Geochemical Characteristics of Chlorite in Xiangshan Uranium Ore Field, South China and Its Exploration Implication
Abstract
:1. Introduction
2. Geological Setting
3. Ore Deposit Geology and Hydrothermal Alteration
3.1. Ore Deposit Geology
3.2. Alteration Paragenesis
4. Sampling and Analytical Methods
5. Results
5.1. Major Elements and Classification of Chlorite
5.2. Trace Elements in Chlorite
6. Discussion
6.1. Elemental Substitution Mechanism of Chlorite
6.2. Chlorite Geothermometry
6.3. The Formation Mechanism of Chlorite
6.4. Chemical Comparision of the Four Styles of Chlorite at Xiangshan
6.5. Chlorite Characteristic for Exploration Significance
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deer, W.A.; Howie, R.A.; Iussman, J. Rock-Forming Minerals: Sheet Silicates; Longman: London, UK, 1962; pp. 1–270. [Google Scholar]
- Hayes, J.B. Polytypism of Chlorite in Sedimentary Rocks. Clays Clayminer. 1970, 18, 285–306. [Google Scholar] [CrossRef]
- Wilkinson, J.J.; Chang, Z.; Cooke, D.R.; Baker, M.J.; Wilkinson, C.C.; Inglis, S.; Gemmell, J.B. The chlorite proximitor: A new tool for detecting porphyry ore deposits. J. Geochem. Explor. 2015, 152, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Xiao, B.; Chen, H.; Wang, Y.; Han, J.; Xu, C.; Yang, J. Chlorite and epidote chemistry of the Yandong Cu deposit, NW China: Metallogenic and exploration implications for Paleozoic porphyry Cu systems in the Eastern Tianshan. Ore Geol. Rev. 2018, 100, 168–182. [Google Scholar] [CrossRef]
- Xiao, B.; Chen, H. Elemental behavior during chlorite alteration: New insights from a combined EMPA and LA-ICPMS study in porphyry Cu systems. Chem. Geol. 2020, 543, 119604. [Google Scholar] [CrossRef]
- Cao, M.J.; Evans, N.J.; Hollings, P.; Cooke, D.R.; McInnes, B.I.A.; Qin, K. Apatite Texture, Composition, and O-Sr-Nd Isotope Signatures Record Magmatic and Hydrothermal Fluid Characteristics at the Black Mountain Porphyry Deposit, Philippines. Econ. Geol. 2021, 116, 1–20. [Google Scholar]
- Cao, M.J.; Hollings, P.; Evans, N.J.; Cooke, D.R.; McInnes, B.I.A.; Zhao, K.D.; Qin, K.Z.; Li, D.F.; Sweet, G. In situ elemental and Sr isotopic characteristics of magmatic to hydrothermal minerals from the Black Mountain porphyry deposit, Baguio District, Philippines. Econ. Geol. 2020, 115, 927–944. [Google Scholar] [CrossRef]
- Cao, M.J.; Evans, N.J.; Qin, K.Z.; Danišík, M.; Li, G.M.; McInnes, B.I.A. Open Apatite Sr Isotopic System in Low-Temperature Hydrous Regimes. J. Geophys. Res. Solid Earth 2019, 124, 11192–11203. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, B.; Yan, X.; Li, S. Characteristics of hydrothermal chlorite from the Niujuan Ag-Au-Pb-Zn deposit in the north margin of NCC and implications for exploration tools for ore deposits. Ore Geol. Rev. 2018, 101, 398–412. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Hetherington, C.; Huang, Y.Q.; Yang, T.; Deng, J. Tourmaline composition and boron isotope signature as a tracer of magmatic-hydrothermal processes. Am. Mineral. 2021, 106, 1033–1044. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Deng, J.; McIntire, D.; Gou, Z.Y.; Geng, J.Z.; Chang, Z.S.; Zhu, R.; Li, K.N.; Goldfarb, R.J. The giant Zaozigou orogenic Au-Sb deposit in West Qinling, China: Magmatic or metamorphic origin? Miner. Depos. 2020, 55, 345–362. [Google Scholar] [CrossRef]
