Petrochronological Evidence for a Three-Stage Magmatic Evolution of the Youngest Nepheline Syenites from the Ditrău Alkaline Massif, Romania
Abstract
:1. Introduction
2. Geological Background
2.1. Overview
- -
- Ditrău suite, comprising syenites to monzo-syenites (equivalent to the "Ditrău syenite" of [17]);
- -
- -
- -
- Metasomatism by an Na-rich fluid [34].
- -
- Magmatic differentiation of an alkaline magma [20].
- -
- Partial melting of silica-poor crustal rocks producing both a basic and a sialic alkaline magma [18].
- -
- Two geological events (intrusions) in the Upper Triassic–Lower Jurassic and in the Middle Jurassic–Lower Cretaceous. These events partly coincide with each other, suggesting that the Bear Valley mafic diorites were probably formed by hybridization of hornblendites and syenites during the second event [35].
- -
- A complex four-stage evolution resulting in an emplacement period of the DAM of ca. 70 m.y. during the Triassic and Jurassic [36].
- -
- Two major magma sources as well as distinct magma evolution trends were reported as the result of a study of the major and trace element composition of clinopyroxenes [28]. Accordingly, a primitive diopside population is derived from a camptonitic magma (termed "Magma1") which is related to basanitic parental melts [30], whilst diopside–hedenbergite crystals represent a more Na-, Nb-, and Zr-rich magma source (termed "Magma2" and recognized for the first time in the Ditrău magmatic system). This "Magma2" fractionated towards ijolitic (termed "Magma2a") and later phonolite (termed "Magma2b") compositions. Field observations, petrography, and clinopyroxene-melt equilibrium calculations reveal magma recharge and mingling, pyroxene recycling, fractional crystallization, and accumulation. Repeated recharge events of the two principal magmas ("Magma1", "Magma2") resulted in multiple interactions, such as magma mixing, between more primitive and more fractionated coexisting magma batches. Magma mingling also occurred between mafic and felsic magmas by injection of ijolitic magma into dikes with a phonolitic melt.
- -
- The importance of the hydrothermal system that developed within the DAM magma chamber during crystallization was emphasized by [17]. Geochemical and petrological data from the alkaline igneous rocks, dykes, and veins within the DAM reveal the interplay of magmatic processes with late-stage magmatic and hydrothermal fluids. A hydrothermal system developed within the DAM magma chamber during the later stages of magmatic crystallization, causing localized alteration of nepheline syenites by an Na-rich fluid. Mafic dykes subsequently acted as conduits for late-stage, more K-rich fluids, which leached REE and HFSE from the surrounding syenitic rocks. These fluids percolated up and accumulated in the roof zone, causing the breakdown of nepheline to K-rich pseudomorphs and the precipitation of hydrothermal minerals such as zircon and pyrochlore within veins. The DAM and country rocks were subsequently cut by REE-mineral-bearing carbonate-rich veins. Monazite and xenotime are the main REE-bearing phases in these veins, crystallizing from a late REE- and carbonate-rich fluid with pH-controlled REE deposition.
- -
- A dominant mantle origin of hornblendites, diorites, and nepheline syenites follows from an isotope geochemical study [23] showing age-corrected ɛNd values that range from + 0.8 to + 5.5‰. High-temperature equilibrium O-isotope fractionations between minerals are thereby generally preserved, although some sub-solidus O-isotope re-equilibration occurred. Magma δ18O values estimated from quartz, feldspar, and amphibole (5.7–11.7‰) are higher than those estimated from zircon. This is attributed to continuous crustal contamination, with zircon recording the early, high-temperature δ18O values, and quartz and the other silicate δ18O values reflecting a combination of subsequent crustal contamination and deuteric alteration. Negative correlations between calculated magma δ18O values and Na2O and Al2O3 content and εNd are consistent with the suite of felsic rocks from nepheline syenite to granite, resulting from an increased crustal input. The Nd- and O-isotope composition of the silica-oversaturated rocks can be explained by the assimilation of 20–60% upper crustal melts into re-injected mafic alkaline parent magma.
