We continue to use the Rectangle and Rectangle_2B models as examples to predict the
values of each parameter separately. Let the Rectangle model be a 90 m × 90 m × 90 m
magnetic vein with a central depth of 150 m, a magnetization susceptibility of 0.6 (SI), a
magnetic declination of −2◦ and a magnetic inclination of 58◦. The size of the study area is
200 m × 200 m × 300 m in the x, y and z directions, respectively, as shown in Figure 9a.
The Rectangle_2B model has two magnetic veins aligned at an angle of 45 degrees to the
northwest, with a size of 90 m × 90 m × 90 m, veins 40 m apart in the horizontal and
vertical directions, a central depth of 150 m, a magnetization susceptibility of 0.3 (SI), a
magnetic declination of −2◦ and a magnetic inclination of 58◦ (shown in Figure 10a).

The overall inversion results after parameter synthesis are shown in Figure 9b,c
and Figure 11b, where the overall inversion results of the Rectangle model are shown in
Figure 9b,c. The inversion results of each independent component of the Rectangle_2B
model are consistent, as shown in Figure 10b. From the model comparison plots, it can be
seen that the overall inversion results of the MGT of each model match well with the real
model, and it is difficult to distinguish their differences.
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In the following Tables 4 and 5, the results of the comparison of the real parameter
values of the two input models with the prediction results of each component of the MGT
are shown, respectively. Table 4 shows the comparison of the results for the Rectangle model;
Table 5 shows the comparison of the results for the Rectangle_2B model. In the predicted
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results, the real depth value of the model is 150 m, but the predicted value is 120 m because
the similarity between 150 m and the label value 120 m is greater than the similarity to label
value 200 m. In the model Rectangle, the predicted results of the magnetic susceptibility of
Bxx and Byy differ from the true values by 0.1 (SI). The magnetization value of 0.33 (SI) in
model Rectangle_2B is predicted to be 0.3 (SI) because the label with the greatest similarity
to it is 0.3. This discontinuity in the label values, i.e., the span between the label values
being too large, introduces a labeling error which is caused by the large span between the
label values in the sample label definition. To reduce the labeling error introduced by the
labels, a method of refining the label values can be adopted, i.e., increasing the number of
labels and reducing the spacing between numerical labels.

Table 4. The Rectangle model’s parameter settings and prediction results for each independent
component.

Predictor
Input
Model

Magnetic Tensor Gradient Prediction

Bxx Bxy Bxz Byy Byz Bzz

Horizontal Position 4 4 4 4 4 4 4
Shape Rectangle Rectangle Rectangle Rectangle Rectangle Rectangle Rectangle
Depth 150 120 120 120 120 120 120

D −2◦ −2◦ −2◦ −2◦ −2◦ −2◦ −2◦

I 58◦ 58◦ 58◦ 58◦ 58◦ 58◦ 58◦

Magnetic Sus-
ceptibility(SI) 0.6 0.5 0.6 0.6 0.5 0.6 0.6

Table 5. Model Rectangle_2B parameter settings and prediction results of each independent component.

Predictor
Input
Model

Magnetic Tensor Gradient Prediction

Bxx Bxy Bxz Byy Byz Bzz

Horizontal Position 4 4 4 4 4 4 4

Shape Rectan
gle_2B

Rectan
gle_2B

Rectan
gle_2B

Rectan
gle_2B

Rectan
gle_2B

Rectan
gle_2B

Rectan
gle_2B

Depth 150 120 120 120 120 120 120
D −2◦ −2◦ −2◦ −2◦ −2◦ −2◦ −2◦

I 58◦ 58◦ 58◦ 58◦ 58◦ 58◦ 58◦

Magnetic Sus-
ceptibility(SI) 0.33 0.3 0.3 0.3 0.3 0.3 0.3

Figures 11 and 12 each show a 2D graphical comparison of the independent compo-
nents of the MGT and the predicted components of the Rectangle model and Rectangle_2B
model, respectively. The consistency of the profile of each component is good but there
are also some differences, mainly that the magnetic field intensity of the predicted model
component is larger than that of the real model, because the difference between the pre-
dicted depth and the real model is 30 m. In addition, from the forward modeling equation,
Equation (1), it is known that depth has a greater effect on the magnetic field than magneti-
zation susceptibility.

