Pb-Bearing Ferrihydrite Bioreduction and Secondary-Mineral Precipitation during Fe Redox Cycling
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Pb-Bearing Ferrihydrite Characterization
3.2. Bioreduction of the Fh_Pb Series and Concentrations in Solution
3.3. Biogenic-Mineral Characterization
3.3.1. Reduction Phase 1 (RP1)
3.3.2. Reduction Phase 2 (RP2)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, N.; Li, J.H. Environmental Impacts of Lead Ore Mining and Smelting. Adv. Mater. Res. 2014, 878, 338–347. [Google Scholar] [CrossRef]
- Gis Sol. Synthèse sur l’état des sols de France. GProupement d’intérêt Scientifique Sur Les Sols. 2011, p. 24. Available online: https://www.gissol.fr/publications/rapports/synthese-resf-869 (accessed on 2 March 2022).
- Gutiérrez, M.; Mickus, K.; Camacho, L.M. Abandoned PbZn Mining Wastes and Their Mobility as Proxy to Toxicity: A Review. Sci. Total Environ. 2016, 565, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, L.; Probst, A.; Probst, J.L.; Ulrich, E. Heavy Metal Distribution in Some French Forest Soils: Evidence for Atmospheric Contamination. Sci. Total Environ. 2003, 312, 195–219. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2000; ISBN 978-0-429-19112-1. [Google Scholar]
- National Academies Press. National Academies of Sciences, Engineering, and Medicine Investigative Strategies for Lead-Source Attribution at Superfund Sites Associated with Mining Activities; National Academies Press: Washington, DC, USA, 2017; ISBN 978-0-309-46559-5. [Google Scholar]
- Villen-Guzman, M.; Garcia-Rubio, A.; Paz-Garcia, J.M.; Vereda-Alonso, C.; Gomez-Lahoz, C.; Rodriguez-Maroto, J.M. Aging Effects on the Mobility of Pb in Soil: Influence on the Energy Requirements in Electroremediation. Chemosphere 2018, 213, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Griswold, W. Health Effects of Heavy Metals. Environ. Sci. Technol. Briefs Citiz. 2009, 15, 1–6. [Google Scholar]
- Chiroma, T.M.; Ebewele, R.O.; Hymore, F.K. Comparative Assessement Of Heavy Metal Levels in Soil, Vegetables and Urban Grey Waste Water Used for Irrigation in Yola and Kano. Int. Refereed J. Eng. Sci. 2014, 3, 1–9. [Google Scholar]
- Bradl, H.B. Adsorption of Heavy Metal Ions on Soils and Soils Constituents. J. Colloid Interface Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef]
- Fleming, M.; Tai, Y.; Zhuang, P.; McBride, M.B. Extractability and Bioavailability of Pb and As in Historically Contaminated Orchard Soil: Effects of Compost Amendments. Environ. Pollut 2013, 177, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Jensen, P.E.; Ottosen, L.M.; Pedersen, A.J. Speciation of Pb in Industrially Polluted Soils. Water Air Soil Pollut 2006, 170, 359–382. [Google Scholar] [CrossRef]
- Liu, G.; Yu, Z.; Liu, X.; Xue, W.; Dong, L.; Liu, Y. Aging Process of Cadmium, Copper, and Lead under Different Temperatures and Water Contents in Two Typical Soils of China. J. Chem. 2020, 2020, e2583819. [Google Scholar] [CrossRef]