2.2. Former Geochronological Investigations
3. Materials and Methods
3.1. Microscopy and Whole-Rock Analysis
3.2. Microscopy and Whole-Rock Analysis
3.3. Zircon Separation and Cathodoluminescence (CL) Imaging
3.4. SIMS U-Pb Dating
4. Results
4.1. Petrography
4.1.1. Lăzarea Suite (Sample Ditrău 1)
4.1.2. Ghiduţ Suite (Sample Ditrău 2)
4.2. Whole-Rock Chemistry
4.3. Zircon Characteristics
4.4. SIMS U-Pb Data
5. Discussion
5.1. Whole-Rock Geochemistry
5.2. Whole-Rock Zr-Hf Systematics, Zr Saturation Temperatures, and Implications for U-Pb Ages
5.3. Zircon Th-U Systematics
5.4. Zircon U-Pb Ages
5.5. Geochronological Implications
- -
- Event 1: intrusion of the Ghiduţ suite at 232.1 ± 0.8 Ma;
- -
- Event 2: intrusion of the Ditrău suite at 230.7 ± 0.2 Ma;
- -
- Event 3: intrusion of the Lăzarea suite at 224.9 ± 1.1 Ma.
5.6. Geological Implications
6. Conclusions
- -
- Event 1: intrusion of the Ghiduţ suite at 231.1 ± 0.8 Ma;
- -
- Event 2: intrusion of the Ditrău suite at 230.7 ± 0.2 Ma;
- -
- Event 3: intrusion of the Lăzarea suite at 224.9 ± 1.1 Ma.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krumrei, T.V.; Villa, I.M.; Marks, M.A.W.; Markl, G. A 40Ar/39Ar and U/Pb Isotopic Study of the Ilímaussaq Complex, South Greenland: Implications for the 40K Decay Constant and for the Duration of Magmatic Activity in a Peralkaline Complex. Chem. Geol. 2006, 227, 258–273. [Google Scholar] [CrossRef]
- Biswal, T.K.; De Waele, B.; Ahuja, H. Timing and Dynamics of the Juxtaposition of the Eastern Ghats Mobile Belt against the Bhandara Craton, India; a Structural and Zircon U/Pb SHRIMP Study of the Fold-Thrust Belt and Associated Nepheline Syenite Plutons. Tectonics 2007, 26, TC4006. [Google Scholar] [CrossRef] [Green Version]
- Pushkarev, E.V.; Ronkin, Y.L.; Yudin, D.S.; Travin, A.V.; Lepekhina, O.P. Age of the Formation of Nepheline Tilaite in the Uralian Platinum Belt; the Isotope Sm-Nd, Rb-Sr, U-Pb, (40Ar/39Ar, and K-Ar Datings and Their Limitations. Dokl. Earth Sci. 2014, 455, 312–316. [Google Scholar] [CrossRef]
- Marks, M.A.W.; Markl, G. The Ilímaussaq Alkaline Complex, South Greenland. In Layered Intrusions; Charlier, B., Namur, O., Latypov, R., Tegner, C., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 649–691. [Google Scholar] [CrossRef]
- Borst, A.M.; Waight, T.E.; Finch, A.A.; Storey, M.; Le Roux, P.J. Dating Agpaitic Rocks: A Multi-System (U/Pb, Sm/Nd, Rb/Sr and 40Ar/39Ar) Isotopic Study of Layered Nepheline Syenites from the Ilímaussaq Complex, Greenland. Lithos 2019, 324–325, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Pál-Molnár, E.; Kiri, L.; Lukács, R.; Dunkl, I.; Batki, A.; Szemerédi, M.; Almási, E.E.; Sogrik, E.; Harangi, S. Timing of Magmatism of the Ditrău Alkaline Massif, Romania—A Review Based on New U/Pb and K/Ar Data. Central Eur. Geol. 2021, 64, 18–37. [Google Scholar] [CrossRef]