Tables 6 and 7 show the Misfit error and MSE error of each independent component of
the two prediction models above, and for each the Misfit is below 0.2 and the MSE is below
600. In addition, a comparison of the two models shows that the errors of the dual model’s
components are generally higher than the errors of the single model’s components in this
test. However, in Tables 3 and 4, the prediction accuracy of the Rectangle_2B model is
better than the Rectangle model. Comparing Tables 4 and 5, we can find that the Magnetic
susceptibility of Rectangle_2B model is 0.33 (SI), but the prediction value of each component
is 0.3 (SI) with an error of 0.03 (SI). This situation is caused by the large step span of tag
values and the low identification resolution, which ultimately leads to a high Misfit error
and MSE error rate.



Minerals 2022, 12, 566 15 of 25

Minerals 2022, 12, 566 16 of 27 
 

 

 
Figure 11. Comparison of the Rectangle model’s components and prediction model’s components. 
(a–f) are the xxB , xyB , xzB , yyB , yzB and zzB  components of the Rectangle model; (g–m) are the 

xxB , xyB , xzB , yyB , yzB and zzB  components of the prediction model. 

 
Figure 12. Comparison of the Rectangle_2B model’s components and prediction model’s compo-
nents. (a–f) are the xxB , xyB , xzB , yyB , yzB and zzB  components of the Rectangle_2B model; (g–
m) are the xxB , xyB , xzB , yyB , yzB and zzB  components of the prediction model. 

Tables 7 and 8 show the Misfit error and MSE error of each independent component 
of the two prediction models above, and for each the Misfit is below 0.2 and the MSE is 
below 600. In addition, a comparison of the two models shows that the errors of the dual 
model’s components are generally higher than the errors of the single model’s compo-
nents in this test. However, in Tables 4 and 5, the prediction accuracy of the Rectangle_2B 
model is better than the Rectangle model. Comparing Table 5 and Table 6, we can find 
that the Magnetic susceptibility of Rectangle_2B model is 0.33 (SI), but the prediction 
value of each component is 0.3 (SI) with an error of 0.03 (SI). This situation is caused by 
the large step span of tag values and the low identification resolution, which ultimately 
leads to a high Misfit error and MSE error rate. 

Table 7. Rectangle model‘s prediction Misfit and MSE. 

Error Pattern Bxx Bxy Bxz Byy Byz Bzz 
Misfit 0.0707 0.0580 0.0354 0.0637 0.0346 0.2676 
MSE 197.54 259.04 151.25 190.98 147.95 180.38 

Table 8. Rectangle_2B model’s prediction Misfit and MSE. 

Error Pattern Bxx Bxy Bxz Byy Byz Bzz 
Misfit 0.1017 0.0737 0.0580 0.0669 0.0601 0.1212 
MSE 622.11 498.66 310.91 482.59 333.51 591.29 
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Table 6. Rectangle model‘s prediction Misfit and MSE.

Error Pattern Bxx Bxy Bxz Byy Byz Bzz

Misfit 0.0707 0.0580 0.0354 0.0637 0.0346 0.2676
MSE 197.54 259.04 151.25 190.98 147.95 180.38

Table 7. Rectangle_2B model’s prediction Misfit and MSE.

Error Pattern Bxx Bxy Bxz Byy Byz Bzz

Misfit 0.1017 0.0737 0.0580 0.0669 0.0601 0.1212
MSE 622.11 498.66 310.91 482.59 333.51 591.29

As shown in Figures 11 and 12, and Tables 6 and 7, to achieve MGT error analysis
results for the inverse model, the inverse model needs to be forward modeled. This forward
modeling requires geometry and depth, as well as information on physical parameters
such as magnetic permeability, magnetic declination (D) and magnetic inclination angle (I).
In conclusion, it is necessary to predict more magnetic parameters and to integrate multiple
parameters in order to obtain inversion results that match closer to the measured magnetic
target body.

