Vanadium: A Review of Different Extraction Methods to Evaluate Bioavailability and Speciation
Abstract
:1. Introduction
2. Sources and Human External Exposure Pathways
2.1. The Distribution of V Resources
2.2. V Contamination Sources in Soils
2.3. V Speciation in Soil
3. The Extraction Methods for V
3.1. Single Extraction Methods
3.2. Sequential Extraction Methods
3.3. Other Chemical Extraction Methods
3.4. Physical Methods
3.5. Spectroscopic Methods
3.6. Comparison of Different Extraction Methods of Vanadium
4. V Bioavailability in Soils Based on Morphological Extraction
4.1. Plant-Available V in Soils
4.2. Bioavailability Evaluation Index or Method
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Jain, A.; Ichikawa, T.; Kojima, Y.; Dey, G. Development of vanadium based hydrogen storage material: A review. Renew. Sustain. Energy Rev. 2017, 72, 791–800. [Google Scholar] [CrossRef]
- Imtiaz, M.; Rizwan, M.; Xiong, S.; Li, H.; Ashraf, M.; Shahzad, S.M.; Shahzad, M.; Tu, S. Vanadium, recent advancements and research prospects: A review. Environ. Int. 2015, 80, 79–88. [Google Scholar] [CrossRef]
- Zhu, X.; Li, W.; Zhang, C. Extraction and removal of vanadium by adsorption with resin 201*7 from vanadium waste liquid. Environ. Res. 2019, 180, 108865. [Google Scholar] [CrossRef]
- Li, D.; Jiang, J.; Li, T.; Wang, J. Soil heavy metal contamination related to roasted stone coal slag: A study based on geostatistical and multivariate analyses. Environ. Sci. Pollut. Res. 2016, 23, 14405–14413. [Google Scholar] [CrossRef]
- Huang, J.-H.; Huang, F.; Evans, L.; Glasauer, S. Vanadium: Global (bio)geochemistry. Chem. Geol. 2015, 417, 68–89. [Google Scholar] [CrossRef]
- Aihemaiti, A.; Jiang, J.; Li, D.; Liu, N.; Yang, M.; Meng, Y.; Zou, Q. The interactions of metal concentrations and soil properties on toxic metal accumulation of native plants in vanadium mining area. J. Environ. Manag. 2018, 222, 216–226. [Google Scholar] [CrossRef]
- Yang, J.; Teng, Y.; Wu, J.; Chen, H.; Wang, G.; Song, L.; Yue, W.; Zuo, R.; Zhai, Y. Current status and associated human health risk of vanadium in soil in China. Chemosphere 2017, 171, 635–643. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Vanadium Environmental Health Criteria 81: Vanadium; WHO: Geneva, Switzerland, 1990. [Google Scholar]
- Public Health Service USA (PHS). Toxicological Profile for Vanadium and Compounds; Government Printing Office: Washington, DC, USA, 1992. [Google Scholar]
- Shaheen, S.M.; Alessi, D.; Tack, F.M.G.; Ok, Y.S.; Kim, K.-H.; Gustafsson, J.P.; Sparks, D.L.; Rinklebe, J. Redox chemistry of vanadium in soils and sediments: Interactions with colloidal materials, mobilization, speciation, and relevant environmental implications- A review. Adv. Colloid Interface Sci. 2019, 265, 1–13. [Google Scholar] [CrossRef]
- Cappuyns, V.; Slabbinck, E. Occurrence of Vanadium in Belgian and European Alluvial Soils. Appl. Environ. Soil Sci. 2012, 2012, 979501. [Google Scholar] [CrossRef]
- Yang, J.; Teng, Y.; Wang, J.; Li, J. Vanadium Uptake by Alfalfa Grown in V–Cd-Contaminated Soil by Pot Experiment. Biol. Trace Elem. Res. 2010, 142, 787–795. [Google Scholar] [CrossRef]
- Sergienko, V.S. Structural chemistry of oxoperoxo complexes of vanadium(V): A review. Crystallogr. Rep. 2004, 49, 401–426. [Google Scholar] [CrossRef]
- Aihemaiti, A.; Gao, Y.; Meng, Y.; Chen, X.; Liu, J.; Xiang, H.; Xu, Y.; Jiang, J. Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites. Sci. Total Environ. 2019, 712, 135637. [Google Scholar] [CrossRef]
- Poledniok, J. Speciation of vanadium in soil. Talanta 2003, 59, 1–8. [Google Scholar] [CrossRef]
- Teng, Y.G.; Yang, J.; Song, L.T.; Wang, J.S. Fractionation and bioavailability of vanadium in alfalfa rhizosphere and bulk soils by greenhouse experiment. Fresenius Environ. Bull. 2013, 22, 1837–1843. [Google Scholar]
- Cappuyns, V.; Swennen, R. Release of vanadium from oxidized sediments: Insights from different extraction and leaching procedures. Environ. Sci. Pollut. Res. 2013, 21, 2272–2282. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, L.; Li, Q.; Wang, X.; Xiang, X. Leaching of vanadium from stone coal with sulfuric acid. Rare Met. 2009, 28, 1–4. [Google Scholar] [CrossRef]
- Li, M.T.; Wei, C.; Zhou, X.J.; Qiu, S.; Deng, Z.G.; Li, X.B. Kinetics of vanadium leaching from black shale in non-oxidative conditions. Miner. Process. Extr. Met. 2012, 121, 40–47. [Google Scholar] [CrossRef]
- Yang, J.; Teng, Y.; Zuo, R.; Song, L. Comparison of bioavailable vanadium in alfalfa rhizosphere soil extracted by an improved BCR procedure and EDTA, HCl, and NaNO3 single extractions in a pot experiment with V–Cd treatments. Environ. Sci. Pollut. Res. 2013, 22, 8833–8842. [Google Scholar] [CrossRef]
- Yang, J.; Gao, X.; Li, J.; Zuo, R.; Wang, J.; Song, L. The distribution and speciation characteristics of vanadium in typical cultivated soils. Int. J. Environ. Anal. Chem. 2021, 1–14. [Google Scholar] [CrossRef]
- Yang, J.; Wang, M.; Jia, Y.; Gou, M.; Zeyer, J. Toxicity of vanadium in soil on soybean at different growth stages. Environ. Pollut. 2017, 231, 48–58. [Google Scholar] [CrossRef]
- Yang, J.Y.; Yang, K.; Li, T.Q.; Tang, Y.; Huang, J.H. Determination of total V, V(V) and V(IV) in environmental samples: A review. Ecol. Environ. Sci. 2010, 19, 518–527. [Google Scholar]
- Xu, Y.-H.; Huang, J.-H.; Brandl, H. An optimised sequential extraction scheme for the evaluation of vanadium mobility in soils. J. Environ. Sci. 2017, 53, 173–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.Y.; Tang, Y. Accumulation and Biotransformation of Vanadium in Opuntia microdasys. Bull. Environ. Contam. Toxicol. 2015, 94, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Ning, P.-G.; Cao, H.-B.; Zhang, Y. Measurement and modeling for vanadium extraction from the (NaVO3+H2SO4+H2O) system by primary amine N1923. J. Chem. Thermodyn. 2015, 80, 13–21. [Google Scholar] [CrossRef]
- Xiao, X.-Y.; Yang, M.; Guo, Z.-H.; Jiang, Z.-C.; Liu, Y.-N.; Cao, X. Soil vanadium pollution and microbial response characteristics from stone coal smelting district. Trans. Nonferrous Met. Soc. China 2015, 25, 1271–1278. [Google Scholar] [CrossRef]
- Chen, L.; Liu, J.-R.; Hu, W.-F.; Gao, J.; Yang, J.-Y. Vanadium in soil-plant system: Source, fate, toxicity, and bioremediation. J. Hazard. Mater. 2020, 405, 124200. [Google Scholar] [CrossRef]
- Reijonen, I.; Metzler, M.; Hartikainen, H. Impact of soil pH and organic matter on the chemical bioavailability of vanadium species: The underlying basis for risk assessment. Environ. Pollut. 2016, 210, 371–379. [Google Scholar] [CrossRef]
- Lucas, A.R.; Salmon, U.; Rate, A.W.; Larsen, S.; Kilminster, K. Spatial and temporal distribution of Au and other trace elements in an estuary using the diffusive gradients in thin films technique and grab sampling. Geochim. Cosmochim. Acta 2015, 171, 156–173. [Google Scholar] [CrossRef]
- Shi, Y.X.; Mangal, V.; Guéguen, C. Influence of dissolved organic matter on dissolved vanadium speciation in the Churchill River estuary (Manitoba, Canada). Chemosphere 2016, 154, 367–374. [Google Scholar] [CrossRef]
