Editorial for Special Issue “Clay Mineral Transformations after Bentonite/Clayrocks and Heater/Water Interactions from Lab and Large-Scale Tests”
Conflicts of Interest
References
- OECD. Geological Disposal of Radioactive Waste. Review of Developments in the Last Decade; OECD Nuclear Energy Agency (NEA): Paris, France, 2000; 106p. [Google Scholar]
- Ewing, R.C.; Whittleston, R.A.; Yardley, B.W.D. Geological Disposal of Nuclear Waste: A Primer. Elements 2016, 12, 233–237. [Google Scholar] [CrossRef] [Green Version]
- NAS–NRC. Disposal of Radioactive Waste on Land; National Academy of Sciences–National Research Council Report; National Academies Press: Washington, DC, USA, 1957; 146p. [Google Scholar]
- Metlay, D.S. Selecting a Site for a Radioactive Waste Repository: A Historical Analysis. Elements 2016, 12, 269–274. [Google Scholar] [CrossRef]
- IAEA (International Atomic Energy Agency). Disposal of Radioactive Waste. Specific Safety Requirements; International Atomic Energy Agency Safety Standards Series No. SSR-5; IAEA: Vienna, Austria, 2011; 62p. [Google Scholar]
- IAEA (International Atomic Energy Agency). Geological Disposal Facilities for Radioactive Waste. Specific Safety Guide; International Atomic Energy Agency Safety Standards Series No. SSG-14; IAEA: Vienna, Austria, 2011; 104p. [Google Scholar]
- Delay, J.; Bossart, P.; Ling, L.X.; Blechschmidt, I.; Ohlsson, M.; Vinsot, A.; Nussbaum, C.; Maes, M. Three decades of underground research laboratories: What have we learned? Geol. Soc. Lond. Spec. Publ. 2014, 400, 7–32. [Google Scholar] [CrossRef]
- Nikitin, A. The Underground Research Laboratory in the Deep Geological Repository in the Nizhnekansk Massif, Krasnoyarsk Territory; A Bellona Working Paper; Bellona: Oslo, Norway, 2018; 23p. [Google Scholar]
- OECD. Underground Research Laboratories (URL); OECD Nuclear Energy Agency (NEA): Paris, France, 2013; 52p. [Google Scholar]
- Altman, S. Geochemical research: A key building block for nuclear waste disposal safety cases. J. Contam. Hydrol. 2008, 112, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Apted, M.J.; Ahn, J. Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, 2nd ed.; Woodhead Publishing Series in Energy; Elsevier: Duxford, UK, 2017. [Google Scholar]
- Daniels, K.A.; Harrington, J.F.; Milodowski, A.E.; Kemp, S.J.; Mounteney, I.; Sellin, P. Gel Formation at the Front of Expanding Calcium Bentonites. Minerals 2021, 11, 215. [Google Scholar] [CrossRef]
- Meleshyn, A.Y.; Zakusin, S.V.; Krupskaya, V.V. Swelling Pressure and Permeability of Compacted Bentonite from 10th Khutor Deposit (Russia). Minerals 2021, 11, 742. [Google Scholar] [CrossRef]
- Manzel, T.; Podlech, C.; Grathoff, G.; Kaufhold, S.; Warr, L.N. In Situ Measurements of the Hydration Behavior of Compacted Milos (SD80) Bentonite by Wet-Cell X-ray Diffraction in an Opalinus Clay Pore Water and a Diluted Cap Rock Brine. Minerals 2021, 11, 1082. [Google Scholar] [CrossRef]
- Bateman, K.; Amano, Y.; Kubota, M.; Ohuchi, Y.; Tachi, Y. Reaction and Alteration of Mudstone with Ordinary Portland Cement and Low Alkali Cement Pore Fluids. Minerals 2021, 11, 588. [Google Scholar] [CrossRef]
- Kašpar, V.; Šachlová, Š.; Hofmanová, E.; Komárková, B.; Havlová, V.; Aparicio, C.; Černá, K.; Bartak, D.; Hlaváčková, V. Geochemical, Geotechnical, and Microbiological Changes in Mg/Ca Bentonite after Thermal Loading at 150 °C. Minerals 2021, 11, 965. [Google Scholar] [CrossRef]
- Laufek, F.; Hanusová, I.; Svoboda, J.; Vašíček, R.; Najser, J.; Koubová, M.; Čurda, M.; Pticen, F.; Vaculíková, L.; Sun, H.; et al. Mineralogical, Geochemical and Geotechnical Study of BCV 2017 Bentonite—The Initial State and the State following Thermal Treatment at 200 °C. Minerals 2021, 11, 871. [Google Scholar] [CrossRef]
