Assessment of Machine Learning Models for the Prediction of Rate-Dependent Compressive Strength of Rocks
Abstract
:1. Introduction
2. Method and Models
2.1. Extreme Learning Machine
2.2. Random Forest
2.3. Support Vector Regression
2.4. Support Vector Regression with Particle Swarm Optimization
3. Dataset Description
4. Model Performance Comparison
5. Relative Importance of Input Parameters
6. Conclusions
- (1)
- All four machine learning models presented in this paper can effectively achieve a fast and rough estimation of the rate-independent compressive strength of rocks for a given combination of input parameters. Compared with ELM, the average relative prediction errors of the random forest, SVR, and PSO-SVR models were all within 10%, while the PSO-SVR model reached a minimum average relative error of 7.944% for the test set.
- (2)
- The PSO-SVR model could capture the complex nonlinear mapping between multiple inputs and outputs more accurately than the other two models in terms of the evaluation metrics, and its prediction performance is superior to the other three methods.
- (3)
- Among the seven input parameters mentioned, the static compressive strength and the strain rate are the two most important variables for the rate-independent compressive strength of rocks. The three parameters, static compressive strength, strain rate, and bulk density, have significant positive effects on the rate-independent compressive strength of rocks. Their increase leads to an increase in compressive strength.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zaid, M.; Sadique, M.R.; Samanta, M. Effect of unconfined compressive strength of rock on dynamic response of shallow unlined tunnel. SN Appl. Sci. 2020, 2, 2131. [Google Scholar] [CrossRef]
- Zaid, M.; Sadique, M.R. A Simple Approximate Simulation Using Coupled Eulerian–Lagrangian (CEL) Simulation in Investigating Effects of Internal Blast in Rock Tunnel. Indian Geotech. J. 2021, 51, 1038–1055. [Google Scholar] [CrossRef]
- Zaid, M.; Shah, I.A. Numerical Analysis of Himalayan Rock Tunnels under Static and Blast Loading. Geotech. Geol. Eng. 2021, 39, 5063–5083. [Google Scholar] [CrossRef]
- Zaid, M.; Sadique, M.R.; Alam, M.M. Blast analysis of tunnels in Manhattan-Schist and Quartz-Schist using coupled-Eulerian–Lagrangian method. Innov. Infrastruct. Solut. 2021, 6, 69. [Google Scholar] [CrossRef]
- Wei, M.; Meng, W.; Dai, F.; Wu, W. Application of machine learning in predicting the rate-dependent compressive strength of rocks. J. Rock Mech. Geotech. Eng. 2022; in press. [Google Scholar] [CrossRef]
- Yang, L.; Wang, G.; Zhao, G.-F.; Shen, L. A rate- and pressure-dependent damage-plasticity constitutive model for rock. Int. J. Rock Mech. Min. Sci. 2020, 133, 104394. [Google Scholar] [CrossRef]
- Xie, S.J.; Han, Z.Y.; Chen, Y.F.; Wang, Y.X.; Zhao, Y.L.; Lin, H. Constitutive modeling of rock materials considering the void compaction characteristics. Arch. Civ. Mech. Eng. 2022, 22, 60. [Google Scholar] [CrossRef]
- Xie, S.J.; Lin, H.; Chen, Y.F.; Yong, R.; Xiong, W.; Du, S.G. A damage constitutive model for shear behavior of joints based on determination of the yield point. Int. J. Rock Mech. Min. Sci. 2020, 128, 104269. [Google Scholar] [CrossRef]
- Bieniawski, Z.T.; Bernede, M.J. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determining deformability of rock materials in uniaxial compression. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1979, 16, 138–140. [Google Scholar] [CrossRef]
- Han, Z.; Li, D.; Li, X. Experimental study on the dynamic behavior of sandstone with coplanar elliptical flaws from macro, meso, and micro viewpoints. Theor. Appl. Fract. Mec. 2022, 120, 103400. [Google Scholar] [CrossRef]
- Zhong, K.; Zhao, W.; Qin, C.; Gao, H.; Chen, W. Mechanical Properties of Roof Rocks under Superimposed Static and Dynamic Loads with Medium Strain Rates in Coal Mines. Appl. Sci. 2021, 11, 8973. [Google Scholar] [CrossRef]
- Duan, K.; Ji, Y.; Wu, W.; Kwok, C.Y. Unloading-induced failure of brittle rock and implications for excavation-induced strain burst. Tunn. Undergr. Space Technol. 2019, 84, 495–506. [Google Scholar] [CrossRef]
- Xie, S.; Han, Z.; Hu, H.; Lin, H. Application of a novel constitutive model to evaluate the shear deformation of discontinuity. Eng. Geol. 2022, 304, 106693. [Google Scholar] [CrossRef]
- Whittington, W.R.; Oppedal, A.L.; Francis, D.K.; Horstemeyer, M.F. A novel intermediate strain rate testing device: The serpentine transmitted bar. Int. J. Impact Eng. 2015, 81, 1–7. [Google Scholar] [CrossRef]