- Mampuru, L.A.; Panichev, N.; Ngobeni, P.; Mandiwana, K.L.; Kalumba, M.M. Determination of Leachable Vanadium (V) in sediment. S. Afr. J. Chem. 2015, 68, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Naeemullah; Tuzen, M. A new portable switchable hydrophilicity microextraction method for determination of vanadium in microsampling micropipette tip syringe system couple with ETAAS. Talanta 2018, 194, 991–996. [Google Scholar] [CrossRef]
- Companys, E.; Galceran, J.; Pinheiro, J.; Puy, J.; Salaun, P. A review on electrochemical methods for trace metal speciation in environmental media. Curr. Opin. Electrochem. 2017, 3, 144–162. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Kazi, T.G.; Kolachi, N.F.; Afridi, I.; Ullah, N. Sequential Extraction of Vanadium in Different Soil Samples Using Conventional and Ultrasonic Devices. J. AOAC Int. 2013, 96, 650–656. [Google Scholar] [CrossRef]
- Teng, Y.; Yang, J.; Sun, Z.; Wang, J.; Zuo, R.; Zheng, J. Environmental vanadium distribution, mobility and bioaccumulation in different land-use Districts in Panzhihua Region, SW China. Environ. Monit. Assess. 2010, 176, 605–620. [Google Scholar] [CrossRef]
- Zhang, M.-K.; Liu, Z.-Y.; Wang, H. Use of Single Extraction Methods to Predict Bioavailability of Heavy Metals in Polluted Soils to Rice. Commun. Soil Sci. Plant Anal. 2010, 41, 820–831. [Google Scholar] [CrossRef]
- Imtiaz, M.; Tu, S.; Xie, Z.; Han, D.; Ashraf, M.; Rizwan, M.S. Growth, V uptake, and antioxidant enzymes responses of chickpea (Cicer arietinum L.) genotypes under vanadium stress. Plant Soil 2015, 390, 17–27. [Google Scholar] [CrossRef]
- Sergeeva, N.E.; Eremin, N.I.; Dergachev, A.L. Vanadium mineralization in ore of the Vihanti massive sulfide base-metal deposit, Finland. Dokl. Earth Sci. 2011, 436, 210–212. [Google Scholar] [CrossRef]
- Silin, I.; Gürsel, D.; Kremer, D.; Hahn, K.; Wotruba, H. Production of Vanadium Concentrate from a Small-Scale Lead Vanadate Deposit by Gravity Concentration: A Pilot Plant Study. Minerals 2020, 10, 957. [Google Scholar] [CrossRef]
- Dudka, S.; Markert, B. Base-line concentrations of AS, BA, BE, LI, NB, SR and V in surface soils of poland. Sci. Total Environ. 1992, 122, 279–290. [Google Scholar] [CrossRef]
- Manta, D.S.; Angelone, M.; Bellanca, A.; Neri, R.; Sprovieri, M. Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Sci. Total Environ. 2002, 300, 229–243. [Google Scholar] [CrossRef]
- Óvári, M.; Csukás, M.; Záray, G. Speciation of beryllium, nickel, and vanadium in soil samples from Csepel Island, Hungary. Anal. Bioanal. Chem. 2001, 370, 768–775. [Google Scholar] [CrossRef]
- Tume, P.; Bech, J.; Longan, L.; Tume, L.; Reverter, F.; Sepulveda, B. Trace elements in natural surface soils in Sant Climent (Catalonia, Spain). Ecol. Eng. 2006, 27, 145–152. [Google Scholar] [CrossRef]
- Granero, S.; Domingo, J.L. Levels of metals in soils of Alcalá de Henares, Spain: Human health risks. Environ. Int. 2002, 28, 159–164. [Google Scholar] [CrossRef]
- Salonen, V.-P.; Korkka-Niemi, K. Influence of parent sediments on the concentration of heavy metals in urban and suburban soils in Turku, Finland. Appl. Geochem. 2007, 22, 906–918. [Google Scholar] [CrossRef]
- Salminen, R.; Gregorauskiene, V. Considerations regarding the definition of a geochemical baseline of elements in the surficial materials in areas differing in basic geology. Appl. Geochem. 2000, 15, 647–653. [Google Scholar] [CrossRef]
- Protasova, N.A.; Kopayeva, M.T. Trace and dispersed elements in soils of Russian Plateau. Pochvovedeniye 1985, 1, 29–37. [Google Scholar]
- Yay, O.D.; Alagha, O.; Tuncel, G. Multivariate statistics to investigate metal contamination in surface soil. J. Environ. Manag. 2008, 86, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Yang, J.; Wang, J.; Song, L. Bioavailability of Vanadium Extracted by EDTA, HCl, HOAC, and NaNO3 in Topsoil in the Panzhihua Urban Park, Located in Southwest China. Biol. Trace Elem. Res. 2011, 144, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Diao, M.; Zhang, B.; Liu, H.; Wang, S.; Yang, M. Spatial distribution of vanadium and microbial community responses in surface soil of Panzhihua mining and smelting area, China. Chemosphere 2017, 183, 9–17. [Google Scholar] [CrossRef]
- Chen, L.; Wang, K.-P.; Yang, J.-Y. Evaluate the Potential Bioavailability of Vanadium in Soil and Vanadium Titano-magnetite Tailing in A Mining Area Using BCR Sequential and Single Extraction: A Case Study in Panzhihua, China. Soil Sediment Contam. Int. J. 2019, 29, 232–245. [Google Scholar] [CrossRef]
- Yang, J.; Teng, Y.; Song, L.; Zuo, R. Tracing Sources and Contamination Assessments of Heavy Metals in Road and Foliar Dusts in a Typical Mining City, China. PLoS ONE 2016, 11, e0168528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Y.; Yang, J. Remediation of vanadium contaminated soil by nano-hydroxyapatite. J. Soils Sediments 2019, 20, 1534–1544. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, S.; Diao, M.; Fu, J.; Xie, M.; Shi, J.; Liu, Z.; Jiang, Y.; Cao, X.; Borthwick, A.G.L. Microbial Community Responses to Vanadium Distributions in Mining Geological Environments and Bioremediation Assessment. J. Geophys. Res. Biogeosci. 2019, 124, 601–615. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Qiu, L.; Kolton, M.; Häggblom, M.; Xu, R.; Kong, T.; Gao, P.; Li, B.; Jiang, C.; Sun, W. VV Reduction by Polaromonas spp. in Vanadium Mine Tailings. Environ. Sci. Technol. 2020, 54, 14442–14454. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Feng, C.; Zeng, G.; Gao, X.; Zhong, M.; Li, X.; Li, X.; He, X.; Fang, Y. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ. Pollut. 2017, 225, 681–690. [Google Scholar] [CrossRef]
- Zhang, C.; Qiao, Q.; Piper, J.D.; Huang, B. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environ. Pollut. 2011, 159, 3057–3070. [Google Scholar] [CrossRef]
- Dong, Y.B.; Chen, D.N.; Lin, H. Remediation effect of curing agent on compound contaminated soil by vanadium and chromium. Met. Mine 2021, 08, 196–202. [Google Scholar] [CrossRef]
- Zhang, W.J.; Jiang, J.G.; Li, D.A.; Li, T.R.; Li, K.M.; Wang, J.M. Stabilization of V contaminated soils with adsorption materials. China Environ. Sci. 2016, 36, 1500–1505. [Google Scholar]
- Zou, Q.; Gao, Y.; Yi, S.; Jiang, J.; Aihemaiti, A.; Li, D.; Yang, M. Multi-step column leaching using low-molecular-weight organic acids for remediating vanadium- and chromium-contaminated soil. Environ. Sci. Pollut. Res. 2019, 26, 15406–15413. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, C.; Pei, L.; Chen, G.; Zheng, X. Association between risk of birth defects occurring level and arsenic concentrations in soils of Lvliang, Shanxi province of China. Environ. Pollut. 2014, 191, 1–7. [Google Scholar] [CrossRef]
- Zhao, Z.P.; Fu, J.; Yue, S.Y.; Wang, M.; Song, F.M.; Liu, Z.F.; Tang, B.; Tong, Y.A. Assessing producing environment and potential ecological risk of tea plantation in southern Shaanxi Province. J. Agro-Environ. Sci. 2020, 39, 1983–1992. [Google Scholar]
- Hussain, R.; Luo, K.; Liang, H.; Hong, X. Impact of the coal mining-contaminated soil on the food safety in Shaanxi, China. Environ. Geochem. Health 2019, 41, 1521–1544. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhou, M.Z.; Xiong, K.N.; Gu, B.Q.; Yang, H.; Yao, C.B. Health risk assessment of V in the soils and crops around the Ni-Mo polymetallic mining area in Songlin, Zunyi, Guizhou. Environ. Pollut. Control 2019, 41, 824–830. [Google Scholar] [CrossRef]