- Schoene, B.; Schaltegger, U.; Brack, P.; Latkoczy, C.; Stracke, A.; Günther, D. Rates of Magma Differentiation and Emplacement in a Ballooning Pluton Recorded by U–Pb TIMS-TEA, Adamello Batholith, Italy. Earth Planet. Sci. Lett. 2012, 355–356, 162–173. [Google Scholar] [CrossRef]
- Wotzlaw, J.-F.; Schaltegger, U.; Frick, D.A.; Dungan, M.A.; Gerdes, A.; Günther, D. Tracking the Evolution of Large-Volume Silicic Magma Reservoirs from Assembly to Supereruption. Geology 2013, 41, 867–870. [Google Scholar] [CrossRef]
- Schaltegger, U.; Davies, J.H.F.L. Petrochronology of Zircon and Baddeleyite in Igneous Rocks: Reconstructing Magmatic Processes at High Temporal Resolution. Rev. Mineral. Geochem. 2017, 83, 297–328. [Google Scholar] [CrossRef]
- Krogh, T.E.; Kamo, S.L.; Robinson, P.; Terry, M.P.; Kwok, K. U-Pb Zircon Geochronology of Eclogites from the Scandian Orogen, Northern Western Gneiss Region, Norway: 14-20 Million Years between Eclogite Crystallization and Return to Amphibolite-Facies Conditions. Can. J. Earth Sci. 2011, 48, 441. [Google Scholar] [CrossRef]
- Štípská, P.; Powell, R.; Hacker, B.R.; Holder, R.; Kylander-Clark, A.R.C. Uncoupled U/Pb and REE Response in Zircon during the Transformation of Eclogite to Mafic and Intermediate Granulite (Blanský Les, Bohemian Massif). J. Metamorph. Geol. 2016, 34, 551–572. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon: The Metamorphic Mineral. Rev. Mineral. Geochem. 2017, 83, 261–295. [Google Scholar] [CrossRef]
- Burda, J.; Klötzli, U.; Woskowicz-Ślęzak, B.; Li, Q.-L.; Liu, Y. Inherited or Not Inherited: Complexities in Dating the Atypical ‘Cold’ Chopok Granite (Nízke Tatry Mountains, Slovakia). Gondwana Res. 2020, 87, 138–161. [Google Scholar] [CrossRef]
- Höck, V.; Ionescu, C.; Balintoni, I.; Koller, F. The Eastern Carpathians “Ophiolites” (Romania): Remnants of a Triassic Ocean. Ophiolites Relat. Geol. Balk. Reg. 2009, 108, 151–171. [Google Scholar] [CrossRef]
- Balintoni, I.; Balica, C.; Ducea, M.N.; Hann, H.-P. Peri-Gondwanan Terranes in the Romanian Carpathians: A Review of Their Spatial Distribution, Origin, Provenance, and Evolution. Geosci. Front. 2014, 5, 395–411. [Google Scholar] [CrossRef] [Green Version]
- Jakab, G. Geneza Masivului Alcalin Ditrău; Mark House Printing: Gheorgheni, Romania, 2018; 166p. [Google Scholar]
- Honour, V.C.; Goodenough, K.M.; Shaw, R.A.; Gabudianu, I.; Hîrtopanu, P. REE Mineralisation within the Ditrău Alkaline Complex, Romania: Interplay of Magmatic and Hydrothermal Processes. Lithos 2018, 314–315, 360–381. [Google Scholar] [CrossRef]