3.5. Analysis of Factorsaffecting Prediction Accuracy
3.5.1. The Number of Training Samples

The number of training samples is the key to ensure the success of prediction. The
neural network needs a certain number of samples in order to learn the difference informa-
tion in each feature vector and thus perform classification. The following is an example of
the Rectangle model’s Byy component being used to predict the magnetic declination (D).
As shown in Table 1, the prediction range is −10◦~10◦, and the sample sizes of 100, 200,
500, 1000, 1500, 2000 and 2592 are taken for testing respectively. In addition, 1200 samples
are randomly selected from the remaining samples for the accuracy test set. Figure 13
shows the training loss rate and training accuracy comparison graphs. Table 8 shows the
single Epoch time, the number of iterations to reach 90% accuracy, and the accuracy of the
accuracy test set for each case.
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Table 8. Test Results Statistics.

Sample Numbers T_ Epoch(s) 1 Epoch_Num 2 T_Sum(s) 3 Test Accuracy

100 4 44 176 97.3%
200 9 24 216 99.5%
500 18 10 180 99.8%

1000 35 5 175 99.9%
1500 66 4 264 100%
2000 88 3 264 100%
2592 114 3 342 100%

1 T_Epoch is the number of seconds consumed during each Epoch, 2 Epoch_Num is the number of iterations
needed to reach 90% accuracy, and 3 T_Sum is the number of seconds consumed to reach 90% accuracy.

Through testing, we find that increasing the number of samples can improve the
convergence speed and accuracy of the predicted test set. However, when the number
of samples reaches a certain number, each sample’s contribution to the improvement of
prediction accuracy decreases which also leads to the increase of single-Epoch times and
longer training time. In this test, the best time-efficiency and accuracy requirements are
reached when the number of samples in a single category is from 500 to 1000. When high
prediction accuracy can be achieved with fewer samples, it indicates the strong learning
ability of the CNN, and secondly, it also reflects the low variability of sample features and
the existence of feature homogenization. This situation can reduce the number of samples,
which has some implications for the methods needed to generate high-quality samples.

3.5.2. Sample Noise Levels

The sample noise affects the convergence speed during the training of the neural
network, which is essentially an effect on the accuracy of the neural network’s sample
feature extraction, but the prediction accuracy tends to be consistent when a sufficient
number of training Epochs is reached. We take the Rectangle_2B model’s Bzz component
to predict the magnetic permeability (D) as an example, with 5%, 10% and 20% noisy
samples for training, and all the parameter settings in the model remain the same except
for the difference in noise level. As shown in Figure 14, the loss of the low-noise samples
decreases faster than that of the high-noise samples throughout the training period, and the
minimum loss rate is reached faster. That is, the noise metrics of the samples are inversely
proportional to the rate of decline of the loss function. In the early training period, in the
interval of 0~5 Epochs, the high-noise-level samples decline faster than the low-noise-level
samples, after which the loss curves appear as intersection points. In the middle of training,
between 5 and 100 Epochs, the high-noise-level samples decline less rapidly than the
low-noise-level samples, and the low-noise-level samples reach their lowest loss range in
the middle and late stages, and the change rate tends to be 0. In the late stage of training,
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between 100 and 120 Epochs, all three reach their lowest loss range and the loss curves
overlap. According to the noise test curve comparison characteristics, the samples’ noise
levels and data-quality levels can be evaluated.
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3.5.3. MGT Joint Inversion

The MGTs have six different independent components to predict separately, and the
joint prediction of multiple components can be achieved by statistical or weighting methods
to obtain the best prediction accuracy; that is, the single-component prediction results can
be corrected by the prediction results of the overall component, thus improving fault
tolerance. For example, when less than half of the MGT components’ prediction values are
wrong, the accuracy of the final prediction results can be ensured by methods such as the
statistical or weighted averaging of each component.

We take the Rectangle_2B model as an example and use the neural network trained with
the total magnetic field and each MGT component to predict the magnetic inclination (I). In
order to ensure the consistency of the prediction results, all parameters in the model are set
in the same range, except for the magnetic inclination (I). The output of the CNN’s results
is in the form of predicted probability values, where the maximum probability value is
obtained for each label.

