Chemical Composition and Strontium Isotope Characteristics of Scheelite from the Doranasai Gold Deposit, NW China: Implications for Ore Genesis
Abstract
:1. Introduction
2. Regional Geology
3. Deposit Geology
3.1. Local Geology
3.2. Ore Geology
4. Samples and Analytical Methods
4.1. Sample Characteristics
4.2. Analytical Methods
5. Results
6. Discussion
6.1. Redox State of Ore-Forming Fluids
6.2. Ore-Forming Process Indicated by the REE Patterns
6.3. Source of Ore-Forming Fluids
7. Conclusions
- (1)
- Three types of scheelite are recognized in the Doranasai gold deposit. They occur in milky quartz vein (type I), smoky quartz–polymetallic sulfide vein (type II), and altered albite granite dyke (type III);
- (2)
- The three types of scheelite have similar REEs and trace element characteristics, which are characterized by seagull-shaped REE patterns, positive Eu anomalies, high Sr concentrations and low Mo and As concentrations;
- (3)
- The geochemical characteristics of scheelite indicate that the REEs and other ore metals are derived from metamorphic fluids. The Eu anomalies and Mo concentrations of scheelite are obviously controlled by the redox conditions;
- (4)
- The gold mineralization may have originated from the metamorphic dehydration of the sedimentary sequence with the spilite–keratoporphyry intercalation of the Tuokesalei Formation in South Altai.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Deng, X.H.; Liu, W.X.; Aibai, A.; Chen, X.; Han, S.; Wu, Y.S.; Chen, Y.J. Geology, fluid inclusion and H-O-C isotope geochemistry of the Doranasai gold deposit, Chinese Altai: Implications for ore genesis. Int. J. Earth Sci. 2021, 1–17. [Google Scholar] [CrossRef]
- Nie, F.; Dong, G.C.; Zhang, Z.C. Composition and sulfur isotope characteristics of pyrite in Doranasai gold deposit, Xinjiang, and their significance. J. Donghua Univ. Technol. (Nat. Sci. Ed.) 2012, 35, 111–118. [Google Scholar]
- Wu, F.; Cai, Y.B. Geological characteristics and metallogenic mechanism of Doranasai gold deposit, Xinjiang. Xinjiang Nonferrous Met. 2003, 10, 28–30. [Google Scholar]
- Xiao, H.L.; Zhou, J.Y.; Wang, H.N.; Dong, Y.G.; Ji, J.F.; Zhao, Y. Geochemical characteristics and source of ore-forming fluids of Doranasai gold deposit, Xinjiang. Chin. J. Geochem. 2003, 22, 74–82. [Google Scholar]
- Yan, S.H.; Chen, W.; Wang, Y.T.; Zhang, Z.C.; Chen, B.L. 40Ar/39Ar age of Irtysh gold metallogenic belt in Xinjiang and its geological significance. J. Geol. 2004, 78, 500–505. [Google Scholar]
- Zhou, G.; Dong, L.H.; Qin, J.H.; Zhang, L.W.; Zhao, Z.H.; Li, Y. The formation age of granitoids and its constraints on gold mineralization in the Doranasai gold deposit, Xinjiang. China Geol. 2015, 42, 677–690. [Google Scholar]
- Chen, H.Y.; Chen, Y.J.; Liu, Y.L. Metallogenesis of the Ertix gold belt, Xinjiang and its relationship to Central Asia-type orogenesis. Sci. China Earth Sci. 2001, 44, 245–255. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Qiu, K.F.; Deng, J.; Chen, Y.J.; Yang, L.Q. Orogenic Gold Deposits of China; SEG Special Publications: Denver, CO, USA, 2019; Volume 22, pp. 263–324. [Google Scholar] [CrossRef]