- Anastasius, N.; Constantinescu, E. Tectostructural Position of the Foidic Rocks in the Romanian Carpathians. Rev. Roum. Géologie 1982, 26, 33–45. [Google Scholar]
- Streckeisen, A. Das Nephelinsyenit-Massiv von Ditro (Siebenbürgen). II. Teil. Schweiz. Mineral. Petrogr. Mitteilungen 1954, 34, 336–409. [Google Scholar]
- Streckeisen, A.; Hunziker, J. On the Origin of the Nephelinesyenite Massif of Ditró (Transylvania, Romania). Schweiz. Mineral. Petrogr. Mitteilungen 1974, 54, 9–77. [Google Scholar]
- Morogan, V.; Upton, B.G.J.; Fitton, J.G. The Petrology of the Ditrău Alkaline Complex, Eastern Carpathians. Mineral. Petrol. 2000, 69, 227–265. [Google Scholar] [CrossRef]
- Pál-Molnár, E.; Batki, A.; Almási, E.; Kiss, B.; Upton, B.G.J.; Markl, G.; Odling, N.; Harangi, S. Origin of Mafic and Ultramafic Cumulates from the Ditrău Alkaline Massif, Romania. Lithos 2015, 239, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ódri, Á.; Harris, C.; Le Roux, P. The Role of Crustal Contamination in the Petrogenesis of Nepheline Syenite to Granite Magmas in the Ditrău Complex, Romania: Evidence from O-, Nd-, Sr- and Pb-Isotopes. Contrib. Mineral. Petrol. 2020, 175, 100. [Google Scholar] [CrossRef]
- Streckeisen, A. Das Nephelinsyemt-Massiv von Ditro (Siebenbürgen), I. Teil. Schweiz. Mineral. Petrogr. Mitteilungen 1952, 32, 251–308. [Google Scholar]
- Jakab, G. Geologia Masivului Alcalin de La Ditrău; Tipografia Alutus S.A.: Miercurea Ciuc, Romania, 1998; 57p. [Google Scholar]
- Kovács, G.; Pál-Molnár, E. A Ditrói Alkáli Masszívum Granitoid Kőzeteinek Petrogenezise—Pedogenesis of Granitoid Rocks of the Ditrău Alkaline Massif (Transylvania, Romania). Földt. Közlöny 2005, 135, 121–143. [Google Scholar]
- Shaw, R.; Goodenough, K.; Roberts, N.; Honour, V.; Horstwood, M.; Lenz, C. Timing and Source of Rare Earth Element Mineralisation in the Ditrău Alkaline Complex, Romania. Appl. Earth Sci. 2017, 126, 93. [Google Scholar] [CrossRef]
- Batki, A.; Pál-Molnár, E.; Jankovics, M.É.; Kerr, A.C.; Kiss, B.; Markl, G.; Heincz, A.; Harangi, S. Insights into the Evolution of an Alkaline Magmatic System: An in-Situ Trace Element Study of Clinopyroxenes from the Ditrău Alkaline Massif, Romania. Lithos 2018, 300–301, 51–71. [Google Scholar] [CrossRef] [Green Version]
- Fall, A.; Bodnar, R.J.; Szabó, C.; Pál-Molnár, E. Fluid Evolution in the Nepheline Syenites of the Ditrău Alkaline Massif, Transylvania, Romania. Lithos 2007, 95, 331–345. [Google Scholar] [CrossRef]
- Batki, A.; Pál-Molnár, E.; Dobosi, G.; Skelton, A. Petrogenetic Significance of Ocellar Camptonite Dykes in the Ditrău Alkaline Massif, Romania. Lithos 2014, 200–201, 181–196. [Google Scholar] [CrossRef] [Green Version]