Table 9 shows the prediction results for the inclination I = 62◦. In this prediction test,
5% random noise is added, and the prediction accuracy is greater than 95%. The maximum
predicted probability value of Bxz in the table is 95.4%, which is lower than 99.99%. The
predicted values of Bxz components can also be ignored here, and the predicted values
of other components are taken as the final results of the joint prediction. The accuracy of
multi-component combined prediction is higher than that of single-component prediction.

Table 9. Comparison of the prediction accuracies of the total magnetic field and the MGT.

Component Name . . . 58 60 62 64 66 . . .

Bt . . . 1.48 × 10−8 1.26 × 10−7 9.91 × 10−1 1.46 × 10−13 1.76 × 10−4 . . .
Bxx . . . 2.09 × 10−14 9.57× 10−18 9.99 × 10−1 1.61 × 10−31 3.67× 10−4 . . .
Bxy . . . 4.28 × 10−13 9.91× 10−16 9.99 × 10−1 2.63 × 10−28 3.91 × 10−4 . . .
Bxz . . . 1.11 × 10−18 4.87 × 10−11 9.54 × 10−1 2.87 × 10−24 2.59 × 10−8 . . .
Byy . . . 3.05 × 10−13 2.19 × 10−13 9.99 × 10−1 1.65 × 10−25 3.16 × 10−5 . . .
Byz . . . 4.06 × 10−15 3.95 × 10−13 9.99 × 10−1 7.01 × 10−23 7.64 × 10−6 . . .
Bzz . . . 1.74 × 10−10 1.77 × 10−10 9.99 × 10−1 2.02 × 10−18 7.53 × 10−5 . . .
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4. Application to Field Data: Tallawang Magnetite Silica, Australia
4.1. Geologic Background

The Tallawang magnetite diorite deposit is located 18 km northwest of Gulgong in
New South Wales (NSW), Australia, as shown in Figure 7 of Schmidt et al. (2004) [4]. It is
located along the western margin of the Gulgong granite body, within the Lachlan folded
belt, Hill End Trough stratigraphic sequence, in eastern Australia [59–61].

The magnetite was intruded during the attenuated phase of the Kanimblan orogeny
in the late Carboniferous [62–64]. Mineralization occurred mainly in the Late Silurian-
age Dungeree volcanic rocks (zircon uranium-lead isotopic age 418 million years), which
are located on the margin of a deformed, matted particulate amphibolite intrusive body
(Gurgaon granite body) that was intruded during the Late Carboniferous Kanimblan
orogeny, and magnetite is thought to be reflected in the crystalline body [65–67].

The tectonically misshapen, deformed pod-like, semi-massive magnetite bodies show
a steep dip to the west on the contact of the granitic saprolite bodies. It is also complicated
by lateral faulting of a tightly folded host rock sequence (the Tarkan Formation), causing
east-west displacement of the magnetite zone.

Numerous drill holes have been drilled around the magnetite body and the rock
magnetism of the magnetite has been well characterized. The maximum magnetization
of the test sample is 3.8 SI, with a remanence time of 40 a.m. −1 and a Koenigsberger
ratio (Qs) of about 0.2 ~ 0.5. The remanence’s average orientation is WNW and steeply
upward. The effective magnetization intensity, projected onto the vertical plane with the
perpendicular, is steeply upward-oriented [4]. The local magnetic inclination (I) is −63.3◦,
the magnetic declination (D) is 11.37◦, the total background magnetic field is 56,481 nT and
the magnetite anomaly has an amplitude of 12,000 nT. The magnetite xenolith deposit is
mostly vein-like, with a depth of about 10 m at the top and 120 m at the bottom.

Schmidtet [4] demonstrated CSIRO’s GETMAG system’s performance on this mag-
netite skarn deposit in a field trial with three profiles (50 mN, 60 mN and 120 mN). The
length of the measurement line is 150 m, shown in Figure 15, approximately perpendic-
ular to the strike of the sillimanite deposit, reducing blending and effectively making
the measurements two-dimensional and planar. The GETMAG system consists of three
high-temperature superconducting quantum interference sensors independently spinning
along a central axial direction, operating in liquid nitrogen (−196 ◦C) with the overall
combination of an umbrella-shaped magnetic gradiometer device.
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In Figure 15, the 50 mN, 60 mN and 120 mN lines all cross the magnetite vein, but the
120 mN and 60 mN lines are far apart and contain an east-west-northwest fault. There is not
enough line data to reflect the real mine morphology, so we only take the two-dimensional
plan composed of the 50 mN and 60 mN line data for local prediction and inversion
interpretation, as shown in Figure 16.
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4.2. Parameter Prediction