- Yin, Y.Q.; Li, J.X.; Guo, Z.L.; Hu, X.P. Classification of Altai gold deposit in Xinjiang and criteria for prospecting evaluation. J. Guilin Inst. Technol. 2005, 25, 141–145. [Google Scholar]
- Bell, K.; Anglin, C.D.; Franklin, J.M. Sm-Nd and Rb-Sr isotope sytematics of scheelites: Possible implications for the age and genesis of vein-hosted gold deposits. Geology 1989, 17, 500–509. [Google Scholar] [CrossRef]
- Brugger, J.; Maas, R.; Lahaye, Y.; McRae, C.; Ghaderi, M.; Costa, S.; Lambert, D.; Bateman, R.; Prince, K. Origins of Nd–Sr–Pb isotopic variations in single scheelite grains from Archaean gold deposits, Western Australia. Chem. Geol. 2002, 182, 203–225. [Google Scholar] [CrossRef]
- Chen, L.; Qin, K.; Li, G.; Li, J.; Xiao, B.; Zhao, J. In situ major and trace elements of garnet and scheelite in the Nuri Cu–W–Mo deposit, South Gangdese, Tibet: Implications for mineral genesis and ore-forming fluid records. Ore Geol. Rev. 2020, 122, 103549. [Google Scholar] [CrossRef]
- Fu, Y.; Sun, X.M.; Zhou, H.Y.; Lin, H.; Jiang, L.Y.; Yang, T.J. In-situ LA-ICP-MS trace elements analysis of scheelites from the giant Beiya gold-polymetallic deposit in Yunnan Province, Southwest China and its metallogenic implications. Ore Geol. Rev. 2017, 80, 828–837. [Google Scholar] [CrossRef]
- McClenaghan, M.B.; Cabri, L.J. Review of gold and platinum group element (PGE) indicator minerals methods for surficial sediment sampling. Geochem. Explor. Environ. Anal. 2011, 11, 251–263. [Google Scholar] [CrossRef]
- Sciuba, M.; Beaudoin, B.; Grzela, D.; Makvandi, S. Trace element composition of scheelite in orogenic gold deposits. Miner. Depos. 2020, 55, 1149–1172. [Google Scholar] [CrossRef]
- Toverud, Ö. Dispersal of tungsten in glacial drift and humus in Bergslagen, southern Central Sweden. J. Geochem. Explor. 1984, 21, 261–272. [Google Scholar] [CrossRef]
- Voicu, G.; Bardoux, M.; Stevenson, R.; Jebrak, M. Nd and Sr isotope study of hydrothermal scheelite and host rocks at Omai, Guiana Shield: Implications for ore fluid source and flow path during the formation of orogenic gold deposits. Miner. Depos. 2000, 35, 302–314. [Google Scholar] [CrossRef]
- Frei, R.; Nägler, T.F.; Schönberg, R.; Kramers, J.D. Re-Os, Sm-Nd, U-Pb, and stepwise lead leaching isotope systematics in shear-zone hosted gold mineralization: Genetic tracing and age constraints of crustal hydrothermal activity. Geochim. Cosmochim. Acta 1998, 62, 1925–1936. [Google Scholar] [CrossRef]
- Kent, A.J.R.; Campbell, I.H.; McCulloch, M.T. Sm-Nd systematics of hydrothermal scheelite from the Mount Charlotte Mine, Kalgoorlie, Western Australia; an isotopic link between gold mineralization and komatiites. Econ. Geol. 1995, 90, 2329–2335. [Google Scholar] [CrossRef]
- Kozlik, M.; Gerdes, A.; Raith, J.G. Strontium isotope systematics of scheelite and apatite from the Felbertal tungsten deposit, Austria—Results of in-situ LA-MC-ICP-MS analysis. Mineral. Petrol. 2016, 110, 11–27. [Google Scholar] [CrossRef]
- Peng, J.T.; Hu, R.Z.; Zhao, J.H.; Fu, Y.Z.; Yuan, S.D. REE geochemistry of scheelite in Woxi gold antimony tungsten deposit, Western Hunan. Geochemistry 2005, 34, 115–122. [Google Scholar]
- Poulin, R.S.; McDonald, A.M.; Kontak, D.J.; McClenaghan, M.B. On the Relationship between Cathodoluminescence and the Chemical Composition of Scheelite from Geologically Diverse Ore-Deposit Environments. Can. Mineral. 2016, 54, 1147–1173. [Google Scholar] [CrossRef]