- Qiu, K.F.; Goldfarb, R.J.; Deng, J.; Yu, H.C.; Gou, Z.Y.; Ding, Z.J.; Wang, Z.K.; Li, D.P. Gold deposits of the Jiaodong Peninsula, eastern China. SEG Spec. Publ. 2020, 23, 753–773. [Google Scholar]
- Cao, M.J.; Qin, K.Z.; Evans, N.J.; Li, G.M.; Ling, X.X.; McInnes, B.I.A.; Zhao, J.X. Titanite in situ SIMS U–Pb geochronology, elemental and Nd isotopic signatures record mineralization and fluid characteristics at the Pusangguo skarn deposit, Tibet. Miner. Depos. 2021, 56, 907–916. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, B.; Long, X.; Chu, G.; Cheng, J.; Zhang, Y.; Xu, G. Chlorite as an exploration indicator for concealed skarn mineralization: Perspective from the Tonglushan Cu–Au–Fe skarn deposit, Eastern China. Ore Geol. Rev. 2020, 126, 103778. [Google Scholar] [CrossRef]
- Yu, C.D.; Wang, K.X.; Liu, X.D.; Cuney, M.; Pan, J.Y.; Wang, G.; Zhang, L.; Zhang, J. Uranium mineralogical and chemical features of the Na-metasomatic type uranium deposit in the Longshoushan metallogenic belt, Northwestern China. Minerals 2020, 10, 335. [Google Scholar] [CrossRef] [Green Version]
- René, M. Alteration of granitoids and uranium mineralization in the Blatná suite of the central Bohemian plutonic complex, Czech Republic. Minerals 2020, 10, 821. [Google Scholar] [CrossRef]
- Chen, X.; Wen, C.; Meng, D.; Li, B.; Jiang, B.; Qin, J. Implications of major and trace element migration in altered granites for hydrothermal alteration and granite-related uranium mineralization in the Sanjiu ore field, South China. Minerals 2022, 12, 144. [Google Scholar] [CrossRef]
- Wang, Y.J.; Lin, J.R.; Hu, Z.H.; Wang, F.; Pang, Y.Q.; Gao, F. Characteristics of chlorite from Yunji deposit in Xiangshan uranium orefield and their geological implication. Uranium Geol. 2018, 34, 153–158, (In Chinese with English Abstract). [Google Scholar]
- Wu, D.; Pan, J.; Xia, F.; Huang, G.; Lai, J. The mineral chemistry of chlorites and its relationship with uranium mineralization from Huangsha uranium mining area in the Middle Nanling Range, SE China. Minerals 2019, 9, 199. [Google Scholar] [CrossRef] [Green Version]
- Lan, Q.; Fu, S.; Lin, J. Characteristics of mineralization-forming fluid and metallogenic mechanism for the Mianhuakeng uranium deposit in South China: Constraints from in situ geochemical signatures and sulfur isotopes of syn-mineralization pyrite and pitchblende. Minerals 2022, 12, 227. [Google Scholar] [CrossRef]
- Wu, M.Q.; Samson, I.M.; Qiu, K.F.; Zhang, D.H. Concentration mechanisms of REE-Nb-Zr-Be mineralization in the Baerzhe deposit, NE China: Insights from textural and chemical features of amphibole and rare-metal minerals. Econ. Geol. 2021, 116, 651–679. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Wu, M.Q.; Geng, J.Z.; Ge, X.K.; Gou, Z.Y.; Taylor, R.D. Discrete Zr and REE mineralization of the Baerzhe rare-metal deposit, China. Am. Mineral. 2019, 104, 1487–1502. [Google Scholar] [CrossRef]
- Huang, Y.Q.; Wu, M.Q.; Germain, B.; Yu, H.C.; Qiao, B.X.; Zhao, Z.G.; Qiu, K.F. Geodynamic setting and ore formation of the Younusisayi thorium deposit in the Altyn orogenic belt, NW China. Ore Geol. Rev. 2021, 140, 104552. [Google Scholar] [CrossRef]