With reference to the orientation of the two test lines in Figure 15, we construct two
example prediction models, the arc tilt model and the rhombohedral tilt model (Figure 17),
for the magnetic rock vein crossed by the line. The vein is located 10 m underground, and
the horizontal section is a northeast- and then northward-curved rock surface, as shown in
Figure 17a, with a length and width of 107 m × 14 m. The x-axis (east is positive) extends
from 72 m to 97 m, the y-axis (north is positive) extends from 0 m to 107 m, the z-axis
(bottom is positive) extends from 120 m to the depth and with a westward tilt, as shown in
Figure 17b. The horizontal cross-section is a northeast trapezoidal rock face, as shown in
Figure 17c, with a length and width of 107 m × 14 m. The x-axis (east) extends from 72 m
to 97 m, the y-axis (north) extends from 0 m to 107 m and the z-axis is buried at a depth of
120 m with a westward slope, as shown in Figure 17d.
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The arc tilted magnetic dikes model and the rhombohedral tilted magnetic dikes model,
with the same configuration of physical parameters, are configured with the following
parameters: an I prediction range of −80◦~80◦ with a step of 10◦; a D prediction range of
−170◦~170◦ with a step of 10◦; the magnetic anomaly is considered as a uniform magnetic
body; the magnetic susceptibility prediction range is 1~3.5 (SI) with a step of 0.5 SI; and the
depth of the center point of the magnetic body is -20 m. In addition, these two example
models are used for shape prediction, together with the seven simulation models in Figure 5.

4.3. The Effect of the Source Body Parameters on Predictions

We predict each parameter of magnetite sillimanite ore with joint multi-component
prediction, where the shape prediction results in an arc-shaped inclined body, which
is consistent with magnetic iron ore dikes. The geometry of the magnetic anomalies is
generally predicted by the Bzz component, and we can find from Figure 5 that the Bzz
sample magnetic anomalies are clearly separated from the interface. In addition, the Bzz
component is suitable for the identification of a magnetic anomalous body shape that does
not overlap in the vertical direction, as shown in Figure 16f.

The predicted depth of the center of the magnetic anomaly is 85 m, which is close
to the actual depth of 55 m in the center of the magnetite silica. The depth has a large
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influence on the magnetic field intensity, and after unifying the color scale for samples with
different depth values, the image differences are obvious and easy to identify.

The predicted value of magnetic inclination (I) is −50◦ for the Bxx component, −70◦

for the Byz component and −60◦ for the Bzz component. Combining the above three
components, the predicted range of magnetic inclination (I) is [−50◦, 70◦], and its middle
value of −60◦ is taken as the predicted value. The average direction of the magnetite
residue is WNW, and for its effective magnetization intensity, all of which are in the steep
upward direction, it can be concluded that the I of the remanence is upward and negative
and then, combined with the local background magnetic field inclination, is −63.3◦, so the
predicted value (−60◦) is consistent with the actual situation.

The predicted magnetic declination (D) is 50◦ for the Bxx component, 170◦ for the
Bxz component, 30◦ for the Byy component, 170◦ for the Byz component and 170◦ for the
Bzz component. Combining the predicted values of the above components, the magnetic
declination is positive, the predicted values with excessive deviation (30◦ and 50◦) are
removed and the final predicted value is 170◦. From the Bxx and Bzz component plots in
Figure 16a,f, respectively, through the center of the vein (within the interval of 80 m–110 m
of the X-axis), the two sides of the vein are not completely symmetrical, the western value
is smaller than the eastern value, it can be seen from the plots that the green diffusion range
value on the left side of the Bxx component is larger than the right side and the yellow
diffusion range value on the left side of the Bzz component is larger than the right side. In
the case of negative magnetic inclination (I), compared to the forward modeling simulation
results, we can see that the magnetic declination is positive and greater than 90◦. In the
geological background, the vein’s total field values are all positive and the predicted value
of 170◦ is consistent with the actual situation when the geological background magnetic
declination is 11.37◦.