- Poulin, R.S.; Kontak, D.J.; Andrew; McDonald, A.; Beth, M.; McCLenaghan, B.M. Assessing Scheelite as an Ore-deposit Discriminator Using Its Trace-element REE Chemistry. Can. Mineral. 2018, 56, 265–302. [Google Scholar] [CrossRef]
- Song, G.X.; Qin, K.Z.; Li, G.M.; Evans, N.J.; Chen, L. Scheelite elemental and isotopic signatures: Implications for the genesis of skarn-type W-Mo deposits in the Chizhou area, Anhui Province, eastern China. Am. Mineral. 2014, 99, 303–317. [Google Scholar] [CrossRef]
- Sun, K.K.; Chen, B. Trace elements and Sr-Nd isotopes of scheelite: Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China. Am. Mineral. 2017, 102, 1114–1128. [Google Scholar]
- Xiong, D.X.; Sun, X.M.; Shi, G.Y.; Wang, S.W.; Gao, J.F.; Xue, T. Characteristics and significance of trace elements, rare earth elements and Sr-Nd isotopic compositions of scheelite in Daping gold mine, Yunnan Province. Acta Petrol. Sin. 2006, 22, 733–741. [Google Scholar]
- Yuan, L.L.; Chi, G.X.; Wang, M.Q.; Li, Z.H.; Xu, D.R.; Deng, T.; Geng, J.Z.; Hu, M.Y.; Zhang, L. Characteristics of REEs and trace elements in scheelite from the Zhuxi W deposit, South China: Implications for the ore-forming conditions and processes. Ore Geol. Rev. 2019, 109, 585–597. [Google Scholar] [CrossRef]
- Song, G.X.; Cook, N.; Li, G.M.; Qin, K.Z.; Ciobanu, C.; Yang, Y.H.; Xu, Y.X. Scheelite geochemistry in porphyry-skarn W-Mo systems: A case study from the Gaojiabang deposit. East China. Ore Geol. Rev. 2019, 113, 103084. [Google Scholar] [CrossRef]
- Chen, Y.J.; Pirajno, F.; Wu, G.; Qi, J.P.; Xiong, X.L.; Zhang, L. Epithermal deposits in north Xinjiang, NW China. Int. J. Earth Sci. 2012, 101, 889–917. [Google Scholar] [CrossRef]
- Yang, F.; Geng, X.; Wang, R.; Zhang, Z.; Guo, X. A synthesis of mineralization styles and geodynamic settings of the Paleozoic and Mesozoic metallic ore deposits in the Altay Mountains, NW China. J. Asian Earth Sci. 2018, 159, 233–258. [Google Scholar] [CrossRef]
- Windley, B.F.; Kroner, A.; Guo, J.H.; Qu, G.S.; Li, Y.Y.; Zhang, C. Neoproterozoic to Paleozoic geology of the Altai orogeny, NW China: New zircon age data and tectonic evolution. J. Geol. 2002, 110, 719–737. [Google Scholar] [CrossRef]
- Zou, T.R.; Cao, H.Z.; Wu, B.Q. Orogenic and anorogenic granitoids of Altai mountains of Xinjiang and their discrimination criteria. Acta Geol. Sin. 1989, 2, 45–64. [Google Scholar]
- Tong, Y.; Wang, T.; Jahn, B.M.; Sun, M.; Hong, D.W.; Gao, J.F. Post-accretionary Permian granitoids in the Chinese Altai orogeny: Geochronology, petrogenesis and tectonic implications. Am. J. Sci. 2014, 314, 80–109. [Google Scholar] [CrossRef]
- Wang, T.; Hong, D.W.; Jahn, B.M.; Tong, Y.; Wang, Y.B.; Han, B.F.; Wang, X.X. Timing, petrogenesis, and setting of Paleozoic syn-orogenic intrusions from the Altai Mountains, northwest China: Implications for the Tectonic evolution of an accretionary orogeny. J. Geol. 2006, 114, 735–751. [Google Scholar] [CrossRef]