- Journet, E.; Balkanski, Y.; Harrison, S.P. A New Data Set of Soil Mineralogy for Dust-Cycle Modeling. Atmos. Chem. Phys. 2014, 14, 3801–3816. [Google Scholar] [CrossRef] [Green Version]
- Erbs, J.J.; Berquó, T.S.; Reinsch, B.C.; Lowry, G.V.; Banerjee, S.K.; Penn, R.L. Reductive Dissolution of Arsenic-Bearing Ferrihydrite. Geochim. Cosmochim. Acta 2010, 74, 3382–3395. [Google Scholar] [CrossRef]
- Frierdich, A.J.; Luo, Y.; Catalano, J.G. Trace Element Cycling through Iron Oxide Minerals during Redox-Driven Dynamic Recrystallization. Geology 2011, 39, 1083–1086. [Google Scholar] [CrossRef]
- Zachara, J.M.; Fredrickson, J.K.; Smith, S.C.; Gassman, P.L. Solubilization of Fe(III) Oxide-Bound Trace Metals by a Dissimilatory Fe(III) Reducing Bacterium. Geochim. Cosmochim. Acta 2001, 65, 75–93. [Google Scholar] [CrossRef] [Green Version]
- Zegeye, A.; Carteret, C.; Mallet, M.; Billet, D.; Ferté, T.; Chang, C.S.; Hauet, T.; Abdelmoula, M. Effect of Sb on Precipitation of Biogenic Minerals during the Reduction of Sb-Bearing Ferrihydrites. Geochim. Cosmochim. Acta 2021, 309, 96–111. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd, Completely Revised and Extended Edition; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Davranche, M.; Bollinger, J.-C. Release of Metals from Iron Oxyhydroxides under Reductive Conditions: Effect of Metal/Solid Interactions. J. Colloid Interface Sci. 2000, 232, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Hesterberg, D.; Duff, M.C.; Dixon, J.B.; Vepraskas, M.J. X-ray Microspectroscopy and Chemical Reactions in Soil Microsites. J. Environ. Qual. 2011, 40, 667–678. [Google Scholar] [CrossRef]
- Lu, P.; Nuhfer, N.T.; Kelly, S.; Li, Q.; Konishi, H.; Elswick, E.; Zhu, C. Lead Coprecipitation with Iron Oxyhydroxide Nano-Particles. Geochim. Cosmochim. Acta 2011, 75, 4547–4561. [Google Scholar] [CrossRef] [Green Version]
- Seda, N.N.; Koenigsmark, F.; Vadas, T.M. Sorption and Coprecipitation of Copper to Ferrihydrite and Humic Acid Organomineral Complexes and Controls on Copper Availability. Chemosphere 2016, 147, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Hassellöv, M.; von der Kammer, F. Iron Oxides as Geochemical Nanovectors for Metal Transport in Soil-River Systems. Elements 2008, 4, 401–406. [Google Scholar] [CrossRef]
- Ionescu, D.; Heim, C.; Polerecky, L.; Thiel, V.; de Beer, D. Biotic and Abiotic Oxidation and Reduction of Iron at Circumneutral PH Are Inseparable Processes under Natural Conditions. Geomicrobiol. J. 2015, 32, 221–230. [Google Scholar] [CrossRef]
- Bleam, W.F. Chapter 8—Redox Chemistry. In Soil and Environmental Chemistry; Bleam, W.F., Ed.; Academic Press: Boston, MA, USA, 2012; pp. 321–370. ISBN 978-0-12-415797-2. [Google Scholar]
- Han, R.; Liu, T.; Li, F.; Li, X.; Chen, D.; Wu, Y. Dependence of Secondary Mineral Formation on Fe(II) Production from Ferrihydrite Reduction by Shewanella Oneidensis MR-1. ACS Earth Space Chem. 2018, 2, 399–409. [Google Scholar] [CrossRef]