- Pană, D.; Balintoni, I.; Heaman, L.M. Precise U-Pb Zircon Dating of the Syenite Phase from the Ditrău Alkaline Igneous Complex. Stud. Univ. Babes-Bolyai Geol. 2000, 45, 79–89. [Google Scholar]
- Hîrtopanu, P.; Andersen, J.C.; Fairhurst, R. Nb, Ta, REE (Y), Ti, Zr, Th, U and Te Rare Element Minerals within the Ditrău Alkaline Intrusive Complex, Eastern Carpathians, Romania. Mineralogy of Székelyland, Eastern Transylvania, Romania. In Mineralogy of Székelyland, Eastern Transylvania, Romania; Szakáll, S., Kristály, F., Eds.; Csík County Nature and Conservation Society: Miercurea-Ciuc, Romania, 2010; pp. 89–128. [Google Scholar]
- Hîrtopanu, P.; Andersen, J.C.; Fairhurst, R. Thorite, Thorogummite and Xenotime-(Y) Occurrence in Ditrău Alkaline Intrusive Massif, East Carpathians. Proc. Romanian Acad. Sci. Ser. B 2013, 15, 111–132. [Google Scholar]
- Codarcea, A.; Codarcea-Dessila, M.; Ianovici, V. Structure Géologique Du Massif Des Roches Alcalines de Ditrau. Révue Roum. Géologie Géophysique Géographie Géologie 1958, 1, 1–135. [Google Scholar]
- Pál-Molnár, E.; Árva-Sós, E. K-Ar Radiometric Dating on Rocks from the Northern Part of the Ditrău Syenite Massif and Its Petrogenetic Implication. Acta Mineral. Petrogr. Szeged 1995, 36, 101–116. [Google Scholar]
- Kräutner, H.G.; Bindea, G. Timing of the Ditrau Alkaline Intrusive Complex (Eastern Carpathians, Romania). Slovak Geol. Mag. 1998, 4, 213–221. [Google Scholar]
- Ionescu, J.; Tiepac, I.; Udrescu, C. Determination de l’âge Absolut Par La Metod Pb. Inst. Geol St Tehn Ec Ser. B 1966, 44, 55–63. [Google Scholar]
- Bagdasarian, G.P. Despre Vîrsta Absolutà a Unor Roci Eruptive $i Metamorfice Din Masivul Ditráu, Muntii Banatului Din Romania. (A Study on the Absolute Age of Igneus and Metamorphic Rocks of the Ditró and the Bánát Hills.). Stud. Cere Geol. Geofiz. Geogr. Ser. Geol. 1972, 17, 13–21. [Google Scholar]
- Minzatu, S.; Vajdea, E.; Romanescu, O.; Iosipenco, N. K-Ar Ages of the Ditrau Massif; IGG Bucureşti: București, Romania, 1981; 25p. (In Romanian) [Google Scholar]
- Dallmeyer, D.R.; Kräutner, H.G.; Neubauer, F. Middle-Late Triassic 40Ar-39Ar Hornblende Ages for Early Intrusions within the Ditrău Alkaline Massif, Rumania. Geol. Carpathica 1997, 48, 347–352. [Google Scholar]
- Liu, Y.; Li, Q.-L.; Tang, G.-Q.; Li, X.-H.; Yin, Q.-Z. Towards Higher Precision SIMS U-Pb Zircon Geochronology via Dynamic Multi-Collector Analysis. J. Anal. At. Spectrom. 2015, 30, 979–985. [Google Scholar] [CrossRef]