- Broussolle, A.; Sun, M.; Schulmann, K.; Guy, A.; Aguilar, C.; Štípská, P.; Jiang, Y.; Yu, Y.; Xiao, W. Are the Chinese Altai “terranes” the result of juxtaposition of different crustal levels during Late Devonian and Permian orogenesis? Gondwana Res. 2019, 66, 183–206. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, L.; Chen, Y.J.; Qin, Y.J.; Liu, C.F. Geology, fluid inclusion geochemistry, and 40Ar/39Ar geochronology of the Wulasigou Cu deposit, and their implications for ore genesis, Altai, Xinjiang, China. Ore Geol. Rev. 2012, 49, 128–140. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, L.; Chen, Y.J.; Hollings, P.; Chen, H.Y. Metamorphosed Pb-Zn-(Ag) ores of the Keketale VMS deposit, NW China: Evidence from ore textures, fluid inclusions, geochronology and pyrite compositions. Ore Geol. Rev. 2013, 54, 167–180. [Google Scholar] [CrossRef]
- Abulimiti, A.; Deng, X.; Pirajno, F.; Han, S.; Liu, W.; Li, X.; Chen, X.; Wu, Y.; Bao, Z.; Chen, Y. Geology and geochronology of the Tokuzbay gold deposit in the Chinese Altai: A case study of collision-related orogenic gold deposits in Central Asian Orogenic Belt. Ore Geol. Rev. 2021, 136, 104261. [Google Scholar]
- Shen, Y.C.; Shen, P.; Li, G.M.; Zeng, Q.D.; Liu, T.B. Study on structural ore control law of Irtysh gold belt in Xinjiang. Deposit Geol. 2007, 26, 33–42. [Google Scholar]
- Qin, K.Z.; Shen, M.D.; Tang, D.M. Mineralization type and diagenetic and metallogenic age of pegmatite type rare metals in Altai orogenic belt. Xinjiang Geol. 2013, 31, 1–7. [Google Scholar]
- Wang, M.; Su, Q.Y.; Ma, J.B. Geological characteristics and genesis of deposit in Doranasai gold ore district. Xinjiang Nonferrous Met. Suppl. 2007, S2, 6–8. [Google Scholar]
- Li, H.Q.; Xie, C.F.; Chang, H.L. Geochronology of Mineralization of Nonferrous and Precious Metal Deposits in Northern Xinjiang; Geological Publishing House: Beijing, China, 1998; pp. 1–264. [Google Scholar]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society London Special Publications: London, UK, 1989; pp. 313–345. [Google Scholar]
- Zeng, Z.G.; Li, C.Y.; Liu, Y.P. REE geochemical characteristics of two scheelite deposits of different genesis in Nanyang, Southeastern Yunnan. Geol. Geochem. 1998, 26, 34–38. [Google Scholar]
- Rempel, K.U.; Williams-Jones, A.E.; Migdisov, A.A. The partitioning of molybdenum(VI) between aqueous liquid and vapour at temperatures up to 370 degrees C. Geochim. Cosmochim. Acta 2009, 73, 3381–3392. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Linnen, R.L.; Williams-Jones, A.E. Evolution of aqueous-carbonic Fluids during contact-metamorphism, wall-rock alteration, and molybdenite deposition at Trout Lake, British-Columbia. Econ. Geol. 1990, 85, 1840–1856. [Google Scholar] [CrossRef]
- Ghaderi, M.J.; Palin, M.; Campbell, I.H. Rare earth systematics in scheelite from hydrothermal gold deposits in the Kalgoolie-Norseman Region, Western Australia. Econ. Geol. 1999, 94, 423–438. [Google Scholar] [CrossRef]
- Dostal, J.; Kontak, D.; Chatterjee, A. Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada: Genetic implications. Mineral. Petrol. 2009, 97, 95–109. [Google Scholar] [CrossRef]
- Liu, Y.J.; Ma, D.S. Tungsten Geochemistry; Science Press: Beijing, China, 1987; pp. 45–120. [Google Scholar]
- Ridley, J.R.; Diamond, L.W. Fluid chemistry of lode-gold deposits, and implications for genetic models. Econ. Geol. 2000, 13, 141–162. [Google Scholar]