The magnetite sillimanite body is considered as a homogeneous magnet with a pre-
dicted central depth of 85 m. The label value corresponding to the predicted maximum
probability value of the magnetization of each independent component is 1 (SI). The
magnetite sillimanite has a maximum magnetization of 3.8 (SI) and its overall average
magnetization decreases. The predicted value of 1 (SI) is consistent with the overall uniform
magnetization range within the mine.

Combining the predicted parameters above, the inversion result of magnetite silli-
manite is an arc-shaped slab vein inclined to the west with a depth of 85 m at its center, a
magnetic inclination of −60◦, a magnetic declination of 170◦ and a uniform magnetization
of 1 (SI), as shown in Figure 18.
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In the measurement area, there is an outcrop with line number 60 mN with its front
end adjacent to the outcrop, as shown in Figure 16; in the range of 35 m~45 m on the
X-axis, there is a semicircular anomaly with interference information, but it does not affect
the prediction results because the constructed real measurement model is empty in the
outcrop area, which indicates that, through the construction of the model area, the CNN
can realize the designation of the prediction area and suppress the noise interference in the
non-prediction area to realize its function, similar to the local fixed-point focus.

5. Conclusions

By training on a large number of image samples generated by a synthetic model, a
CNN can be used to extract magnetic parameters, synthesize all magnetic parameters and
then achieve an inversion model of MGT data. In this work, we develop a CNN-based 3D
inversion method for MGT data. We use randomly generated image samples of each inde-
pendent component of the MGT for the classification and identification of geometric shape
information and physical parameters of magnetic gradient detection data of magnetic target
bodies. We also investigate a method of identifying the geometric shape and depth first and
then further identifying the physical property parameters, and this stepwise identification
method can suppress the influence of uncertainties and improve the recognition rate. We
validate our optimized CNN inversion network by two synthetic models and shear model
comparison tests, and prove that the geometric shape and magnetic parameter information
of a magnetic target body can be effectively recognized by the trained CNN. In this study,
it is found that the discontinuity of CNN classification labels can cause the illusion of large
actual errors and falsely high prediction accuracy. The MGT data span a large magnitude
and are severely polarized. With a uniform color scale display of the sample set, samples
with weak MGT signals are blurred during imaging and fail to present their overall fea-
tures, which affects the image imaging quality and leads to a lower recognition rate or even
failure to converge in training. It is necessary to reduce the spacing of adjacent label values,
refine the range of label values or resort to other auxiliary methods in order to improve the
recognition rate.

The uncertainty analysis shows that sample noise can be suppressed by increasing
the number of iterations, and the change characteristics of the training loss rate curve
reflect the noise level of the samples. When the amount of training samples reaches a
certain number, prediction accuracy and training time reach their best state; in this test,
500~1000 training samples of each category reach the best state. With higher numbers,
the prediction accuracy remains the same but the training time is longer. In addition,
multi-component joint prediction is more advantageous than single-component prediction
because the prediction error rate is reduced.

We also apply the developed method to the inversion of MGT data from the Tallawang
magnetite diorite deposit in Australia. The depth of burial of the magnetite centroids in the
measured area and the information of related magnetic parameters are predicted from the
data of two measured lines.

Although we have verified that a CNN can achieve MGT inversion by testing, this
partial testing does not necessarily indicate that this method is better than the traditional
inversion method. In the case of complex target bodies with anomalous and anisotropic
structures, more matching models need to be constructed to expand the training sample
pool and more time is needed for the preliminary model construction and sample generation
compared to the traditional inversion method; therefore, both have mutual advantages,
which means that CNN inversion can be considered as a complement to the traditional
magnetic field inversion method.

In future research, in order to balance prediction accuracy and effectiveness, devel-
oping a more lightweight prediction model is an important direction for MGT inversion
based on machine learning.
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6. Patents

This achievement has been submitted to the State Intellectual Property Office of the
People’s Republic of China for an invention patent named “A method and apparatus
for 3D magnetic gradient tensor inversion based on CNN”. The application number
is: 202210372621.7.
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