- Burda, J.; Klötzli, U.; Majka, J.; Chew, D.; Li, Q.-L.; Liu, Y.; Gawęda, A.; Wiedenbeck, M. Tracing Proto-Rheic—Qaidam Ocean Vestiges into the Western Tatra Mountains and Implications for the Palaeozoic Palaeogeography of Central Europe. Gondwana Res. 2021, 91, 188–204. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A Free and Open Toolbox for Geochronology. Spec. ISSUE Front. Geosci. Tribute Prof. Xuanxue Mo. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Middlemost, E. Naming Materials in the Magma/Igneous Rock System. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Le Maitre, R.W.; Streckeisen, A.; Zanetin, B.; Le Bas, M.J.; Bonin, B.; Bateman, P. Igneous Rocks: A Classification and Glossary of Terms, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004; 273p. [Google Scholar]
- Gervasoni, F.; Klemme, S.; Rocha-Júnior, E.R.V.; Berndt, J. Zircon Saturation in Silicate Melts: A New and Improved Model for Aluminous and Alkaline Melts. Contrib. Mineral. Petrol. 2016, 171, 21. [Google Scholar] [CrossRef]
- Boehnke, P.; Watson, E.B.; Trail, D.; Harrison, T.M.; Schmitt, A.K. Zircon Saturation Re-Revisited. Chem. Geol. 2013, 351, 324–334. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S. The Composition of the Earth. Chem. Evol. Mantle 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Stacey, J.S.; Kramers, J.D. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Kirkland, C.L.; Smithies, R.H.; Taylor, R.J.M.; Evans, N.; McDonald, B. Zircon Th/U Ratios in Magmatic Environs. Lithos 2015, 212–215, 397–414. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P.D. Atlas of Zircon Textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Kirkland, C.L.; Yakymchuk, C.; Olierook, H.K.H.; Hartnady, M.I.H.; Gardiner, N.J.; Moyen, J.-F.; Hugh Smithies, R.; Szilas, K.; Johnson, T.E. Theoretical versus Empirical Secular Change in Zircon Composition. Earth Planet. Sci. Lett. 2021, 554, 116660. [Google Scholar] [CrossRef]
- Kelsey, D.E.; Clark, C.; Hand, M. Thermobarometric Modelling of Zircon and Monazite Growth in Melt-Bearing Systems: Examples Using Model Metapelitic and Metapsammitic Granulites. J. Metamorph. Geol. 2008, 26, 199–212. [Google Scholar] [CrossRef]
- Klötzli, U.; Burda, J.; Tibuleac, P. Dating the REE Mineralization in the Ditrău Alkaline Massif, Romania. Minerals 2022. submitted. [Google Scholar]
- Pál-Molnár, E.; Batki, A.; Ódri, Á.; Kiss, B.; Almási, E. Geochemical Implications for the Magma Origin of Granitic Rocks from the Ditrău Alkaline Massif, Eastern Carpathians, Romania. Geol. Croat. 2015, 68, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Klötzli, U.S.; Sinigoi, S.; Quick, J.E.; Demarchi, G.; Tassinari, C.C.G.; Sato, K.; Günes, Z. Duration of Igneous Activity in the Sesia Magmatic System and Implications for High Temperature Metamorphism in the Ivrea-Verbano Deep Crust. Lithos Oslo 2014, 206–207, 19–33. [Google Scholar] [CrossRef]
- Sinigoi, S.; Quick, J.E.; Demarchi, G.; Klötzli, U.S. Production of Hybrid Granitic Magma at the Advancing Front of Basaltic Underplating; Inferences from the Sesia Magmatic System (Southwestern Alps, Italy). Lithos Oslo 2016, 252–253, 109–122. [Google Scholar] [CrossRef]