- Inoue, A.; Kurokawa, K.; Hatta, T. Application of chlorite geothermometry to hydrothermal alteration in Toyoha geothermal system, Southwestern Hokkaido, Japan. Resour. Geol. 2010, 60, 52–70. [Google Scholar] [CrossRef]
- Cathelineau, M.; Nieva, D. A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system. Contri. Miner. Petrol. 1985, 91, 235–244. [Google Scholar] [CrossRef]
- Xie, X.; Byerly, G.R.; Ferrell, R.E., Jr. IIb trioctahedral chlorite from the Barberton greenstone belt: Crystal structure and rock composition constraints with implications to geothermometry. Contrib. Mineral. Petrol. 1997, 126, 275–291. [Google Scholar] [CrossRef]
- Vidal, O.; Parra, T. Exhumation paths of high-pressure metapelites obtained from local equilibria for chlorite–phengite assemblages. Geol. J. 2000, 35, 139–161. [Google Scholar] [CrossRef]
- Vidal, O.; Parra, T.; Trotet, F. A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100 to 600 C, 1 to 25 kb range. Am. J. Sci. 2001, 301, 557–592. [Google Scholar] [CrossRef] [Green Version]
- Bourdelle, F.; Parra, T.; Chopin, C.A. New Chlorite Geothermometer for Diagenetic to Low-Grade Metamorphic Conditions. Contrib. Mineral. Petrol. 2013, 165, 723–735. [Google Scholar] [CrossRef]
- Cathelineau, M. Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner. 1988, 23, 471–485. [Google Scholar] [CrossRef]
- Yavuz, F.; Kumral, M.; Karakaya, N.; Karakaya, M.C.; Yıldırım, D.K. A Windows program for chlorite calculation and classification. Com. Geosci. 2015, 81, 101–113. [Google Scholar] [CrossRef]
- Walshe, J.L. A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems. Econ. Geol. 1986, 81, 681–703. [Google Scholar] [CrossRef]
- Halter, W.E.; Webster, J.D. The magmatic to hydrothermal transition and its bearing on ore-forming systems. Chem. Geol. 2004, 210, 1–6. [Google Scholar] [CrossRef]
- Lanari, P.; Wagner, T.; Vidal, O. A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: Applications to P–T sections and geothermometry. Contrib. Mineral. Petrol. 2014, 167, 1–19. [Google Scholar] [CrossRef] [Green Version]
- OECD/NEA-IAEA. Uranium 2019, Resources, Production and Demand (The Red Book); OECD NEA-IAEA Report: Paris, France, 2020. [Google Scholar]
- Bonnetti, C.; Liu, X.; Cuney, M.; Mercadier, J.; Riegler, T.; Yu, C. Evolution of the uranium mineralisation in the Zoujiashan deposit, Xiangshan ore field: Implications for the genesis of volcanic-related hydrothermal U deposits in South China. Ore Geol. Rev. 2020, 122, 103514. [Google Scholar] [CrossRef]
- Lin, J.R.; Hu, Z.H.; Wang, Y.J.; Zhang, S.; Tao, Y. Ore-forming age and thermal history of uranium-polymetallic mineralization at Xiangshan uranium orefield. Acta Petrol. Sin. 2019, 35, 193–198, (In Chinese with English Abstract). [Google Scholar]
- Hu, B.; Qiu, L.; Li, M.; Sun, Z.; Lv, G.; Zhou, Y.; Bai, L. The tectono-magmatic evolution and metallogenic regularity of Xiangshan uranium ore-field in Jiangxi Province. Earth Sci. Front. 2015, 22, 29–36, (In Chinese with English Abstract). [Google Scholar]
- Yu, X.Q.; Wu, G.G.; Shu, L.S.; Yan, T.Z.; Zhang, D.; Di, Y.J. The Cretaceous tectonism of the Gan-Hang Tectonic Belt, southeastern China. Earth Sci. Front. 2006, 13, 31–43, (In Chinese with English Abstract). [Google Scholar]
- Dahlkamp, J.F. Uranium Deposits of the World; Springer: Berlin/Heidelberg, Germany, 2009; pp. 86–157. [Google Scholar]