- Chen, X.; Lu, X.; Li, L.Y.; Yang, G. Spatial distribution and contamination assessment of heavy metals in urban topsoil from inside the Xi’an second ringroad, NW China. Environ. Earth Sci. 2012, 68, 1979–1988. [Google Scholar] [CrossRef]
- Tang, Q.; Liu, G.; Zhou, C.; Zhang, H.; Sun, R. Distribution of environmentally sensitive elements in residential soils near a coal-fired power plant: Potential risks to ecology and children’s health. Chemosphere 2013, 93, 2473–2479. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, F.; Huang, C. Heavy metal distribution in particle size fractions of floodplain soils from Dongchuan, Yunnan Province, Southwest China. Environ. Monit. Assess. 2021, 193, 1–17. [Google Scholar] [CrossRef]
- Yuan, Z.; Yao, J.; Wang, F.; Guo, Z.; Dong, Z.; Chen, F.; Hu, Y.; Sunahara, G. Potentially toxic trace element contamination, sources, and pollution assessment in farmlands, Bijie City, southwestern China. Environ. Monit. Assess. 2016, 189, 25. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Zhang, W.; Wang, L.; Shi, X.; Lu, X.; Li, X. Pollution Assessment and Source Apportionment of Trace Metals in Urban Topsoil of Xi’an City in Northwest China. Arch. Environ. Contam. Toxicol. 2019, 77, 575–586. [Google Scholar] [CrossRef]
- Pyrzyska, K. Determination of vanadium species in environmental samples. Talanta 2004, 64, 823–829. [Google Scholar] [CrossRef]
- Shevchenko, V.; Lisitzin, A.; Vinogradova, A.; Stein, R. Heavy metals in aerosols over the seas of the Russian Arctic. Sci. Total Environ. 2003, 306, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Orecchio, S.; Amorello, D.; Barreca, S.; Pettignano, A. Speciation of vanadium in urban, industrial and volcanic soils by a modified Tessier method. Environ. Sci. Process. Impacts 2016, 18, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Gäbler, H.-E.; Glüh, K.; Bahr, A.; Utermann, J. Quantification of vanadium adsorption by German soils. J. Geochem. Explor. 2009, 103, 37–44. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, B.; Liu, Z.; Wang, S.; Yao, J.; Borthwick, A.G. Vanadium contamination and associated health risk of farmland soil near smelters throughout China. Environ. Pollut. 2020, 263, 114540. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Asano, M.; Hashimoto, Y.; Rinklebe, J.; Shaheen, S.M.; Wang, S.-L.; Hseu, Z.-Y. Evaluating vanadium bioavailability to cabbage in rural soils using geochemical and micro-spectroscopic techniques. Environ. Pollut. 2019, 258, 113699. [Google Scholar] [CrossRef] [PubMed]
- Kelepertzis, E.; Paraskevopoulou, V.; Argyraki, A.; Fligos, G.; Chalkiadaki, O. Evaluation of single extraction procedures for the assessment of heavy metal extractability in citrus agricultural soil of a typical Mediterranean environment (Argolida, Greece). J. Soils Sediments 2015, 15, 2265–2275. [Google Scholar] [CrossRef]
- Jiao, W.; Chen, W.; Chang, A.C.; Page, A.L. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: A review. Environ. Pollut. 2012, 168, 44–53. [Google Scholar] [CrossRef]
- Otero, N.; Vitòria, L.; Soler, A.; Canals, A. Fertiliser characterisation: Major, trace and rare earth elements. Appl. Geochem. 2005, 20, 1473–1488. [Google Scholar] [CrossRef]
- Molina, M.; Aburto, F.; Calderón, R.; Cazanga, M.; Escudey, M. Trace Element Composition of Selected Fertilizers Used in Chile: Phosphorus Fertilizers as a Source of Long-Term Soil Contamination. Soil Sediment Contam. Int. J. 2009, 18, 497–511. [Google Scholar] [CrossRef]
- Kabata-Pendias, H.A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-32714-1. [Google Scholar]
- Senesil, G.S.; Baldassarre, G.; Senesi, G.; Radina, B. Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 1999, 39, 343–377. [Google Scholar] [CrossRef]
- Jones, V.; Gardner, M.; Ellor, B. Concentrations of trace substances in sewage sludge from 28 wastewater treatment works in the UK. Chemosphere 2014, 111, 478–484. [Google Scholar] [CrossRef]
- Pereira, T.L.; Wallner-Kersanach, M.; Costa, L.D.F.; Costa, D.P.; Baisch, P.R.M. Nickel, vanadium, and lead as indicators of sediment contamination of marina, refinery, and shipyard areas. Environ. Sci. Pollut. Res. 2017, 25, 1719–1730. [Google Scholar] [CrossRef] [PubMed]
- Baken, S.; Larsson, M.A.; Gustafsson, J.P.; Cubadda, F.; Smolders, E. Ageing of vanadium in soils and consequences for bioavailability. Eur. J. Soil Sci. 2012, 63, 839–847. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Johnson, A.W.D.; Hook, J. Reaction of Vanadate with Aquatic Humic Substances: An ESR and 51V NMR Study. Environ. Sci. Technol. 1998, 32, 2257–2263. [Google Scholar] [CrossRef]
- Gustafsson, J.P. Vanadium geochemistry in the biogeosphere –speciation, solid-solution interactions, and ecotoxicity. Appl. Geochem. 2019, 102, 1–25. [Google Scholar] [CrossRef]
- Sadiq, M. Thermodynamic solubility relationships of inorganic vanadium in the marine environment. Mar. Chem. 1988, 23, 87–96. [Google Scholar] [CrossRef]
- Blackmore, D.; Ellis, J.; Riley, P. Treatment of a vanadium-containing effluent by adsorption/coprecipitation with iron oxyhydroxide. Water Res. 1996, 30, 2512–2516. [Google Scholar] [CrossRef]
- Frohne, T.; Diaz-Bone, R.A.; Du Laing, G.; Rinklebe, J. Impact of systematic change of redox potential on the leaching of Ba, Cr, Sr, and V from a riverine soil into water. J. Soils Sediments 2014, 15, 623–633. [Google Scholar] [CrossRef]
- Shaheen, S.; Rinklebe, J. Vanadium in thirteen different soil profiles originating from Germany and Egypt: Geochemical fractionation and potential mobilization. Appl. Geochem. 2018, 88, 288–301. [Google Scholar] [CrossRef]
- Panichev, N.; Mandiwana, K.; Moema, D.; Molatlhegi, R.; Ngobeni, P. Distribution of vanadium(V) species between soil and plants in the vicinity of vanadium mine. J. Hazard. Mater. 2006, 137, 649–653. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Q.; Liu, L.; Manasa, P.; Kang, L.; Ran, F. Vanadium nitride for aqueous supercapacitors: A topic review. J. Mater. Chem. A 2020, 8, 8218–8233. [Google Scholar] [CrossRef]
- Mandiwana, K.L.; Panichev, N.; Molatlhegi, R. The leaching of V(V) with PO43−In the speciation analysis of soil. Anal. Chim. Acta 2005, 545, 239–243. [Google Scholar] [CrossRef]
- Li, M.-T.; Wei, C.; Fan, G.; Li, C.-X.; Deng, Z.-G.; Li, X.-B. Pressure acid leaching of black shale for extraction of vanadium. Trans. Nonferrous Met. Soc. China 2010, 20, s112–s117. [Google Scholar] [CrossRef]
- Verdizade, N.A.; Magerramov, A.M.; Kuliev, K.A. Extraction-spectrophtometric determination of vanadium using 2,6-dithiol-4-tert-butylphenol and aminophenols. J. Anal. Chem. 2011, 66, 1159–1164. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, M.-K. A comparison of physiologically based extraction test (PBET) and single-extraction methods for release of Cu, Zn, and Pb from mildly acidic and alkali soils. Environ. Sci. Pollut. Res. 2012, 20, 3140–3148. [Google Scholar] [CrossRef] [PubMed]