- Hansel, C.M.; Benner, S.G.; Fendorf, S. Competing Fe(II)-Induced Mineralization Pathways of Ferrihydrite. Environ. Sci. Technol. 2005, 39, 7147–7153. [Google Scholar] [CrossRef] [PubMed]
- Hansel, C.M.; Benner, S.G.; Neiss, J.; Dohnalkova, A.; Kukkadapu, R.K.; Fendorf, S. Secondary Mineralization Pathways Induced by Dissimilatory Iron Reduction of Ferrihydrite under Advective Flow. Geochim. Cosmochim. Acta 2003, 67, 2977–2992. [Google Scholar] [CrossRef] [Green Version]
- Pallud, C.; Kausch, M.; Fendorf, S.; Meile, C. Spatial Patterns and Modeling of Reductive Ferrihydrite Transformation Observed in Artificial Soil Aggregates. Environ. Sci. Technol. 2010, 44, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Zachara, J.M.; Kukkadapu, R.K.; Fredrickson, J.K.; Gorby, Y.A.; Smith, S.C. Biomineralization of Poorly Crystalline Fe(III) Oxides by Dissimilatory Metal Reducing Bacteria (DMRB). Geomicrobiol. J. 2002, 19, 179–207. [Google Scholar] [CrossRef]
- Cheng, D.; Yuan, S.; Liao, P.; Zhang, P. Oxidizing Impact Induced by Mackinawite (FeS) Nanoparticles at Oxic Conditions Due to Production of Hydroxyl Radicals. Environ. Sci. Technol. 2016, 50, 11646–11653. [Google Scholar] [CrossRef]
- Miot, J.; Etique, M. Formation and Transformation of Iron-Bearing Minerals by Iron(II)-Oxidizing and Iron(III)-Reducing Bacteria. In Iron Oxides; Wiley-Blackwell: Hoboken, NJ, USA, 2016; pp. 53–98. ISBN 978-3-527-69139-5. [Google Scholar]
- Jones, A.M.; Griffin, P.J.; Collins, R.N.; Waite, T.D. Ferrous Iron Oxidation under Acidic Conditions—The Effect of Ferric Oxide Surfaces. Geochim. Cosmochim. Acta 2014, 145, 1–12. [Google Scholar] [CrossRef]
- Vu, H.P.; Shaw, S.; Brinza, L.; Benning, L.G. Partitioning of Pb(II) during Goethite and Hematite Crystallization: Implications for Pb Transport in Natural Systems. Appl. Geochem. 2013, 39, 119–128. [Google Scholar] [CrossRef]
- Vu, H.P.; Shaw, S.; Brinza, L.; Benning, L.G. Crystallization of Hematite (α-Fe2O3) under Alkaline Condition: The Effects of Pb. Cryst. Growth Des. 2010, 10, 1544–1551. [Google Scholar] [CrossRef]
- Schwertmann, U.; Cornell, R.M. Iron Oxides in the Laboratory: Preparation and Characterization; John Wiley & Sons: Hoboken, NJ, USA, 2000; ISBN 978-3-527-29669-9. [Google Scholar]
- Watanabe, K.; Manefield, M.; Lee, M.; Kouzuma, A. Electron Shuttles in Biotechnology. Curr. Opin. Biotechnol. 2009, 20, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Viollier, E.; Inglett, P.W.; Hunter, K.; Roychoudhury, A.N.; Van Cappellen, P. The Ferrozine Method Revisited: Fe(II)/Fe(III) Determination in Natural Waters. Appl. Geochem. 2000, 15, 785–790. [Google Scholar] [CrossRef]
- Murad, E.; Johnston, J.H. Iron Oxides and Oxyhydroxides. In Mössbauer Spectroscopy Applied to Inorganic Chemistry; Springer: New York, NY, USA, 1987; pp. 507–582. [Google Scholar]
- Mørup, S.; Topsøe, H. Mössbauer Studies of Thermal Excitations in Magnetically Ordered Microcrystals. Appl. Phys. 1976, 11, 63–66. [Google Scholar] [CrossRef]