Major elements (weight-%) | |||||||||
SiO2 | TiO2 | Al2O3 | Fe2O3 tot | MnO | MgO | CaO | Na2O | ||
Ditrău 1 | 62.5 | 0.18 | 19.8 | 1.66 | 0.04 | 0.16 | 0.19 | 6.32 | |
Ditrău 2 | 57.7 | 0.25 | 22.2 | 2.05 | 0.05 | 0.22 | 1.12 | 9.22 | |
K2O | P2O5 | LOI | Total | ASI | alkalinity | ||||
Ditrău 1 | 6.37 | 0.03 | 1.44 | 98.7 | 1.12 | 1.561 | |||
Ditrău 2 | 4.43 | 0.04 | 0.94 | 98.2 | 1.01 | 1.627 | |||
Trace elements (µg/g) | |||||||||
Cs | Rb | Ba | Th | U | Ta | Nb | Mo | ||
Ditrău 1 | 0.5 | 262.8 | 306.8 | 15 | 8.5 | 4.1 | 248.3 | 7.4 | |
Ditrău 2 | 0.7 | 149.3 | 1053.7 | 29.3 | 12.5 | 8.2 | 222.4 | 0.6 | |
La | Ce | Sr | Nd | Hf | Zr | Y | |||
Ditrău 1 | 26.7 | 36.4 | 111.7 | 7.5 | 18.6 | 1214.1 | 8.5 | ||
Ditrău 2 | 34.9 | 58.2 | 606 | 17 | 13.1 | 747.3 | 9.6 | ||
REE (µg/g) | |||||||||
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | ||
Ditrău 1 | 28.5 | 36.9 | 2.6 | 7.9 | 1.02 | 0.27 | 0.93 | 0.17 | |
Ditrău 2 | 33.5 | 57.3 | 5.1 | 16.8 | 2.31 | 0.79 | 1.98 | 0.28 | |
Dy | Ho | Er | Tm | Yb | Lu | Total | La/Sm | Gd/Yb | |
Ditrău 1 | 1.18 | 0.28 | 0.96 | 0.2 | 1.67 | 0.28 | 78.2 | 17.5 | 0.5 |
Ditrău 2 | 1.66 | 0.36 | 1.1 | 0.19 | 1.13 | 0.21 | 118 | 9.1 | 1.4 |
Zr saturation temperatures (°C) | |||||||||
Zr | G * | B ** | model Zr | G * | B ** | model Zr | G * | B ** | |
Ditrău 1 | 1214 | 1007 | 971 | 900 | 953 | 927 | 400 | 808 | 821 |
uncertainty *** | 18 | 18 | 18 | 18 | 18 | 18 | |||
Ditrău 2 | 747 | 865 | 846 | 620 | 832 | 824 | 400 | 754 | 774 |
uncertainty *** | 18 | 18 | 18 | 18 | 18 | 18 |
Concentrations | Atomic Ratios | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sample/spot # | [U] | [Th] | Th/U | 206Pb/204Pb | f206% | 238U * | ±1RSD | 207Pb | ± 1RSD |
µg/g | µg/g | measured | 206Pb | % | 206Pb | % | |||
Ditrau1_06@1 | 19 | 223 | 11.8 | 110 | 16.99 | 22.932 | 2.2 | 0.19625 | 10.1 |
Ditrau1_06@2 | 5 | 613 | 129 | 30.1 | 62.04 | 14.517 | 3.8 | 0.47659 | 13.5 |
Ditrau1_07b@1 | 70 | 1371 | 19.7 | 225 | 8.31 | 26.134 | 1.9 | 0.10399 | 10.5 |
Ditrau1_07b@2 | 80 | 1404 | 17.6 | 207 | 9.04 | 26.244 | 1.7 | 0.09839 | 11.7 |
Ditrau1_11@1 | 11 | 212 | 18.9 | 40.6 | 46.11 | 19.104 | 2.1 | 0.34918 | 9.6 |
Ditrau1_11@2 | 13 | 192 | 15.0 | 78.1 | 23.95 | 17.691 | 2.6 | 0.25925 | 15.3 |
Ditrau1_12a@1 | 6 | 578 | 89.2 | 32.9 | 56.88 | 15.147 | 1.8 | 0.43752 | 10.1 |
Ditrau1_12a@2 | 22 | 422 | 19.4 | 86.1 | 21.73 | 20.089 | 2.4 | 0.23444 | 13.4 |
Ditrau1_19@1 | 140 | 2415 | 17.3 | 589 | 3.17 | 27.377 | 1.6 | 0.08040 | 6.1 |
Ditrau1_19@2 | 159 | 3197 | 20.1 | 454 | 4.12 | 27.324 | 1.6 | 0.08206 | 10.4 |
Ditrau1_19@3 | 85 | 724 | 8.5 | 290 | 6.45 | 27.173 | 1.7 | 0.09894 | 7.7 |