- Snape, I.; Scouller, R.; Stark, S.; Stark, J.; Riddle, M.; Gore, D. Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments. Chemosphere 2004, 57, 491–504. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Tang, Y.; Yang, K.; Rouff, A.; Elzinga, E.J.; Huang, J.-H. Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site. J. Hazard. Mater. 2013, 264, 498–504. [Google Scholar] [CrossRef]
- Feng, M.-H.; Shan, X.-Q.; Zhang, S.-Z.; Wen, B. Comparison of a rhizosphere-based method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat. Chemosphere 2005, 59, 939–949. [Google Scholar] [CrossRef]
- Feng, M.-H.; Shan, X.-Q.; Zhang, S.; Wen, B. A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environ. Pollut. 2005, 137, 231–240. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Speir, T.W.; Gómez, I.; Clucas, L.M.; McLaren, R.G.; Navarro-Pedreño, J. Evaluation of Different Extraction Methods for the Assessment of Heavy Metal Bioavailability in Various Soils. Water Air Soil Pollut. 2010, 213, 471–483. [Google Scholar] [CrossRef]
- Zhu, Q.; Huang, D.; Liu, S.; Luo, Z.; Zhu, H.; Zhou, B.; Lei, M.; Rao, Z.; Cao, X. Assessment of single extraction methods for evaluating the immobilization effect of amendments on cadmium in contaminated acidic paddy soil. Plant Soil Environ. 2012, 58, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Udovic, M.; Lestan, D. EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: Remediation efficiency and soil impact. Chemosphere 2012, 88, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Meers, E.; Samson, R.; Tack, F.; Ruttens, A.; Vandegehuchte, M.; Vangronsveld, J.; Verloo, M. Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environ. Exp. Bot. 2007, 60, 385–396. [Google Scholar] [CrossRef]
- Hammer, D.; Keller, C. Changes in the Rhizosphere of Metal-Accumulating Plants Evidenced by Chemical Extractants. J. Environ. Qual. 2002, 31, 1561–1569. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Aten, C. Comparison and Evaluation of Extraction Media and Their Suitability in a Simple Model to Predict the Biological Relevance of Heavy Metal Concentrations in Contaminated Soils. Int. J. Environ. Anal. Chem. 1993, 51, 25–46. [Google Scholar] [CrossRef]
- Novozamsky, I.; Lexmond, T.M.; Houba, V.J.G. A Single Extraction Procedure of Soil for Evaluation of Uptake of Some Heavy Metals by Plants. Int. J. Environ. Anal. Chem. 1993, 51, 47–58. [Google Scholar] [CrossRef]
- McBride, M.B.; Nibarger, E.A.; Richards, B.K.; Steenhuis, T. Trace metal accumulation by red clover grown on sewage sludge-amended soils and correlation to Mehlich 3 and Calcium Chloride-extractable metals. Soil Sci. 2003, 168, 29–38. [Google Scholar] [CrossRef]
- Menzies, N.; Donn, M.J.; Kopittke, P.M. Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environ. Pollut. 2007, 145, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.K.; Sinha, S. Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants. Chemosphere 2006, 64, 161–173. [Google Scholar] [CrossRef]
- Bakircioglu, D.; Kurtulus, Y.B.; Ibar, H. Comparison of Extraction Procedures for Assessing Soil Metal Bioavailability of to Wheat Grains. Clean–Soil Air Water 2011, 39, 728–734. [Google Scholar] [CrossRef]
- Black, A.; McLaren, R.G.; Reichman, S.M.; Speir, T.W.; Condron, L.M. Evaluation of soil metal bioavailability estimates using two plant species (L. perenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts. Environ. Pollut. 2011, 159, 1523–1535. [Google Scholar] [CrossRef]
- Tsadilas, C.D.; Shaheen, S.M. Distribution of Total and Ammonium Bicarbonate-DTPA-Extractable Soil Vanadium from Greece and Egypt and Their Correlation to Soil Properties. Soil Sci. 2010, 175, 535–543. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Abollino, O.; Giacomino, A.; Malandrino, M.; Mentasti, E.; Aceto, M.; Barberis, R. Assessment of Metal Availability in a Contaminated Soil by Sequential Extraction. Water Air Soil Pollut. 2006, 173, 315–338. [Google Scholar] [CrossRef]
- Castillo-Carrión, M.; Martín-Rubí, J.A.; De Quirós, E.O.B. The distribution and fixation of trace elements by the Vertisols of Malaga, southern Spain. Sci. Total Environ. 2007, 378, 28–35. [Google Scholar] [CrossRef]
- Shi, H.; Witt, E.C.; Shu, S.; Su, T.; Wang, J.; Adams, C. Toxic trace element assessment for soils/sediments deposited during Hurricanes Katrina and Rita from southern Louisiana, USA: A sequential extraction analysis. Environ. Toxicol. Chem. 2010, 29, 1419–1428. [Google Scholar] [CrossRef]
- Li, X.; Coles, B.J.; Ramsey, M.H.; Thornton, I. Sequential extraction of soils for multielement analysis by ICP-AES. Chem. Geol. 1995, 124, 109–123. [Google Scholar] [CrossRef]
- Güler, C.; Alpaslan, M.; Kurt, M.A.; Temel, A. Deciphering factors controlling trace element distribution in the soils of Karaduvar industrial-agricultural area (Mersin, SE Turkey). Environ. Earth Sci. 2009, 60, 203–218. [Google Scholar] [CrossRef]
- Agnieszka, J.; Barbara, G. Chromium, nickel and vanadium mobility in soils derived from fluvioglacial sands. J. Hazard. Mater. 2012, 237–238, 315–322. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Kirchbaumer, N.; Prohaska, T.; Stingeder, G.; Lombi, E.; Adriano, D.C. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta 2001, 436, 309–323. [Google Scholar] [CrossRef]
- Abdallah, M.A.M. Chemical speciation and contamination assessment of Pb and V by sequential extraction in surface sediment off Nile Delta, Egypt. Arab. J. Chem. 2017, 10, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Aydin, F.; Saydut, A.; Gunduz, B.; Aydin, I.; Hamamci, C. Chemical Speciation of Vanadium in Coal Bottom Ash. Clean–Soil Air Water 2012, 40, 444–448. [Google Scholar] [CrossRef]
- Aydin, I.; Aydin, F.; Hamamci, C. Vanadium fractions determination in asphaltite combustion waste using sequential extraction with ICP-OES. Microchem. J. 2013, 108, 64–67. [Google Scholar] [CrossRef]
- Belzile, N.; Lecomte, P.; Tessier, A. Testing readsorption of trace elements during partial chemical extractions of bottom sediments. Environ. Sci. Technol. 1989, 23, 1015–1020. [Google Scholar] [CrossRef]
- Whalley, C.; Grant, A. Assessment of the phase selectivity of the European Community Bureau of Reference (BCR) sequential extraction procedure for metals in sediment. Anal. Chim. Acta 1994, 291, 287–295. [Google Scholar] [CrossRef]
- Gómez-Ariza, J.; Giráldez, I.; Sánchez-Rodas, D.; Morales, E. Metal readsorption and redistribution during the analytical fractionation of trace elements in oxic estuarine sediments. Anal. Chim. Acta 1999, 399, 295–307. [Google Scholar] [CrossRef]
- Ure, A.M.; Quevauviller, P.; Muntau, H.; Griepink, B. Speciation of Heavy Metals in Soils and Sediments. An Account of the Improvement and Harmonization of Extraction Techniques Undertaken Under the Auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Quevauviller, P.; Rauret, G.; López-Sánchez, J.-F.; Rubio, R.; Ure, A.; Muntau, H. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Sci. Total Environ. 1997, 205, 223–234. [Google Scholar] [CrossRef]
- Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef]
- Quevauviller, P.; Rauret, G.; Griepink, B. Single and Sequential Extraction in Sediments and Soils. Int. J. Environ. Anal. Chem. 1993, 51, 231–235. [Google Scholar] [CrossRef]