- Mørup, S.; Bo Madsen, M.; Franck, J.; Villadsen, J.; Koch, C.J.W. A New Interpretation of Mössbauer Spectra of Microcrystalline Goethite: “Super-Ferromagnetism” or “Super-Spin-Glass” Behaviour? J. Magn. Magn. Mater. 1983, 40, 163–174. [Google Scholar] [CrossRef]
- Srivastava, C.M.; Shringi, S.N.; Babu, M.V. Mössbauer Study of the Low-Temperature Phase of Magnetite. Phys. Status Solidi 1981, 65, 731–735. [Google Scholar] [CrossRef]
- Vandenberghe, R.E.; Barrero, C.A.; da Costa, G.M.; Van San, E.; De Grave, E. Mössbauer Characterization of Iron Oxides and (Oxy)Hydroxides: The Present State of the Art. Hyperfine Interact. 2000, 126, 247–259. [Google Scholar] [CrossRef]
- Daou, T.J.; Pourroy, G.; Bégin-Colin, S.; Grenèche, J.M.; Ulhaq-Bouillet, C.; Legaré, P.; Bernhardt, P.; Leuvrey, C.; Rogez, G. Hydrothermal Synthesis of Monodisperse Magnetite Nanoparticles. Chem. Mater. 2006, 18, 4399–4404. [Google Scholar] [CrossRef]
- Janot, C.; Chabanel, M.; Herzog, E. Étude d’une limonite par effet Mössbauer. Bull. De Minéralogie 1968, 91, 166–171. [Google Scholar] [CrossRef]
- Schwertmann, U.; Stanjek, H.; Becher, H.-H. Long-Term in Vitro Transformation of 2-Line Ferrihydrite to Goethite/Hematite at 4, 10, 15 and 25 °C. Clay Miner. 2004, 39, 433–438. [Google Scholar] [CrossRef]
- Yan, J.; Frierdich, A.J.; Catalano, J.G. Impact of Zn Substitution on Fe(II)-Induced Ferrihydrite Transformation Pathways. Geochim. Cosmochim. Acta 2022, 320, 143–160. [Google Scholar] [CrossRef]
- Burton, E.D.; Hockmann, K.; Karimian, N.; Johnston, S.G. Antimony Mobility in Reducing Environments: The Effect of Microbial Iron(III)-Reduction and Associated Secondary Mineralization. Geochim. Cosmochim. Acta 2019, 245, 278–289. [Google Scholar] [CrossRef]
- Hansel, C.M.; Learman, D.R.; Lentini, C.J.; Ekstrom, E.B. Effect of Adsorbed and Substituted Al on Fe (II)-Induced Mineralization Pathways of Ferrihydrite. Geochim. Cosmochim. Acta 2011, 75, 4653–4666. [Google Scholar] [CrossRef]
- Ekstrom, E.B.; Learman, D.R.; Madden, A.S.; Hansel, C.M. Contrasting Effects of Al Substitution on Microbial Reduction of Fe(III) (Hydr)Oxides. Geochim. Cosmochim. Acta 2010, 74, 7086–7099. [Google Scholar] [CrossRef]
- Fredrickson, J.K.; Zachara, J.M.; Kukkadapu, R.K.; Gorby, Y.A.; Smith, S.C.; Brown, C.F. Biotransformation of Ni-Substituted Hydrous Ferric Oxide by an Fe(III)-Reducing Bacterium. Environ. Sci. Technol. 2001, 35, 703–712. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhu, M.; Lan, S.; Ginder-Vogel, M.; Liu, F.; Feng, X. Formation and Secondary Mineralization of Ferrihydrite in the Presence of Silicate and Mn(II). Chem. Geol. 2015, 415, 37–46. [Google Scholar] [CrossRef]
- Usman, M.; Abdelmoula, M.; Hanna, K.; Grégoire, B.; Faure, P.; Ruby, C. FeII Induced Mineralogical Transformations of Ferric Oxyhydroxides into Magnetite of Variable Stoichiometry and Morphology. J. Solid State Chem. 2012, 194, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Barnard, A.S. Naturally Occurring Iron Oxide Nanoparticles: Morphology, Surface Chemistry and Environmental Stability. J. Mater. Chem. A 2013, 1, 27–42. [Google Scholar] [CrossRef]