- Mao, J.W.; Pirajno, F.; Cook, N. Mesozoic metallogeny in East China and corresponding geodynamic settings-An introduction to the special issue. Ore Geol. Rev. 2011, 43, 1–7. [Google Scholar] [CrossRef]
- Gilder, S.A.; Keller, G.R.; Luo, M.; Goodell, P.C. Eastern Asia and the Western Pacific timing and spatial distribution of rifting in China. Tectonophysics 1991, 197, 225–243. [Google Scholar] [CrossRef]
- Zhou, X.M.; Sun, T.; Shen, W.Z.; Shu, L.S.; Niu, Y.L. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes 2006, 29, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Qin, K.Z.; Zhai, M.G.; Li, G.M.; Zhao, J.X.; Zeng, Q.D.; Gao, J.; Xiao, W.J.; Li, J.L.; Sun, S. Links of collage orogenesis of multiblocks and crust evolution to characteristic metallogeneses in China. Acta Petrol. Sin. 2017, 33, 305–325, (In Chinese with English Abstract). [Google Scholar]
- Fan, H.H.; Ling, H.F.; Wang, D.Z.; Liu, C.S.; Shen, W.Z.; Jiang, Y.H. Study on metallogenetic mechanism of Xiangshan uranium ore-field. Uranium Geol. 2003, 19, 208–213, (In Chinese with English Abstract). [Google Scholar]
- Jiang, Y.H.; Ling, H.F.; Jiang, S.Y.; Shen, W.Z.; Fan, H.H.; Ni, P. Petrogenesis of a Late Jurassic peraluminous volcanic complex and its high-Mg, potassic, quenched enclaves at Xiangshan, Southeast China. J. Petrol. 2005, 46, 1121–1154. [Google Scholar] [CrossRef]
- Wang, Y.J.; Nie, J.T.; Lin, J.R.; Wang, H.Z. Geochronology and geochemistry of the felsic-intermediate dikes from Xiangshan uranium ore field, South China: Implications for petrogenesis, tectonic setting and uranium mineralization. Mineral. Petrol. 2022. [CrossRef]
- Wang, Y.J.; Lin, J.R.; Hu, Z.H.; Dong, Q.; Liu, R.P.; Pang, Y.Q.; Gao, F.; Tao, Y. Zircon U-Pb geochronology, geochemistry and Hf isotopic compositions of dacitic porphyry in Zoujiashan deposit of Xiangshan uranium orefield and its geological implication. Earth Sci. 2021, 46, 31–42, (In Chinese with English Abstract). [Google Scholar]
- Yang, S.Y.; Jiang, S.Y.; Jiang, Y.H.; Zhao, K.D. Geochemical constraints on zircon U-Pb dating and Sr-Nd-Hf isotopic the age and petrogenesis of an early Cretaceous volcanic-intrusive complex at Xiangshan, Southeast China. Mineral. Petrol. 2011, 101, 21–48. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.L.; Han, F.S.; Yang, N.; Wang, Y. Topographic erosive diversities of the Xiangshan uranium orefield and its implications for preservation: Evidences from fission track dating of apatite. Chin. J. Geophys. 2013, 55, 2371–2384, (In Chinese with English Abstract). [Google Scholar]
- Jiang, Y.H.; Ling, H.F.; Jiang, S.Y.; Shen, W.Z.; Fan, H.H.; Ni, P. Trace element and Sr-Nd isotope geochemistry of fluorite from the Xiangshan uranium deposit, southeast China. Econ. Geol. 2006, 101, 1613–1622. [Google Scholar] [CrossRef]
- CNG (China Nuclear Geology); BRIUG (Beijing Research Institute of Uranium Geology). The Research and Evaluation of Volcanic–Related Uranium Deposit in China; China National Nuclear Corporation: Beijing, China, 2010; pp. 814–935. (In Chinese) [Google Scholar]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Hey, M.H. A new review of the chlorites. Mineral. Mag. J. Mineral. Soc. 1954, 30, 277–292. [Google Scholar] [CrossRef]