- Chen, Y.J.; Pirajno, F.; Sui, Y.H. Isotope geochemistry of the Tieluping silver-lead deposit, Henan, China: A case study of orogenic silver-dominated deposits and related tectonic setting. Miner. Depos. 2004, 39, 560–575. [Google Scholar] [CrossRef]
- Barker, S.L.L.; Bennett, V.C.; Cox, S.F.; Norman, M.D.; Gagan, M.K. Sm-Nd, Sr, C and O isotope systematics in hydrothermal calcite–fluorite veins: Implications for fluid-rock reaction and geochronology. Chem. Geol. 2009, 268, 58–66. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, R.S.; Mao, S.D.; Lu, Y.H.; Qin, Y.; Liu, H.J. Sr-Nd isotopic composition characteristics and metallogenic material source of Yangshan gold deposit. Acta Petrol. Sin. 2009, 25, 2811–2822. [Google Scholar]
- Ni, Z.Y.; Chen, Y.J.; Li, N.; Zhang, H. Pb-Sr-Nd isotope constraints on the fluid source of the Dahu Au-Mo deposit in Qinling Orogen, central China, and implication for Triassic tectonic setting. Ore Geol. Rev. 2012, 46, 60–67. [Google Scholar] [CrossRef]
- Deng, X.H.; Chen, Y.J.; Santosh, M.; Yao, J.M.; Sun, Y.L. Re-Os and Sr-Nd-Pb isotope constraints on source of fluids in the Zhifang Mo deposit, Qinling Orogen, China. Gondwana Res. 2016, 30, 132–143. [Google Scholar] [CrossRef]
- Kempe, U.; Belyatsky, B.V.; Krymsky, R.S.; Kremenetsky, A.A.; Ivanov, P.A. Sm-Nd and Sr isotope systematics of scheelite from the giant Au(-W) deposit Muruntau (Uzbekistan): Implications for the age and sources of Au mineralization. Miner. Depos. 2001, 36, 379–392. [Google Scholar] [CrossRef]
- Niu, J.; Zheng, Y.; Zhang, L.; Yu, P.; Wang, Y.; Lai, C. Isotope geochemistry of the Sarekuobu metavolcanic-hosted gold deposit in the Chinese Altai (NW China): Implications for the fluid and metal sources. Ore Geol. Rev. 2018, 100, 51–62. [Google Scholar] [CrossRef]
- Abulimiti, A.; Deng, X.; Pirajno, F.; Han, S.; Liu, W.; Li, X.; Chen, X.; Wu, Y.; Liu, J.; Chen, Y. Origin of ore-forming fluids of Tokuzbay gold deposit in the South Altai, northwest China: Constraints from Sr–Nd–Pb isotopes. Ore Geol. Rev. 2021, 134, 104165. [Google Scholar]
Sample | 3-19B | 3-18T | 3-KK-19B | 9001-9B | 3-18B | 3-kk-13B | 3-kk-20-2B | 3-kk-26T | 3-kk-26-2T | 3-kk-20-1T | 3-KK-20-2T | 3-kk-20-2T-1 | 3-kk-26B | 3-kk-26-6B | 3-9T | 3-15T |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ore Type | Type I | Type II | Type III | |||||||||||||
CaO | 19.57 | 19.64 | 19.44 | 19.56 | 19.61 | 19.54 | 19.53 | 19.79 | 19.83 | 19.73 | 19.53 | 19.61 | 19.65 | 19.41 | 19.64 | 19.65 |
WO3 | 79.97 | 80.60 | 79.97 | 80.15 | 80.51 | 79.67 | 79.72 | 80.75 | 79.91 | 80.06 | 79.91 | 80.54 | 80.42 | 80.72 | 81.02 | 80.28 |
MoO3 | 0.06 | 0.09 | 0.15 | - | 0.10 | 0.16 | 0.17 | 0.06 | - | - | 0.22 | 0.29 | - | - | - | 0.16 |
FeO | - | 0.03 | - | - | - | - | 0.08 | 0.01 | 0.04 | 0.02 | - | - | - | 0.06 | - | - |
MnO | 0.04 | - | 0.02 | 0.01 | - | - | 0.07 | 0.03 | 0.02 | - | - | 0.01 | - | 0.03 | - | 0.01 |
PbO | 0.03 | - | - | - | - | - | 0.13 | 0.15 | 0.23 | - | - | - | - | - | - | 0.07 |
ZnO | 0.12 | - | - | 0.19 | - | - | - | 0.05 | 0.04 | - | 0.07 | - | - | - | - | - |
Total | 99.79 | 100.36 | 99.57 | 99.91 | 100.23 | 99.37 | 99.70 | 100.84 | 100.08 | 99.81 | 99.73 | 100.45 | 100.07 | 100.22 | 100.66 | 100.16 |