- Sheng, A.; Liu, J.; Li, X.; Qafoku, O.; Collins, R.N.; Jones, A.M.; Pearce, C.I.; Wang, C.; Ni, J.; Lu, A. Labile Fe (III) from Sorbed Fe (II) Oxidation Is the Key Intermediate in Fe (II)-Catalyzed Ferrihydrite Transformation. Geochim. Cosmochim. Acta 2020, 272, 105–120. [Google Scholar] [CrossRef]
- Sheng, A.; Li, X.; Arai, Y.; Ding, Y.; Rosso, K.M.; Liu, J. Citrate Controls Fe (II)-Catalyzed Transformation of Ferrihydrite by Complexation of the Labile Fe (III) Intermediate. Environ. Sci. Technol. 2020, 54, 7309–7319. [Google Scholar] [CrossRef]
- Kukkadapu, R.K.; Zachara, J.M.; Fredrickson, J.K.; Kennedy, D.W. Biotransformation of Two-Line Silica-Ferrihydrite by a Dissimilatory Fe(III)-Reducing Bacterium: Formation of Carbonate Green Rust in the Presence of Phosphate1 1Associate Editor: D. J. Vaughan. Geochim. Cosmochim. Acta 2004, 68, 2799–2814. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zheng, S.; Qiu, H.; Cao, C.; Tang, X.; Hao, L.; Liu, F.; Li, J. Ferrihydrite Reduction and Vivianite Biomineralization Mediated by Iron Reducing Bacterium Shewanella Oneidensis MR-4. Acta Microbiologica Sinica 2018, 58, 573–583. [Google Scholar]
- Yee, N.; Shaw, S.; Benning, L.G.; Nguyen, T.H. The Rate of Ferrihydrite Transformation to Goethite via the Fe (II) Pathway. Am. Mineral. 2006, 91, 92–96. [Google Scholar] [CrossRef]
- Tronc, E.; Belleville, P.; Jolivet, J.P.; Livage, J. Transformation of Ferric Hydroxide into Spinel by Iron(II) Adsorption. Langmuir 1992, 8, 313–319. [Google Scholar] [CrossRef]
- Jolivet, J.P.; Belleville, P.; Tronc, E.; Livage, J. Influence of Fe(II) on the Formation of the Spinel Iron Oxide in Alkaline Medium. Clays Clay Miner. 1992, 40, 531–539. [Google Scholar] [CrossRef]
- Choppala, G.; Burton, E.D. Chromium(III) Substitution Inhibits the Fe(II)-Accelerated Transformation of Schwertmannite. PLoS ONE 2018, 13, e0208355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stranski, I.N.; Totomanov, D. Die Ostwaldsche Stufenregel. Die Nat. 1932, 20, 905. [Google Scholar] [CrossRef]
- Nielsen, A.E.; Söhnel, O. Interfacial Tensions Electrolyte Crystal-Aqueous Solution, from Nucleation Data. J. Cryst. Growth 1971, 11, 233–242. [Google Scholar] [CrossRef]
- Furedi-Milhofer, H. Spontaneous Precipitation from Electrolytic Solutions. Pure Appl. Chem. 1981, 53, 2041–2055. [Google Scholar] [CrossRef] [Green Version]
- Muehe, E.M.; Obst, M.; Hitchcock, A.; Tyliszczak, T.; Behrens, S.; Schröder, C.; Byrne, J.M.; Michel, F.M.; Krämer, U.; Kappler, A. Fate of Cd during Microbial Fe(III) Mineral Reduction by a Novel and Cd-Tolerant Geobacter Species. Environ. Sci. Technol. 2013, 47, 14099–14109. [Google Scholar] [CrossRef]
Sample | Temperature | Component | CS [mm s−1] | Δ or ε [mm s−1] | H [kOe] | RA [%] |
---|---|---|---|---|---|---|
Fh | 298 K | Lepidocrocite | 0.37 | 0.57 | / | 26 |
Goethite SP | 0.37 | 0.68 | / | 32 | ||