- van Hullebusch, E.D.; Utomo, S.; Zandvoort, M.H.; Lens, P.N. Comparison of three sequential extraction procedures to describe metal fractionation in anaerobic granular sludges. Talanta 2005, 65, 549–558. [Google Scholar] [CrossRef]
- Oyeyiola, A.O.; Olayinka, K.O.; Alo, B.I. Comparison of three sequential extraction protocols for the fractionation of potentially toxic metals in coastal sediments. Environ. Monit. Assess. 2010, 172, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Fitamo, D.; Itana, F.; Olsson, M. Total Contents and Sequential Extraction of Heavy Metals in Soils Irrigated with Wastewater, Akaki, Ethiopia. Environ. Manag. 2006, 39, 178–193. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, G.; Qi, C.; Cheng, S.; Sun, R. Chemical speciation and combustion behavior of chromium (Cr) and vanadium (V) in coals. Fuel 2016, 184, 42–49. [Google Scholar] [CrossRef]
- Yuan, C.-G.; Shi, J.-B.; He, B.; Liu, J.-F.; Liang, L.-N.; Jiang, G.-B. Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environ. Int. 2004, 30, 769–783. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Yang, M.; Gao, Y.; Wang, J.; Li, D.; Li, T. Removal of toxic metals from vanadium-contaminated soils using a washing method: Reagent selection and parameter optimization. Chemosphere 2017, 180, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.-Y.; Yoon, J.-K.; Kim, T.-S.; Yang, J.E.; Owens, G.; Kim, K.-R. Bioavailability of heavy metals in soils: Definitions and practical implementation—a critical review. Environ. Geochem. Health 2015, 37, 1041–1061. [Google Scholar] [CrossRef]
- Tandy, S.; Mundus, S.; Yngvesson, J.; de Bang, T.C.; Lombi, E.; Schjoerring, J.K.; Husted, S. The use of DGT for prediction of plant available copper, zinc and phosphorus in agricultural soils. Plant Soil 2011, 346, 167–180. [Google Scholar] [CrossRef]
- Zhang, H.; Davison, W. Use of diffusive gradients in thin-films for studies of chemical speciation and bioavailability. Environ. Chem. 2015, 12, 85–101. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, S.; Xu, D.; Tang, Y.; Wong, M.H. Bioavailability assessment of phosphorus and metals in soils and sediments: A review of diffusive gradients in thin films (DGT). Environ. Monit. Assess. 2014, 186, 7367–7378. [Google Scholar] [CrossRef]
- Gao, L.; Gao, B.; Xu, D.; Liu, L. DGT: A promising technology for in-situ measurement of metal speciation in the environment. Sci. Total Environ. 2020, 715, 136810. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Pervaiz, A.; Kong, L.; He, M. Comparison of diffusive gradients in thin-films (DGT) and chemical extraction methods for predicting bioavailability of antimony and arsenic to maize. Geoderma 2018, 332, 1–9. [Google Scholar] [CrossRef]
- Panther, J.G.; Stewart, R.R.; Teasdale, P.R.; Bennett, W.; Welsh, D.; Zhao, H. Titanium dioxide-based DGT for measuring dissolved As(V), V(V), Sb(V), Mo(VI) and W(VI) in water. Talanta 2012, 105, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Österlund, H.; Chlot, S.; Faarinen, M.; Widerlund, A.; Rodushkin, I.; Ingri, J.; Baxter, D.C. Simultaneous measurements of As, Mo, Sb, V and W using a ferrihydrite diffusive gradients in thin films (DGT) device. Anal. Chim. Acta 2010, 682, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Menegário, A.A.; Yabuki, L.N.M.; Luko, K.S.; Williams, P.; Blackburn, D. Use of diffusive gradient in thin films for in situ measurements: A review on the progress in chemical fractionation, speciation and bioavailability of metals in waters. Anal. Chim. Acta 2017, 983, 54–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, A.B.; Nascimento, P.C.; Bohrer, D.; de Carvalho, L.M.; Guarda, A.; Krause, C.; Wiethan, B.A.; Koschinsky, A. Determination of Zirconium and Vanadium in Natural Waters by Adsorptive Stripping Voltammetry in the Presence of Cupferron, Oxalic Acid and 1,3-Diphenylguanidine. Electroanalysis 2015, 27, 1864–1870. [Google Scholar] [CrossRef]
- Schneider, A.B.; Koschinsky, A.; Kiprotich, J.; Poehle, S.; Nascimento, P.C.D. An experimental study on the mixing behavior of Ti, Zr, V and Mo in the Elbe, Rhine and Weser estuaries. Estuar. Coast. Shelf Sci. 2016, 170, 34–44. [Google Scholar] [CrossRef]
- Monticelli, D.; Laglera, L.; Caprara, S. Miniaturization in voltammetry: Ultratrace element analysis and speciation with twenty-fold sample size reduction. Talanta 2014, 128, 273–277. [Google Scholar] [CrossRef]
- Rusinek, C.A.; Bange, A.; Warren, M.; Kang, W.; Nahan, K.; Papautsky, I.; Heineman, W.R. Bare and Polymer-Coated Indium Tin Oxide as Working Electrodes for Manganese Cathodic Stripping Voltammetry. Anal. Chem. 2016, 88, 4221–4228. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Romo, C.; Arancibia, V.; Costa, D.M.-D.; Tapia, R. Highly sensitive determination of vanadium (V) by catalytic adsorptive stripping voltammetry. Substituent effect on sensitivity III. Sens. Actuators B Chem. 2016, 224, 772–779. [Google Scholar] [CrossRef]
- Venkataraman, B.V.; Sudha, S. Vanadium toxicity. Asian J. Exp. Sci. 2005, 19, 127–134. [Google Scholar]
- Akl, M.A.; El-Asmy, A.A.; Yossef, W.M. Separation via Flotation, Spectrophotometric Speciation, and Determination of Vanadium(IV) in Wastes of Power Stations. Anal. Sci. 2005, 21, 1325–1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pekiner, O.Z.; Naeemullah; Tüzen, M. Preconcentration and speciation of vanadium by three phases liquid–liquid microextraction prior to electrothermal atomic absorption spectrometry. J. Ind. Eng. Chem. 2013, 20, 1825–1829. [Google Scholar] [CrossRef]
- Chen, Z.L.; Owens, G. Trends in speciation analysis of vanadium in environmental samples and biological fluids—A review. Anal. Chim. Acta 2008, 607, 1–14. [Google Scholar] [CrossRef]
- Ulery, A.L.; Drees, L.R. Methods of Soil Analysis, Part 5—Mineralogical Methods; Soil Science Society of America: Madison, MI, USA, 2009. [Google Scholar]
- Mirzaei, M.; Behzadi, M.; Abadi, N.M.; Beizaei, A. Simultaneous separation/preconcentration of ultra trace heavy metals in industrial wastewaters by dispersive liquid–liquid microextraction based on solidification of floating organic drop prior to determination by graphite furnace atomic absorption spectrometry. J. Hazard. Mater. 2011, 186, 1739–1743. [Google Scholar] [CrossRef] [PubMed]
- Naeemullah; Tuzen, M.; Kazi, T.G. A new portable micropipette tip-syringe based solid phase microextraction for the determination of vanadium species in water and food samples. J. Ind. Eng. Chem. 2018, 57, 188–192. [Google Scholar] [CrossRef]
- Wisawapipat, W.; Kretzschmar, R. Solid Phase Speciation and Solubility of Vanadium in Highly Weathered Soils. Environ. Sci. Technol. 2017, 51, 8254–8262. [Google Scholar] [CrossRef]
- Yi, J.; Nakatani, N.; Nomura, K. Solution XANES and EXAFS analysis of active species of titanium, vanadium complex catalysts in ethylene polymerisation/dimerisation and syndiospecific styrene polymerisation. Dalton Trans. 2020, 49, 8008–8028. [Google Scholar] [CrossRef]
- Larsson, M.A.; Hadialhejazi, G.; Gustafsson, J.P. Vanadium sorption by mineral soils: Development of a predictive model. Chemosphere 2017, 168, 925–932. [Google Scholar] [CrossRef] [Green Version]
- Larsson, M.A.; Persson, I.; Sjöstedt, C.; Gustafsson, J.P. Vanadate complexation to ferrihydrite: X-ray absorption spectroscopy and CD-MUSIC modelling. Environ. Chem. 2017, 14, 141–150. [Google Scholar] [CrossRef]