- Zane, A.; Weiss, Z. A procedure for classifying rock-forming chlorites based on microprobe data. Rend. Lincei 1998, 9, 51–56. [Google Scholar] [CrossRef]
- Wiewióra, A.; Weiss, Z. Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group. Clay Miner. 1990, 25, 83–92. [Google Scholar] [CrossRef]
- Kranidiotis, P.; MacLean, W.H. Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ. Geol. 1987, 82, 1898–1911. [Google Scholar] [CrossRef]
- Jowett, C. Fitting iron and magnesium into the hydrothermal chlorite geothermometer. SSRN 2021, 3863523. [Google Scholar] [CrossRef]
- Stefano, B. Applying X ray geothermometer diffraction to a chlorite. Clays Clay Miner. 1999, 47, 54–63. [Google Scholar]
- Raused-Colom, J.A.; Wiewiora, A.; Matesanz, E. Relationship between composition and d001 for chlorite. Am. Mineral. 1991, 76, 1373–1379. [Google Scholar]
- Niet, F. Chemical composition of metapehtic chlorites: X-ray diffraction and optical property approach. Eur. J. Mineral. 1997, 9, 829–841. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.J.; Qiu, L.F.; Hu, B.Q.; Gao, H.D.; Wang, Y.X. Characteristics of fluid inclusions of the ultra-rich ore from Zoujiashan uranium deposit at Xiangshan orefield of Jiangxi, China: Insights from paragenesis apatite-purple black fine crystal fluorite and other minerals. J. Earch Sci. Environ. 2020, 42, 526–539, (In Chinese with English Abstract). [Google Scholar]
- Simmons, S.F.; Browne, P.R. Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: Implications for understanding low-sulfidation epithermal environments. Econ. Geol. 2000, 95, 971–999. [Google Scholar] [CrossRef] [Green Version]
- Beaufort, D.; Rigault, C.; Billon, S.; Billault, V.; Inoue, A.; Inoué, S.; Ferrage, E. Chlorite and chloritization processes through mixed-layer mineral series in low-temperature geological systems–a review. Clay Miner. 2015, 50, 497–523. [Google Scholar] [CrossRef]
- Pant, S.; Singh, S.; Sahoo, P.R.; Kumar, A.; Saravanan, B.; Venkatesh, A.S.; Kumar, P. Mineral chemistry and geothermometry of chlorites in relation to physico-chemical conditions of uranium mineralization in the central part of the Singhbhum Shear Zone, eastern India. Ore Geol. Rev. 2019, 112, 102997. [Google Scholar] [CrossRef]
- Kameda, J.; Ujiie, K.; Yamaguchi, A.; Kimura, G. Smectite to chlorite conversion by frictional heating along a subduction thrust. Earth Planet. Sci. Lett. 2011, 305, 161–217. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Fan, H.; Pang, Y.; Xiao, W. Geochemical Characteristics of Chlorite in Xiangshan Uranium Ore Field, South China and Its Exploration Implication. Minerals 2022, 12, 693. https://doi.org/10.3390/min12060693
Wang Y, Fan H, Pang Y, Xiao W. Geochemical Characteristics of Chlorite in Xiangshan Uranium Ore Field, South China and Its Exploration Implication. Minerals. 2022; 12(6):693. https://doi.org/10.3390/min12060693
Chicago/Turabian StyleWang, Yongjian, Honghai Fan, Yaqing Pang, and Wei Xiao. 2022. "Geochemical Characteristics of Chlorite in Xiangshan Uranium Ore Field, South China and Its Exploration Implication" Minerals 12, no. 6: 693. https://doi.org/10.3390/min12060693
APA StyleWang, Y., Fan, H., Pang, Y., & Xiao, W. (2022). Geochemical Characteristics of Chlorite in Xiangshan Uranium Ore Field, South China and Its Exploration Implication. Minerals, 12(6), 693. https://doi.org/10.3390/min12060693