Sample No. | 3-19B | 3-18T | 3-KK-19B | 9001-9B | 3-18B | 3-19J | 3-KK-13B | 3-KK-20-2B | 3-KK-26T | 3-KK-26-2T | 3-KK-13T | 3-KK-20-1T | 3-KK-20-2T | 3-KK-20-2T-1 | 3-KK-26B | 3-KK-26-6B | 3-9T | 3-15T |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ore Types | Type I | Type II | Type III | |||||||||||||||
Li | 0.119 | 0.070 | 0.145 | - | - | 0.128 | 1.21 | 0.236 | - | 0.657 | 0.632 | 0.344 | 1.36 | 0.089 | 0.223 | 2.01 | 0.314 | - |
B | 0.200 | 0.000 | 0.372 | - | 0.136 | 0.598 | 0.053 | 0.116 | 0.320 | 0.081 | 0.342 | 0.635 | 0.114 | 0.311 | 0.325 | 4.82 | 0.134 | 0.487 |
V | 0.128 | 0.134 | 0.843 | 0.404 | 1.56 | 0.094 | 0.795 | 0.283 | 0.135 | 0.159 | 0.722 | 1.05 | 5.18 | 0.732 | 0.424 | 40.5 | 0.139 | 0.241 |
Cr | 83.4 | 0.234 | 24.1 | 0.053 | 0.652 | 27.7 | 53.5 | 18.0 | - | 58.7 | 23.5 | - | - | 106 | 2.65 | 1938 | 0.672 | 62.2 |
Co | 0.024 | 0.019 | 0.051 | 0.065 | 0.017 | - | 0.018 | 0.113 | - | 0.101 | 0.103 | 0.138 | 0.311 | 0.011 | 0.041 | 0.151 | 0.109 | 0.039 |
Ni | 0.411 | 0.446 | 0.575 | 0.397 | 0.300 | 0.480 | 0.275 | 0.241 | 0.467 | 0.383 | 0.808 | 0.969 | 2.16 | 0.590 | 0.186 | 2.06 | 0.277 | 0.436 |
Cu | - | 0.053 | - | - | 0.041 | 0.041 | 0.014 | 0.056 | - | 0.040 | 0.095 | 0.110 | - | 0.102 | 0.040 | 0.393 | - | 0.007 |
Zn | 0.029 | - | 0.010 | - | 0.005 | 0.051 | - | 0.085 | - | 0.464 | 0.093 | 0.418 | - | 0.204 | - | 10.7 | 0.004 | 0.127 |
As | 4.65 | 3.70 | 18.9 | 5.57 | 7.58 | 3.91 | 6.13 | 3.27 | 1.35 | 4.25 | 9.00 | 8.77 | 24.5 | 6.88 | 12.7 | 2.68 | 2.55 | 11.6 |
Rb | 0.011 | 0.003 | 0.017 | 0.013 | 0.007 | 0.012 | 0.018 | 0.492 | 0.039 | 0.022 | 0.011 | 0.028 | 0.043 | 0.043 | 0.042 | 37.7 | 0.021 | 0.008 |
Sr | 848 | 1363 | 1056 | 1259 | 1366 | 864 | 742 | 950 | 1123 | 1334 | 814 | 2295 | 3138 | 999 | 1015 | 906 | 960 | 1210 |
Y | 164 | 108 | 203 | 227 | 264 | 115 | 290 | 139 | 287 | 186 | 265 | 792 | 1713 | 163 | 387 | 196 | 246 | 125 |
Zr | 2.14 | 2.00 | 2.37 | 1.97 | 3.81 | 1.86 | 2.61 | 2.08 | 2.11 | 2.13 | 2.33 | 8.89 | 16.8 | 1.86 | 2.03 | 5.12 | 2.68 | 2.12 |
Nb | 0.615 | 0.859 | 0.958 | 0.502 | 0.993 | 0.518 | 0.561 | 0.385 | 0.633 | 1.25 | 0.542 | 1.99 | 4.60 | 0.380 | 1.21 | 1.39 | 0.449 | 0.715 |
Mo | 254 | 98.5 | 77.6 | 56.3 | 58.3 | 268 | 52.0 | 46.3 | 70.0 | 55.3 | 59.2 | 361 | 658 | 56.7 | 41.8 | 43.0 | 29.9 | 222 |
Ag | - | 0.003 | 0.012 | 0.009 | 0.003 | 0.006 | - | - | 0.003 | 0.009 | - | - | - | - | - | 0.024 | 0.013 | 0.008 |
Sn | 0.043 | 0.093 | 0.108 | 0.053 | 0.144 | 0.011 | 0.034 | 0.041 | 0.128 | 0.043 | 0.154 | 0.331 | 0.692 | 0.125 | - | 0.672 | - | - |
Ba | 0.115 | 0.041 | 0.853 | 0.276 | 0.337 | 0.201 | 0.085 | 0.319 | 0.056 | 0.050 | 0.883 | 1.21 | 0.099 | 1.37 | 0.549 | 115 | 0.163 | 0.551 |
La | 2.81 | 6.74 | 10.3 | 17.8 | 14.7 | 5.41 | 60.3 | 17.0 | 27.5 | 8.32 | 16.6 | 69.6 | 449 | 17.1 | 20.2 | 24.4 | 10.7 | 4.92 |
Ce | 15.0 | 41.9 | 74.5 | 87.2 | 83.3 | 26.4 | 177 | 72.9 | 97.6 | 42.6 | 93.5 | 355 | 1565 | 84.7 | 110 | 95.4 | 61.2 | 27.0 |
Pr | 4.92 | 13.1 | 24.1 | 21.6 | 23.6 | 7.96 | 40.3 | 17.6 | 18.6 | 11.7 | 26.7 | 98.3 | 319 | 22.0 | 30.1 | 15.9 | 18.8 | 8.89 |
Nd | 47.6 | 106 | 186 | 143 | 178 | 68.1 | 264 | 116 | 100 | 92.0 | 195 | 765 | 1882 | 150 | 206 | 69.8 | 156 | 83.0 |