- Burke, I.T.; Mayes, W.M.; Peacock, C.L.; Brown, A.P.; Jarvis, A.P.; Gruiz, K. Speciation of Arsenic, Chromium, and Vanadium in Red Mud Samples from the Ajka Spill Site, Hungary. Environ. Sci. Technol. 2012, 46, 3085–3092. [Google Scholar] [CrossRef]
- Chaurand, P.; Rose, J.; Briois, V.; Salome, M.; Proux, O.; Nassif, V.; Olivi, L.; Susini, J.; Hazemann, J.-L.; Bottero, J.-Y. New Methodological Approach for the Vanadium K-Edge X-ray Absorption Near-Edge Structure Interpretation: Application to the Speciation of Vanadium in Oxide Phases from Steel Slag. J. Phys. Chem. B 2007, 111, 5101–5110. [Google Scholar] [CrossRef] [PubMed]
- Terzano, R.; Spagnuolo, M.; Vekemans, B.; De Nolf, W.; Janssens, K.; Falkenberg, G.; Fiore, S.; Ruggiero, P. Assessing the Origin and Fate of Cr, Ni, Cu, Zn, Pb, and V in Industrial Polluted Soil by Combined Microspectroscopic Techniques and Bulk Extraction Methods. Environ. Sci. Technol. 2007, 41, 6762–6769. [Google Scholar] [CrossRef] [PubMed]
- Hector, A.L.; Jura, M.; Levason, W.; Reid, G.; Webster, M. Spectroscopic and Vanadium K-Edge EXAFS Studies on VO2Cl and the Crystal Structure of [{Cl2VO(O2PCl2)(POCl3)}2]. Z. Anorg. Allg. Chem. 2009, 635, 1200–1203. [Google Scholar] [CrossRef]
- Peacock, C.; Sherman, D.M. Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: A surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 2004, 68, 1723–1733. [Google Scholar] [CrossRef]
- Michel, F.M.; Barrón, V.; Torrent, J.; Morales, M.P.; Serna, C.J.; Boily, J.-F.; Liu, Q.; Ambrosini, A.; Cismasu, A.C.; Brown, G.E. Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism. Proc. Natl. Acad. Sci. USA 2010, 107, 2787–2792. [Google Scholar] [CrossRef] [Green Version]
- Hiemstra, T. Surface and mineral structure of ferrihydrite. Geochim. Cosmochim. Acta 2012, 105, 316–325. [Google Scholar] [CrossRef]
- Huggins, F.E.; Huffman, G.P.; Robertson, J. Speciation of elements in NIST particulate matter SRMs 1648 and 1650. J. Hazard. Mater. 2000, 74, 1–23. [Google Scholar] [CrossRef]
- Pan, Y.; Koopmans, G.F.; Bonten, L.T.; Song, J.; Luo, Y.; Temminghoff, E.J.; Comans, R.N. In-situ measurement of free trace metal concentrations in a flooded paddy soil using the Donnan Membrane Technique. Geoderma 2015, 241–242, 59–67. [Google Scholar] [CrossRef]
- Degryse, F.; Smolders, E.; Zhang, H.; Davison, W. Predicting availability of mineral elements to plants with the DGT technique: A review of experimental data and interpretation by modelling. Environ. Chem. 2009, 6, 198–218. [Google Scholar] [CrossRef] [Green Version]
- Davidson, C.M.; Ferreira, P.C.S.; Ure, A.M.; Ferreira, P. Some sources of variability in application of the three-stage sequential extraction procedure recommended by BCR to industrially-contaminated soil. Anal. Bioanal. Chem. 1999, 363, 446–451. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Wang, S.; Xu, C.; Liu, M. Chemical speciation of elements in sediments and soils and their sequential extraction process. Geol. Bull. China 2005, 24, 728–734. [Google Scholar]
- Alborés, A.F.; Cid, B.P.; Gómez, E.F.; López, E.F. Comparison between sequential extraction procedures and single extractions for metal partitioning in sewage sludge samples. Analyst 2000, 125, 1353–1357. [Google Scholar] [CrossRef]
- Malea, P.; Kevrekidis, T. Trace element (Al, As, B, Ba, Cr, Mo, Ni, Se, Sr, Tl, U and V) distribution and seasonality in compartments of the seagrass Cymodocea nodosa. Sci. Total Environ. 2013, 463–464, 611–623. [Google Scholar] [CrossRef]
- Favas, P.J.; Pratas, J.; Rodrigues, N.; D’Souza, R.; Varun, M.; Paul, M.S. Metal(loid) accumulation in aquatic plants of a mining area: Potential for water quality biomonitoring and biogeochemical prospecting. Chemosphere 2018, 194, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Fargašová, A.; Bumbálová, A.; Havránek, E. Ecotoxicological effects and uptake of metals (Cu+, Cu2+, Mn2+, Mo6+, Ni2+, V5+) in freshwater alga Scenedesmus quadricauda. Chemosphere 1999, 38, 1165–1173. [Google Scholar] [CrossRef]
- Hou, M.; Li, M.; Yang, X.; Pan, R. Responses of Nonprotein Thiols to Stress of Vanadium and Mercury in Maize (Zea mays L.) Seedlings. Bull. Environ. Contam. Toxicol. 2019, 102, 425–431. [Google Scholar] [CrossRef]
- García-Jiménez, A.; Trejo-Téllez, L.I.; Guillén-Sánchez, D.; Gómez-Merino, F.C. Vanadium stimulates pepper plant growth and flowering, increases concentrations of amino acids, sugars and chlorophylls, and modifies nutrient concentrations. PLoS ONE 2018, 13, e0201908. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Yang, J.; Alewell, C.; Huang, J.-H. Speciation of vanadium in Chinese cabbage (Brassica rapa L.) and soils in response to different levels of vanadium in soils and cabbage growth. Chemosphere 2014, 111, 89–95. [Google Scholar] [CrossRef]
- Hou, M.; Lu, C.; Wei, K. Accumulation and Speciation of Vanadium in Lycium Seedling. Biol. Trace Elem. Res. 2014, 159, 373–378. [Google Scholar] [CrossRef]
- Gil, J.; Alvarez, C.; Martínez, M.; Perez, N. Effect of vanadium on lettuce growth, cationic nutrition, and yield. J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxicol. 1995, 30, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Barouchas, P.E.; Akoumianaki-Ioannidou, A.; Liopa-Tsakalidi, A.; Moustakas, N.K. Effects of Vanadium and Nickel on Morphological Characteristics and on Vanadium and Nickel Uptake by Shoots of Mojito (Mentha × villosa) and Lavender (Lavandula anqustifolia). Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 47, 487–492. [Google Scholar] [CrossRef] [Green Version]
- García, J.; González, J.C.; Frascaroli, M.I.; García, S.; Blanes, P.S.; Correia, I.; Pessoa, J.; Sala, L.F. Spectroscopic studies of vanadium biosorption on different types of carbohydrate biomass. Can. J. Chem. 2013, 91, 186–195. [Google Scholar] [CrossRef]
- Imtiaz, M.; Mushtaq, M.A.; Rizwan, M.; Arif, M.S.; Yousaf, B.; Ashraf, M.; Shuanglian, X.; Mehmood, S.; Tu, S. Comparison of antioxidant enzyme activities and DNA damage in chickpea (Cicer arietinum L.) genotypes exposed to vanadium. Environ. Sci. Pollut. Res. 2016, 23, 19787–19796. [Google Scholar] [CrossRef] [PubMed]
- Saco, D.; Martín, S.; José, P. Vanadium distribution in roots and leaves of Phaseolus vulgaris: Morphological and ultrastructural effects. Biol. Plant. 2013, 57, 128–132. [Google Scholar] [CrossRef]
- Chongkid, B.; Vachirapattama, N.; Jirakiattikul, Y. Effects of vanadium on rice growth and vanadium accumulation in rice tissues. Kasetsart J. Nat. Sci. 2007, 41, 28–33. [Google Scholar]
- Vachirapatama, N.; Jirakiattikul, Y.; Dicinoski, G.; Townsend, A.T.; Haddad, P.R. Effect of vanadium on plant growth and its accumulation in plant tissues. Songklanakarin J. Sci. Technol. 2011, 33, 255–261. [Google Scholar]
- Kitani, S.; De Silva, N.R.; Morita, Y.; Teshima, R. Global environmental pollutant substance vanadium activates mast cells and basophils at the late phase in the presence of hydrogen peroxide. Environ. Toxicol. Pharmacol. 1998, 6, 1–12. [Google Scholar] [CrossRef]
- Rojas, E.; A Herrera, L.; A Poirier, L.; Ostrosky-Wegman, P. Are metals dietary carcinogens? Mutat. Res. Toxicol. Environ. Mutagen. 1999, 443, 157–181. [Google Scholar] [CrossRef]