- Podlech, C.; Matschiavelli, N.; Peltz, M.; Kluge, S.; Arnold, T.; Cherkouk, A.; Meleshyn, A.; Grathoff, G.; Warr, L.N. Bentonite Alteration in Batch Reactor Experiments with and without Organic Supplements: Implications for the Disposal of Radioactive Waste. Minerals 2021, 11, 932. [Google Scholar] [CrossRef]
- Bleyen, N.; Small, J.S.; Mijnendonckx, K.; Hendrix, K.; Albrecht, A.; De Cannière, P.; Surkova, M.; Wittebroodt, C.; Valcke, E. Ex and In Situ Reactivity and Sorption of Selenium in Opalinus Clay in the Presence of a Selenium Reducing Microbial Community. Minerals 2021, 11, 757. [Google Scholar] [CrossRef]
- Emmerich, K.; Bakker, E.; Königer, F.; Rölke, C.; Popp, T.; Häußer, S.; Diedel, R.; Schuhmann, R. A MiniSandwich Experiment with Blended Ca-Bentonite and Pearson Water—Hydration, Swelling, Solute Transport and Cation Exchange. Minerals 2021, 11, 1061. [Google Scholar] [CrossRef]
- Wersin, P.; Hadi, J.; Jenni, A.; Svensson, D.; Grenèche, J.-M.; Sellin, P.; Leupin, O.X. Interaction of Corroding Iron with Eight Bentonites in the Alternative Buffer Materials Field Experiment (ABM2). Minerals 2021, 11, 907. [Google Scholar] [CrossRef]
- Sudheer Kumar, R.; Podlech, C.; Grathoff, G.; Warr, L.N.; Svensson, D. Thermally Induced Bentonite Alterations in the SKB ABM5 Hot Bentonite Experiment. Minerals 2021, 11, 1017. [Google Scholar] [CrossRef]
- Kaufhold, S.; Dohrmann, R.; Ufer, K.; Svensson, D.; Sellin, P. Mineralogical Analysis of Bentonite from the ABM5 Heater Experiment at Äspö Hard Rock Laboratory, Sweden. Minerals 2021, 11, 669. [Google Scholar] [CrossRef]
- Fernández, A.M.; Marco, J.F.; Nieto, N.; León, F.J.; Robredo, L.M.; Clavero, M.A.; Fernández, S.; Svensson, D.; Sellin, P. Characterization of Bentonites from the in situ ABM5 Heater Experiment at Äspö Hard Rock Laboratory, Sweden. Minerals 2022, 11, 471. [Google Scholar] [CrossRef]
- Yokoyama, S.; Shimbashi, M.; Minato, D.; Watanabe, Y.; Jenni, A.; Mäder, U. Alteration of Bentonite Reacted with Cementitious Materials for 5 and 10 years in the Mont Terri Rock Laboratory (CI Experiment). Minerals 2021, 11, 251. [Google Scholar] [CrossRef]
- Bateman, K.; Murayama, S.; Hanamachi, Y.; Wilson, J.; Seta, T.; Amano, Y.; Kubota, M.; Ohuchi, Y.; Tachi, Y. Evolution of the Reaction and Alteration of Mudstone with Ordinary Portland Cement Leachates: Sequential Flow Experiments and Reactive-Transport Modelling. Minerals 2021, 11, 1026. [Google Scholar] [CrossRef]
- Jenni, A.; Mäder, U. Reactive Transport Simulation of Low-pH Cement Interacting with Opalinus Clay Using a Dual Porosity Electrostatic Model. Minerals 2021, 11, 664. [Google Scholar] [CrossRef]
- Chaparro, M.C.; Finck, N.; Metz, V.; Geckeis, H. Reactive Transport Modelling of the Long-Term Interaction between Carbon Steel and MX-80 Bentonite at 25 °C. Minerals 2021, 11, 1272. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, A.M.; Kaufhold, S.; Olin, M.; Zheng, L.-G.; Wersin, P.; Wilson, J. Editorial for Special Issue “Clay Mineral Transformations after Bentonite/Clayrocks and Heater/Water Interactions from Lab and Large-Scale Tests”. Minerals 2022, 12, 569. https://doi.org/10.3390/min12050569
Fernández AM, Kaufhold S, Olin M, Zheng L-G, Wersin P, Wilson J. Editorial for Special Issue “Clay Mineral Transformations after Bentonite/Clayrocks and Heater/Water Interactions from Lab and Large-Scale Tests”. Minerals. 2022; 12(5):569. https://doi.org/10.3390/min12050569
Chicago/Turabian StyleFernández, Ana María, Stephan Kaufhold, Markus Olin, Lian-Ge Zheng, Paul Wersin, and James Wilson. 2022. "Editorial for Special Issue “Clay Mineral Transformations after Bentonite/Clayrocks and Heater/Water Interactions from Lab and Large-Scale Tests”" Minerals 12, no. 5: 569. https://doi.org/10.3390/min12050569
APA StyleFernández, A. M., Kaufhold, S., Olin, M., Zheng, L. -G., Wersin, P., & Wilson, J. (2022). Editorial for Special Issue “Clay Mineral Transformations after Bentonite/Clayrocks and Heater/Water Interactions from Lab and Large-Scale Tests”. Minerals, 12(5), 569. https://doi.org/10.3390/min12050569