Sm | 27.4 | 55.5 | 83.3 | 53.1 | 70.8 | 35.4 | 84.8 | 43.4 | 33.9 | 48.3 | 72.8 | 305 | 502 | 55.0 | 88.9 | 18.8 | 72.6 | 47.8 |
Eu | 18.2 | 28.7 | 37.3 | 31.9 | 37.9 | 20.7 | 50.3 | 23.2 | 23.1 | 21.4 | 43.4 | 146 | 323 | 32.6 | 48.9 | 17.0 | 49.3 | 25.2 |
Gd | 51.2 | 67.7 | 86.0 | 61.3 | 78.1 | 52.6 | 87.1 | 45.8 | 44.9 | 66.5 | 78.1 | 311 | 437 | 54.1 | 112 | 22.1 | 90.5 | 69.2 |
Tb | 9.10 | 10.9 | 13.0 | 9.90 | 12.5 | 8.16 | 13.1 | 7.06 | 8.66 | 11.6 | 12.6 | 47.0 | 66.4 | 7.92 | 19.3 | 4.60 | 15.2 | 10.2 |
Dy | 55.8 | 50.7 | 66.4 | 57.7 | 73.7 | 44.6 | 75.9 | 38.4 | 57.6 | 65.8 | 71.7 | 261 | 381 | 42.3 | 117 | 33.0 | 85.2 | 52.3 |
Ho | 9.17 | 6.64 | 10.0 | 10.1 | 12.6 | 6.58 | 13.5 | 6.71 | 11.4 | 11.5 | 12.7 | 42.5 | 65.5 | 7.20 | 20.2 | 6.91 | 14.1 | 7.27 |
Er | 15.2 | 10.0 | 17.8 | 22.1 | 26.1 | 10.5 | 29.5 | 15.4 | 30.1 | 24.3 | 29.0 | 89.4 | 152 | 16.0 | 44.8 | 19.3 | 26.9 | 10.8 |
Tm | 1.08 | 0.71 | 1.60 | 2.38 | 2.71 | 0.76 | 3.11 | 1.77 | 3.81 | 2.58 | 2.98 | 9.34 | 18.0 | 1.76 | 4.61 | 2.88 | 2.47 | 0.77 |
Yb | 3.18 | 2.15 | 5.46 | 11.0 | 10.5 | 2.04 | 13.6 | 8.29 | 21.5 | 11.2 | 13.0 | 42.8 | 96.0 | 8.08 | 21.0 | 17.9 | 10.0 | 2.48 |
Lu | 0.189 | 0.147 | 0.388 | 0.947 | 0.843 | 0.121 | 1.32 | 0.816 | 2.45 | 1.08 | 1.19 | 4.10 | 8.98 | 0.772 | 2.01 | 2.04 | 0.770 | 0.159 |
Hf | 0.022 | 0.020 | 0.018 | 0.022 | 0.020 | 0.015 | 0.031 | 0.022 | 0.035 | 0.041 | 0.023 | 0.093 | 0.118 | 0.013 | 0.046 | 0.147 | 0.028 | 0.026 |
Ta | 0.020 | 0.011 | 0.021 | 0.006 | 0.014 | 0.013 | 0.014 | 0.014 | 0.016 | 0.020 | 0.018 | 0.079 | 0.125 | 0.012 | 0.025 | 0.056 | 0.009 | 0.006 |
Au | 0.092 | 0.100 | 0.139 | 0.119 | 0.105 | 0.092 | 0.104 | 0.104 | 0.097 | 0.093 | 0.112 | 0.306 | 0.361 | 0.169 | 0.102 | 0.152 | 0.153 | 0.143 |
Bi | 0.004 | 0.007 | - | 0.008 | 0.004 | - | 0.009 | 0.006 | 0.005 | - | 0.015 | 0.038 | 0.258 | 0.012 | 0.016 | 0.018 | 0.010 | 0.023 |
Pb | 19.0 | 24.9 | 23.3 | 33.6 | 26.9 | 20.6 | 25.7 | 47.2 | 68.4 | 38.6 | 27.9 | 191 | 310 | 53.2 | 35.3 | 54.7 | 35.2 | 31.4 |
Th | 0.023 | 0.010 | 0.157 | 0.030 | 0.189 | 0.040 | 0.146 | 0.308 | 0.129 | 0.121 | 0.019 | 0.266 | 0.469 | 0.320 | 0.024 | 1.23 | 0.023 | 0.060 |
U | 0.009 | 0.004 | 0.015 | 0.007 | 0.024 | 0.010 | 0.054 | 0.047 | 0.035 | 0.012 | 0.014 | 0.124 | 0.104 | 0.081 | 0.007 | 0.311 | 0.005 | 0.011 |
REE | 261 | 401 | 616 | 530 | 626 | 289 | 914 | 414 | 481 | 419 | 670 | 2547 | 6263 | 499 | 845 | 350 | 613 | 350 |
REY | 425 | 509 | 819 | 757 | 890 | 404 | 1204 | 553 | 768 | 605 | 935 | 3339 | 7976 | 662 | 1232 | 546 | 859 | 475 |
LREE/HREE | 0.79 | 1.68 | 2.05 | 1.99 | 1.86 | 1.30 | 2.82 | 2.30 | 1.63 | 1.14 | 2.00 | 2.13 | 4.06 | 2.58 | 1.46 | 2.16 | 1.49 | 1.28 |
δEu | 1.46 | 1.43 | 1.34 | 1.70 | 1.55 | 1.46 | 1.77 | 1.58 | 1.81 | 1.15 | 1.75 | 1.44 | 2.06 | 1.80 | 1.50 | 2.54 | 1.86 | 1.34 |
Ore Types | Sample No. | Rb (ppm) | Sr (ppm) | 87Rb/86Sr | 87Sr/86Sr | 2σ | ISr (291 Ma) | 2σ |
---|---|---|---|---|---|---|---|---|
Type I | 3-19-1 | 0.014 | 1160 | 0.000030 | 0.705380 | 0.000009 | 0.705380 | 0.000009 |
3-19-2 | 0.007 | 1022 | 0.000020 | 0.705392 | 0.000009 | 0.705391 | 0.000009 | |
3-KK-19-1 | 0.031 | 1031 | 0.000090 | 0.705173 | 0.000001 | 0.705173 | 0.000001 | |