- Hou, M.; Hu, C.; Xiong, L.; Lu, C. Tissue accumulation and subcellular distribution of vanadium in Brassica juncea and Brassica chinensis. Microchem. J. 2013, 110, 575–578. [Google Scholar] [CrossRef]
- Li, T.; Di, Z.; Islam, E.; Jiang, H.; Yang, X. Rhizosphere characteristics of zinc hyperaccumulator Sedum alfredii involved in zinc accumulation. J. Hazard. Mater. 2011, 185, 818–823. [Google Scholar] [CrossRef]
- Tian, L.-Y.; Yang, J.-Y.; Huang, J.-H. Uptake and speciation of vanadium in the rhizosphere soils of rape (Brassica juncea L.). Environ. Sci. Pollut. Res. 2015, 22, 9215–9223. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Jiao, Y.; Chen, C.; Shireen, F.; Zheng, Z.; Imtiaz, M.; Bie, Z.; Huang, Y. Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J. Plant Physiol. 2018, 220, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Yang, F.; Wei, C. Factors influencing the heavy metal bioaccessibility in soils were site dependent from different geographical locations. Environ. Sci. Pollut. Res. 2015, 22, 13939–13949. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M. Aging, Bioavailability, and Overestimation of Risk from Environmental Pollutants. Environ. Sci. Technol. 2000, 34, 4259–4265. [Google Scholar] [CrossRef]
- Ehlers, L.J.; Luthy, R.G. Peer Reviewed: Contaminant Bioavailability in Soil and Sediment. Environ. Sci. Technol. 2003, 37, 295A–302A. [Google Scholar] [CrossRef] [Green Version]
- Semple, K.T.; Doick, K.J.; Jones, K.C.; Burauel, P.; Craven, A.; Harms, H. Peer Reviewed: Defining Bioavailability and Bioaccessibility of Contaminated Soil and Sediment is Complicated. Environ. Sci. Technol. 2004, 38, 228A–231A. [Google Scholar] [CrossRef] [Green Version]
- Kumpiene, J.; Giagnoni, L.; Marschner, B.; Denys, S.; Mench, M.; Adriaensen, K.; Vangronsveld, J.; Puschenreiter, M.; Renella, G. Assessment of Methods for Determining Bioavailability of Trace Elements in Soils: A Review. Pedosphere 2017, 27, 389–406. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (USEPA). Method 1311: Toxicity Characteristic Leaching Procedure; USEPA: Washington, DC, USA, 1992. [Google Scholar]
- Deutsches Institut für Normung (DIN). DIN 19736: Soil Quality Derivation of Concentrations of Organic Pollutants in Soil Water; Deutsches Institut für Normung: Berlin, Germany, 1998. [Google Scholar]
- US National Research Council (US NRC). Bioavailability of Contaminants in Soils and Sediments: Processes, Tools, and Applications; National Academies Press: Washington, DC, USA, 1992. [Google Scholar]
- Rehder, D. The Bioinorganic Chemistry of Vanadium. Angew. Chem. Int. Ed. Engl. 1991, 30, 148–167. [Google Scholar] [CrossRef]
- Rehder, D. Structure and function of vanadium compounds in living organisms. BioMetals 1992, 5, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Beveridge, T.J. Structures of Gram-Negative Cell Walls and Their Derived Membrane Vesicles. J. Bacteriol. 1999, 181, 4725–4733. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Gallagher, F.J.; Feng, H.; Wu, M.; Zhu, Q. Vanadium uptake and translocation in dominant plant species on an urban coastal brownfield site. Sci. Total Environ. 2014, 476–477, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Tokalıoğlu, S.; Kartal, S. Comparison of Metal Fractionation Results Obtained from Single and BCR Sequential Extractions. Bull. Environ. Contam. Toxicol. 2005, 75, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Borggaard, O.K. Dissolution of Poorly Crystalline Iron Oxides in Soils by EDTA and Oxalate. Z. Pflanz. Bodenkd. 1992, 155, 431–436. [Google Scholar] [CrossRef]
- Li, X.S.; Glasauer, S.; Le, X.C. Erratum to “Speciation of vanadium in oilsand coke and bacterial culture by high performance liquid chromatography inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2009, 648, 128. [Google Scholar] [CrossRef]
- Shan, X.-Q.; Lian, J.; Wen, B. Effect of organic acids on adsorption and desorption of rare earth elements. Chemosphere 2002, 47, 701–710. [Google Scholar] [CrossRef]
- Shan, X.-Q.; Wang, Z.; Wang, W.; Zhang, S.; Wen, B. Labile rhizosphere soil solution fraction for prediction of bioavailability of heavy metals and rare earth elements to plants. Anal. Bioanal. Chem. 2003, 375, 400–407. [Google Scholar] [CrossRef]
- Sauvé, S.; Norvell, W.A.; McBride, M.; Hendershot, W. Speciation and Complexation of Cadmium in Extracted Soil Solutions. Environ. Sci. Technol. 1999, 34, 291–296. [Google Scholar] [CrossRef]
Region | V Concentration in Soils (mg/kg) | Data from Reference |
---|---|---|
Poland | 18.39 | [41] |
Palermo, Italy | 58 | [42] |
Cheppel Island, Hungary | 15.2–42.0 | [43] |
Catalonia, Spain | 15.2–144.9 | [44] |
Arcala de Enares, Spain | 6.01 | [45] |
Turku, Finland | 47.5 | [46] |
Lithuania | 38 | [47] |
Russia | 79–91 | [48] |
Ankara, Turkey | 74 | [49] |
Region | V Concentration in Soils (mg/kg) | Data from Reference |
---|---|---|
Chongqing | 39–4994.6 | [53] |
Sichuan Province | 19.1–548.7 | [53] |
Chengdu city, Sichuan Province | 66.69–73.25 | [54] |
Panzhihua city, Sichuan Province | 149–4794 | [51] |
167 | [52] | |
71.1–938.4 | [36] | |
105.57–189.12 | [50] | |
1120.3–1139.9 | [55] | |
Hunan Province | 4.5–1390.8 | [53] |
62.81–152.77 | [55] | |
Chenxi county, Huaihua city, Hunan Province | 168–1538 | [27] |
1500–2600 | [56] | |
Lianyuan city, Hunan Province | 38.97–618.90 | [57] |
Loudi city, Hunan Province | 97–282 | [58] |
Hubei Province | 17.6–836.2 | [53] |
500 | [59] | |
1306 | [60] | |
931 | [4] | |
Shiyan city, Hubei Province | 1998.7–2031.5 | [61] |
128–821 | [6] | |
Shaanxi Province | 26.6–1854 | [53] |
85.98 | [62] | |
21.14–286.42 | [63] | |
Langao county, Ankang city, Shaanxi Province | 264–596 | [64] |
Xi’an city, Shaanxi Province | 53.9–89.7 | [65] |
85.2 | [66] | |
Anhui Province | 23.3–1746.6 | [53] |
Huainan city, Anhui Province | 2.24–71.86 | [67] |
41.15–81.13 | ||
Yunnan Province | 6.7–1546 | [53] |
168 | [53] | |
Kunming city, Yunnan Province | 281.56 | [68] |
Guizhou Province | 16–1685 | [53] |
Bijie city, Guizhou Province | 206 | [69] |
Zunyi city, Guizhou Province | 170–1369 | [70] |
Extractant Category | Extraction Solutions | Extraction Yield (Extracted V/Total V) | Samples | Data from Reference |
---|---|---|---|---|
Weak (dilute) acids | HCl | 2.73 ± 2.21% | 0.01 M HCl, soil samples collected from Zhujiabaobao mine located in the eastern part of Panzhihua mine area (n = 7, Vtotal = 67.43 ± 14.92 mg/kg) | [25,28] |
6.21–69.26% | 0.5 M HCl, soil used in pot experiment was collected from moist soil (0–20 cm) of forest land in an urban park in Panzhihua, southwest China (n = 75, Vtotal = 7.73–494.45 mg/kg) | |||
HNO3 | 2.68 ± 1.65% | 0.43 M HNO3, soil samples collected from Zhujiabaobao mine located in the eastern part of Panzhihua mine area (n = 7, Vtotal = 67.43 ± 14.92 mg/kg) | [28] | |
HOAc | 0.01–1.33% | 0.11 M HOAc, topsoil (0–10 cm) samples were collected from the Panzhihua, urban park (n = 23, Vtotal = 105.57–189.72 mg/kg) | [36] | |
Citric acid (C6H8O7) | 2.39 ± 2.03% | 0.1 M C6H8O7, soil samples collected from Zhujiabaobao mine located in the eastern part of Panzhihua mine area (n = 7, Vtotal = 67.43 ± 14.92 mg/kg) | [28] | |