Goethite | 0.33 | −0.07 | 377 | 42 | ||
77 K | Lepidocrocite | 0.47 | 0.57 | / | 23 | |
Goethite SP | 0.44 | −0.07 | 312 | 17 | ||
Goethite | 0.59 | −0.2 | 488 | 60 | ||
Fh_Pb(0.02) | 298 K | Lepidocrocite | 0.36 | 0.53 | / | 56 |
Goethite | 0.41 | −0.11 | 223 | 44 | ||
77 K | Lepidocrocite | 0.47 | 0.58 | / | 51 | |
Goethite | 0.47 | −0.11 | 493 | 32 | ||
Goethite SP | 0.43 | 0.09 | 180 | 17 | ||
8 K | Lepidocrocite | 0.51 | 0.14 | 390 | 49 | |
Goethite | 0.49 | −0.07 | 469 | 51 | ||
Fh_Pb(0.05) | 298 K | Lepidocrocite | 0.37 | 0.55 | / | 55 |
Goethite | 0.33 | −0.11 | 192 | 45 | ||
77 K | Lepidocrocite | 0.46 | 1.17 | / | 55 | |
Goethite | 0.46 | −0.11 | 379 | 45 | ||
8 K | Goethite | 0.48 | −0.10 | 456 | 53 | |
Lepidocrocite | 0.48 | 0.001 | 408 | 47 |
Sample | Temperature | Component | CS [mm s−1] | Δ or ε [mm s−1] | H [kOe] | RA [%] |
---|---|---|---|---|---|---|
Fh | 298 K | Magnetite (tetrahedral Fe) | 0.31 | 0 | 475 | 24 |
Magnetite (octahedral Fe) | 0.55 | 0 | 444 | 48 | ||
Goethite | 0.51 | 0.03 | 406 | 28 | ||
4 K | Magnetite | 0.29 | 0.026 | 523 | 20 | |
Magnetite | 0.63 | 0.05 | 430 | 20 | ||
Magnetite | 0.53 | 0.2 | 501 | 11 | ||
Magnetite | 1.2 | −0.12 | 478 | 9 | ||
Magnetite | 1.38 | 0.52 | 431 | 10 | ||
Goethite | 0.49 | −0.17 | 500 | 30 | ||
Fh_Pb(0.02) | 298 K | Magnetite | 0.4 | 0.026 | 326 | 50 |
Magnetite | 0.51 | 0.08 | 446 | 20 | ||
Goethite SP | 0.39 | 1.15 | / | 6 | ||
Goethite SP | 0.37 | 1.47 | / | 12 | ||
Goethite | 0.39 | −0.011 | 201 | 12 | ||
4 K | Magnetite | 0.26 | 0.026 | 511 | 27 | |
Magnetite | 0.51 | 0.08 | 523 | 23 | ||
Magnetite | 0.57 | 0.02 | 507 | 26 | ||
Magnetite | 0.33 | 1.88 | 355 | 3 | ||
Magnetite | 0.35 | 2.13 | 420 | 5 | ||
Goethite | 0.41 | −0.36 | 510 | 16 | ||
Fh_Pb(0.05) | 298 K | Lepidocrocite | 0.31 | 0.55 | / | 67 |
Goethite | 0.31 | 0.97 | / | 33 | ||
77 K | Lepidocrocite | 0.46 | 0.57 | / | 52 | |
Goethite SP | 0.45 | 0.8 | / | 31 | ||
Goethite | 0.46 | −0.16 | 493 | 9 | ||
Goethite | 0.43 | −0.19 | 473 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meite, F.; Abdelmoula, M.; Billard, P.; Hauet, T.; Zegeye, A. Pb-Bearing Ferrihydrite Bioreduction and Secondary-Mineral Precipitation during Fe Redox Cycling. Minerals 2022, 12, 610. https://doi.org/10.3390/min12050610
Meite F, Abdelmoula M, Billard P, Hauet T, Zegeye A. Pb-Bearing Ferrihydrite Bioreduction and Secondary-Mineral Precipitation during Fe Redox Cycling. Minerals. 2022; 12(5):610. https://doi.org/10.3390/min12050610
Chicago/Turabian StyleMeite, Fatima, Mustapha Abdelmoula, Patrick Billard, Thomas Hauet, and Asfaw Zegeye. 2022. "Pb-Bearing Ferrihydrite Bioreduction and Secondary-Mineral Precipitation during Fe Redox Cycling" Minerals 12, no. 5: 610. https://doi.org/10.3390/min12050610
APA StyleMeite, F., Abdelmoula, M., Billard, P., Hauet, T., & Zegeye, A. (2022). Pb-Bearing Ferrihydrite Bioreduction and Secondary-Mineral Precipitation during Fe Redox Cycling. Minerals, 12(5), 610. https://doi.org/10.3390/min12050610