Ditrau1_22@1 | 49 | 1045 | 21.4 | 99.9 | 18.71 | 23.648 | 1.9 | 0.14787 | 11.4 |
Ditrau1_25a@1 | 4 | 472 | 116 | 44.1 | 42.44 | 10.292 | 12.1 | 0.54195 | 10.2 |
Ditrau1_25a@2 | 6 | 364 | 64.9 | 36.5 | 51.24 | 11.560 | 2.7 | 0.47464 | 9.6 |
Ditrau1_25b@1 | 15 | 381 | 24.8 | 107 | 17.55 | 20.186 | 2.3 | 0.27389 | 12.0 |
Ditrau2_02a@1 | 375 | 982 | 2.6 | 1136 | 1.65 | 27.017 | 1.5 | 0.06630 | 5.3 |
Ditrau2_03a@1 | 31 | 9507 | 303 | 67.7 | 27.62 | 20.062 | 2.3 | 0.20036 | 10.5 |
Ditrau2_03a@2 | 34 | 11,407 | 333 | 90.5 | 20.67 | 20.021 | 1.6 | 0.21139 | 13.2 |
Ditrau2_04a@1 | 1952 | 7843 | 4.0 | 4711 | 0.40 | 27.500 | 1.5 | 0.05509 | 2.0 |
Ditrau2_08@1 | 323 | 1059 | 3.3 | 86.7 | 21.58 | 17.153 | 19.6 | 0.21628 | 19.2 |
Ditrau2_08@2 | 19 | 915 | 47.5 | 51.0 | 36.68 | 19.634 | 2.7 | 0.31589 | 10.5 |
Ditrau2_08@3 | 275 | 1207 | 4.4 | 401 | 4.67 | 27.131 | 1.6 | 0.07979 | 8.8 |
Ditrau2_22a@1 | 182 | 5120 | 28.1 | 367 | 5.10 | 26.942 | 1.6 | 0.08713 | 7.6 |
Ditrau2_31a@1 | 8 | 884 | 115 | 29.9 | 62.48 | 11.764 | 2.0 | 0.56471 | 8.1 |
Ditrau2_31a@2 | 16 | 1766 | 113 | 46.9 | 39.84 | 12.311 | 2.9 | 0.36034 | 9.8 |
Ditrau2_33@1 | 1383 | 1026 | 0.7 | 2040 | 0.92 | 26.943 | 1.5 | 0.05956 | 3.4 |
Ditrau2_33@2 | 1752 | 1315 | 0.8 | 3054 | 0.61 | 27.032 | 1.5 | 0.05450 | 2.1 |
Ditrau2_38b@1 | 41 | 1206 | 29.1 | 71.9 | 26.00 | 19.447 | 1.5 | 0.28340 | 9.6 |
Ditrau2_38b@2 | 21 | 535 | 25.8 | 38.9 | 48.11 | 15.472 | 2.2 | 0.39291 | 9.4 |
Ditrau2_38b@3 | 19 | 854 | 44.9 | 40.9 | 45.69 | 16.622 | 2.1 | 0.42183 | 8.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klötzli, U.; Burda, J.; Li, Q.-L.; Liu, Y.; Jakab, G.; Ionescu, L.; Tibuleac, P. Petrochronological Evidence for a Three-Stage Magmatic Evolution of the Youngest Nepheline Syenites from the Ditrău Alkaline Massif, Romania. Minerals 2022, 12, 657. https://doi.org/10.3390/min12050657
Klötzli U, Burda J, Li Q-L, Liu Y, Jakab G, Ionescu L, Tibuleac P. Petrochronological Evidence for a Three-Stage Magmatic Evolution of the Youngest Nepheline Syenites from the Ditrău Alkaline Massif, Romania. Minerals. 2022; 12(5):657. https://doi.org/10.3390/min12050657
Chicago/Turabian StyleKlötzli, Urs, Jolanta Burda, Qiu-Li Li, Yu Liu, Gyula Jakab, Lucian Ionescu, and Paul Tibuleac. 2022. "Petrochronological Evidence for a Three-Stage Magmatic Evolution of the Youngest Nepheline Syenites from the Ditrău Alkaline Massif, Romania" Minerals 12, no. 5: 657. https://doi.org/10.3390/min12050657
APA StyleKlötzli, U., Burda, J., Li, Q. -L., Liu, Y., Jakab, G., Ionescu, L., & Tibuleac, P. (2022). Petrochronological Evidence for a Three-Stage Magmatic Evolution of the Youngest Nepheline Syenites from the Ditrău Alkaline Massif, Romania. Minerals, 12(5), 657. https://doi.org/10.3390/min12050657