3-KK-19-2 | 0.007 | 869 | 0.000020 | 0.705202 | 0.000001 | 0.705202 | 0.000001 | |
3-KK-19-13-1 | 0.024 | 1096 | 0.000060 | 0.708606 | 0.000001 | 0.708606 | 0.000001 | |
3-KK-19-13-2 | 0.032 | 949 | 0.000100 | 0.707680 | 0.000001 | 0.707680 | 0.000001 | |
3-KK-19-13 | 0.005 | 775 | 0.000020 | 0.707308 | 0.000001 | 0.707308 | 0.000001 | |
3-KK-19-14 | 0.011 | 1018 | 0.000030 | 0.704820 | 0.000001 | 0.704820 | 0.000001 | |
3-KK-19-15 | 0.015 | 949 | 0.000040 | 0.705809 | 0.000001 | 0.705809 | 0.000001 | |
3-KK-19-16 | 0.005 | 775 | 0.000020 | 0.705822 | 0.000001 | 0.705822 | 0.000001 | |
9001-9-2 | 0.036 | 1432 | 0.000070 | 0.706475 | 0.000001 | 0.706474 | 0.000001 | |
9001-9-3 | 0.008 | 1077 | 0.000020 | 0.705669 | 0.000001 | 0.705668 | 0.000001 | |
Average (N = 12) | 0.706111 | 0.706111 | ||||||
Type II | 3-KK-13-1 | 0.036 | 782 | 0.000130 | 0.705507 | 0.000001 | 0.705506 | 0.000001 |
3-KK-13-4 | 0.024 | 858 | 0.000080 | 0.705709 | 0.000001 | 0.705708 | 0.000001 | |
3-KK-13-5 | 0.018 | 736 | 0.000070 | 0.705041 | 0.000001 | 0.705041 | 0.000001 | |
3-KK-20-1-1 | 0.339 | 869 | 0.001130 | 0.705501 | 0.000001 | 0.705496 | 0.000001 | |
3-KK-20-1-2 | 0.492 | 942 | 0.001510 | 0.705617 | 0.000001 | 0.705611 | 0.000001 | |
3-KK-20-1-3 | 0.034 | 873 | 0.000110 | 0.705635 | 0.000001 | 0.705634 | 0.000001 | |
3-KK-20-1-4 | 0.086 | 897 | 0.000280 | 0.705419 | 0.000001 | 0.705418 | 0.000001 | |
3-KK-26-1 | 0.006 | 857 | 0.000020 | 0.706948 | 0.000001 | 0.706948 | 0.000001 | |
3-KK-26-2 | 0.028 | 777 | 0.000100 | 0.707338 | 0.000009 | 0.707338 | 0.000009 | |
3-KK-26-3 | 0.025 | 902 | 0.000080 | 0.707768 | 0.000001 | 0.707767 | 0.000001 | |
3-KK-26-4 | 0.011 | 923 | 0.000030 | 0.706998 | 0.000001 | 0.706998 | 0.000001 | |
3-KK-26-6-1-1 | 0.014 | 869 | 0.000050 | 0.707740 | 0.000008 | 0.707739 | 0.000008 | |
3-KK-26-6-2 | 0.033 | 979 | 0.000100 | 0.707518 | 0.000009 | 0.707517 | 0.000009 | |
3-KK-26-6-3 | 0.042 | 1011 | 0.000120 | 0.707938 | 0.000008 | 0.707937 | 0.000008 | |
3-KK-26-6-4 | 0.021 | 1598 | 0.000040 | 0.708047 | 0.000006 | 0.708046 | 0.000006 | |
Average (N = 15) | 0.706582 | 0.706580 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Aibai, A.; He, X.; Tang, R.; Chen, Y. Chemical Composition and Strontium Isotope Characteristics of Scheelite from the Doranasai Gold Deposit, NW China: Implications for Ore Genesis. Minerals 2022, 12, 637. https://doi.org/10.3390/min12050637
Li X, Aibai A, He X, Tang R, Chen Y. Chemical Composition and Strontium Isotope Characteristics of Scheelite from the Doranasai Gold Deposit, NW China: Implications for Ore Genesis. Minerals. 2022; 12(5):637. https://doi.org/10.3390/min12050637
Chicago/Turabian StyleLi, Xun, Abulimiti Aibai, Xiheng He, Rongzhen Tang, and Yanjing Chen. 2022. "Chemical Composition and Strontium Isotope Characteristics of Scheelite from the Doranasai Gold Deposit, NW China: Implications for Ore Genesis" Minerals 12, no. 5: 637. https://doi.org/10.3390/min12050637
APA StyleLi, X., Aibai, A., He, X., Tang, R., & Chen, Y. (2022). Chemical Composition and Strontium Isotope Characteristics of Scheelite from the Doranasai Gold Deposit, NW China: Implications for Ore Genesis. Minerals, 12(5), 637. https://doi.org/10.3390/min12050637