Chelating agents | EDTA | 0.2–35% | 0.025 M Na2-EDTA, soil samples from different sites of the German long-term soil monitoring program (n = 30, Vtotal = 1.7–143.0 mg/kg) | [25,36,74] |
4.33–61.98% | 0.05 M EDTA, soil used in pot experiment was collected from moist soil (0–20 cm) of forest land in an urban park in Panzhihua, southwest China (n = 75, Vtotal = 7.73–494.45 mg/kg) | |||
0.27–4.09% | 0.05 M EDTA, topsoil (0–10 cm) samples were collected from the Panzhihua, urban park (n = 23, Vtotal = 105.57–189.72 mg/kg) | |||
DTPA | 0.6–7.7% | 1 M NH4HCO3 + 0.005 M DTPA, cultivated soils of Egypt and Greece (n = 21, Vtotal = 13–206 mg/kg) | [91,114] | |
0.37–5.12% | 1 M NH4HCO3 + 0.005 M DTPA, different types of soil sampled from three different study areas in Germany (n = 6, Vtotal = 29.7–109.2 mg/kg) | |||
Inorganic salt solution | NaNO3 | 0.005–4.84% | 0.1 M NaNO3, soil used in pot experiment was collected from moist soil (0–20 cm) of forest land in an urban park in Panzhihua, southwest China (n = 75, Vtotal = 7.73–494.45 mg/kg) | [25] |
CaCl2 | <4% | 0.01 M CaCl2, seventeen rural soil profiles for this study were selected to covera representative range of different parent materials in Taiwan (n = 94, Vtotal = 35.4–475 mg/kg) | [76] | |
NaHCO3 | <4% | 0.5 M NaHCO3, seventeen rural soil profiles for this study were selected to covera representative range of different parent materials in Taiwan (n = 94, Vtotal = 35.4–475 mg/kg) | [76] |
Samples | Location | Sequential Extraction Methods (SE) | Target Fraction | Extraction Solutions | Average Percentage of Each Fraction (%) | Data from Reference |
---|---|---|---|---|---|---|
Soil | Agricuture region, Panzhihua city, Sichuan province, China. Vtotal: 71.7–938 mg/kg, n = 55 | Wenzel scheme | Non-specifically sorbed | 0.05 M (NH4)2SO4, 20 °C | 0.51 | [99] |
Specifically sorbed | 0.05 M NH4H2PO4, 20 °C | 0.30 | ||||
Amorphous hydrous Fe and Al oxide | 0.2 M NH4+-oxalate buffer, pH = 3.25, 20 °C | 5.52 | ||||
Crystalline hydrous Fe and Al oxides | 0.2 M NH4+-oxalate buffer + Ac, pH = 3.25, 96 °C | 9.83 | ||||
Residual | HNO3 + H2O2 (1:50) | 83.80 | ||||
Five-steps SE of Tessier | Exchangeable | 1 M MgCl2, pH = 7, 20 °C | 0 | [122] | ||
Carbonates | 1 M HOAc + NaOAc, pH = 5, 20 °C | 0.14 | ||||
Fe and Mn oxides | 20 mL 0.04 M NH2OH·HCl in 25% (v/v) HOAc, 96 °C | 6.96 | ||||
Organic matter | 0.02 M HNO3 + 30% H2O2 (pH = 2), 85 °C | 13.20 | ||||
3.2 mol/L NH4OAc in 20% HNO3 | ||||||
Residual | HF + HClO4 (5:1) | 79.70 | ||||
Agricultural region, In South Finlandfrom bare arable land, Vtotal = 601 mg/kg, n = 1 | Modified on the basis of procedures used in the sequential frac-tionation of selenium (Se) and phos-phorus (P) | Easily soluble V | 0.25 M KCl | <11 | [29] | |
V bound by ligand exchange | 0.1 M KH2PO4 + K2HPO4 | 8~35 | ||||
Organic V | 0.1 M NaOH | 30~68 | ||||
Strong bound V | 0.25 M H2SO4 | <10 | ||||
Agricultural region, Eschikon, Switzerland. Vtotal = 61.2 mg/kg, n = 1 | Sequential extraction of V in soils was performed based on Wenzel et al. (2001) before soybean planting | Non-specifically sorbed | 0.05 M (NH4)2SO4, 20 °C | 15.70 | [20] | |
specifically-sorbed | 0.05 M NH4H2PO4, 20 °C | 24.60 | ||||
Amorphous and poorly crystalline hydrous oxides of Fe and Al | 0.2 M NH4+-oxalate buffer, pH = 3.25, 20 °C | 23.80 | ||||
Well-crystallized hydrous oxides of Fe and Al | 0.2 M NH4+-oxalate buffer + AC, pH = 3.25, 96 °C | 3.80 | ||||
Mining region, Panzhihua city, Sichuan province, China. Vtotal = 69.8–279.35 mg/kg, n = 7 | BCR SE | Acid soluble | 0.11 M CH3COOH, 25 °C | 0.19–0.82 | [28] | |
Reducible | 0.5 M NH2OH·HCl + 0.05 M HNO3, 25 °C | 0.27–5.78 | ||||
Oxidizable | 30% H2O2, pH = 2, 85 °C; 1 M NH4OAc, pH = 2, 25°C | 4.37–10.50 | ||||
Residual | HNO3 + H2O2 (1:50) | 83.3–93.10 | ||||
Mining region, Chenxi county, Hunan province, China. Vtotal = 168–1538 mg/kg, n = 7 | Modified BCR SE | Acid extractable | 0.11 M HOAc | 0.32–1.88 | [27] | |
Reducible | 0.5 M NH2OH·HCl, pH = 1.5 | 5.63–34.40 | ||||
Oxidizable | 8.8 mol/L H2O2; 1 M NH4OAc, pH = 2 | 0.81–22.90 | ||||
Residual | HNO3 + H2O2 (1:50) | 57.70–58.80 | ||||
Industrial region, Milazzo area, Sicily, Vtotal = 0.072–0.24 g /kg, n = 23 | Modified Tessier’s SE | Exchangeable V | 1 M NaOAc | 2.19 | [73] | |
V bound to carbonates | CH3COONa/CH3COOH, pH =5 | 1.19 | ||||
V bound to Fe and Mn oxides | 0.04 M NH3(OH)Cl + 25% CH3COOH (v/v), 96 °C | 0.88 | ||||
V bound to organic matter and or sulfide | HNO3 + 30% H2O2 | 92.31 | ||||
Sediment | Nile Delta coast, Vtotal = 73.62–154.82 mg/kg, n = 11 | Modified BCR SE | Exchangeable | 1 M NH4CH3COO, pH = 7 | 7.20 | [123] |
Acid-reducible | 0.25 M NH2OH·HCl, pH = 2 | 1.60 | ||||
Oxidizable-organic | 30% H2O2, 1 M NH4CH3COO, pH = 2 | 27.40 | ||||
Resistant | 65% NHO3 + 70% HCLO4 + HF | 63.80 | ||||
In northern part of Belgium.Vtotal = 40–430 mg/kg, n = 14 | Modified BCR SE | Acid soluble | 0.11 M CH3COOH | 0.14 | [17] | |
Reducible | 0.1 M NH2OH·HCl, pH = 1.5 | 21.16 | ||||
Oxidizable | 8.8 M H2O2, 1.0 M NH4OOCH3 | 9.72 | ||||
Residual | HCl + HNO3 + HF (2:1:1) | 52.93 | ||||
Ore (coal) | Industrial region, Anatolia, Turkey. Vtotal = 701, n = 1. | Seven-step sequential extraction procedure of the coal bottom ash | Water soluble | Deionized water | 1.51 | [124] |
Exchangeable fraction | 1 M MgCl2·6H2O, pH = 7 ± 0.1 | 1.28 | ||||
Carbonate fraction | 1 M NaAc, pH = 5 ± 0.1, 90 °C | 12.13 | ||||
Reducible fraction | 0.1 M NH2OH·HCl + 25% (v/v) CH3COOH, 90 °C | 25.11 | ||||
Oxidizable fraction | H2O2, pH = 2 ± 0.1, 100 °C | 7.13 | ||||
Sulfide fraction | Aqua regia, 120 °C | 25.11 | ||||
Residual | HF + HCl + HNO3 (5:1:5) | 25.76 | ||||
Ore (asphaltite) | Minging region, in SE Anatolia of Turkey. Vtotal = 546.15 mg/kg, n = 1. | Seven-step sequential extraction procedure of asphaltite combustion waste | Water soluble | Deionized water | 1.66 | [125] |
Exchangeable fraction | 1 M MgCl2·6H2O, pH = 7 ± 0.1 | 2.61 | ||||
Carbonate fraction | 1 M NaAc, pH = 5 ± 0.1, 90 °C | 6.00 | ||||
Reducible fraction | 0.1 M NH2OH·HCl + 25% (v/v) CH3COOH, 90 °C | 11.75 | ||||
Oxidizable fraction | H2O2, pH = 2 ± 0.1, 100 °C | 15.78 | ||||
Sulfide fraction | HCl + HNO3 (3:1 v/v), 120 °C | 56.30 | ||||
Residual | HF + HCl + HNO3 | 5.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Wang, Y.; Gao, X.; Zuo, R.; Song, L.; Jin, C.; Wang, J.; Teng, Y. Vanadium: A Review of Different Extraction Methods to Evaluate Bioavailability and Speciation. Minerals 2022, 12, 642. https://doi.org/10.3390/min12050642
Yang J, Wang Y, Gao X, Zuo R, Song L, Jin C, Wang J, Teng Y. Vanadium: A Review of Different Extraction Methods to Evaluate Bioavailability and Speciation. Minerals. 2022; 12(5):642. https://doi.org/10.3390/min12050642
Chicago/Turabian StyleYang, Jie, Yunlong Wang, Xiaohui Gao, Rui Zuo, Liuting Song, Chenhui Jin, Jinsheng Wang, and Yanguo Teng. 2022. "Vanadium: A Review of Different Extraction Methods to Evaluate Bioavailability and Speciation" Minerals 12, no. 5: 642. https://doi.org/10.3390/min12050642
APA StyleYang, J., Wang, Y., Gao, X., Zuo, R., Song, L., Jin, C., Wang, J., & Teng, Y. (2022). Vanadium: A Review of Different Extraction Methods to Evaluate Bioavailability and Speciation. Minerals, 12(5), 642. https://doi.org/10.3390/min12050642