- Du, H.-b.; Dai, F.; Xu, Y.; Liu, Y.; Xu, H.-n. Numerical investigation on the dynamic strength and failure behavior of rocks under hydrostatic confinement in SHPB testing. Int. J. Rock Mech. Min. Sci. 2018, 108, 43–57. [Google Scholar] [CrossRef]
- Huang, X.; Qi, S.; Xia, K.; Shi, X. Particle Crushing of a Filled Fracture during Compression and Its Effect on Stress Wave Propagation. J. Geophys. Res. Solid Earth 2018, 123, 5559–5587. [Google Scholar] [CrossRef]
- Duan, K.; Li, Y.; Wang, L.; Zhao, G.; Wu, W. Dynamic responses and failure modes of stratified sedimentary rocks. Int. J. Rock Mech. Min. Sci. 2019, 122, 104060. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, Y. Hybrid machine learning model and Shapley additive explanations for compressive strength of sustainable concrete. Constr. Build. Mater. 2022, 330, 127298. [Google Scholar] [CrossRef]
- Ahmad, A.; Ahmad, W.; Aslam, F.; Joyklad, P. Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques. Case Stud. Constr. Mater. 2022, 16, e00840. [Google Scholar] [CrossRef]
- Güçlüer, K.; Özbeyaz, A.; Göymen, S.; Günaydın, O. A comparative investigation using machine learning methods for concrete compressive strength estimation. Mater. Today Commun. 2021, 27, 102278. [Google Scholar] [CrossRef]
- Tang, F.; Wu, Y.; Zhou, Y. Hybridizing Grid Search and Support Vector Regression to Predict the Compressive Strength of Fly Ash Concrete. Adv. Civ. Eng. 2022, 2022, 3601914. [Google Scholar] [CrossRef]
- Ray, S.; Haque, M.; Rahman, M.M.; Sakib, M.N.; Al Rakib, K. Experimental investigation and SVM-based prediction of compressive and splitting tensile strength of ceramic waste aggregate concrete. J. King Saud Univ.-Eng. Sci. 2021; in press. [Google Scholar] [CrossRef]
- Ahmad, W.; Ahmad, A.; Ostrowski, K.A.; Aslam, F.; Joyklad, P.; Zajdel, P. Application of Advanced Machine Learning Approaches to Predict the Compressive Strength of Concrete Containing Supplementary Cementitious Materials. Materials 2021, 14, 5762. [Google Scholar] [CrossRef] [PubMed]
- Sonebi, M.; Cevik, A.; Grünewald, S.; Walraven, J. Modelling the fresh properties of self-compacting concrete using support vector machine approach. Constr. Build. Mater. 2016, 106, 55–64. [Google Scholar] [CrossRef]
- Saha, P.; Debnath, P.; Thomas, P. Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach. Neural Comput. Appl. 2020, 32, 7995–8010. [Google Scholar] [CrossRef]
- Meng, F.; Jing, S.; Sun, X.; Wang, C.; Liang, Y.; Pang, D. A New Approach of Disaster Forecasting Based on Least Square Optimized Neural Network. Geofluids 2020, 2020, 8882241. [Google Scholar] [CrossRef]
- Acar, M.C.; Kaya, B. Models to estimate the elastic modulus of weak rocks based on least square support vector machine. Arab. J. Geosci. 2020, 13, 590. [Google Scholar] [CrossRef]
- Ceryan, N.; Okkan, U.; Kesimal, A. Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks. Environ. Earth Sci. 2013, 68, 807–819. [Google Scholar] [CrossRef]
- Ceryan, N.; Okkan, U.; Samui, P.; Ceryan, S. Modeling of tensile strength of rocks materials based on support vector machines approaches. Int. J. Numer. Anal. Methods Geomech. 2013, 37, 2655–2670. [Google Scholar] [CrossRef]
- Fattahi, H. Application of improved support vector regression model for prediction of deformation modulus of a rock mass. Eng. Comput. 2016, 32, 567–580. [Google Scholar] [CrossRef]
- Mohamad, E.T.; Armaghani, D.J.; Momeni, E.; Abad, S.V.A.N.K. Prediction of the unconfined compressive strength of soft rocks: A PSO-based ANN approach. Bull. Eng. Geol. Environ. 2015, 74, 745–757. [Google Scholar] [CrossRef]
- Rezaei, M.; Majdi, A.; Monjezi, M. An intelligent approach to predict unconfined compressive strength of rock surrounding access tunnels in longwall coal mining. Neural Comput. Appl. 2014, 24, 233–241. [Google Scholar] [CrossRef]
- Yagiz, S. Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer. Bull. Eng. Geol. Environ. 2009, 68, 55–63. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Mohamad, E.T.; Momeni, E.; Monjezi, M.; Narayanasamy, M.S. Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arab. J. Geosci. 2015, 9, 48. [Google Scholar] [CrossRef]
- Ghasemi, E.; Kalhori, H.; Bagherpour, R.; Yagiz, S. Model tree approach for predicting uniaxial compressive strength and Young’s modulus of carbonate rocks. Bull. Eng. Geol. Environ. 2018, 77, 331–343. [Google Scholar] [CrossRef]
- Li, W.; Tan, Z. Research on Rock Strength Prediction Based on Least Squares Support Vector Machine. Geotech. Geol. Eng. 2017, 35, 385–393. [Google Scholar] [CrossRef]
- Yılmaz, I.; Yuksek, A.G. An Example of Artificial Neural Network (ANN) Application for Indirect Estimation of Rock Parameters. Rock Mech. Rock Eng. 2008, 41, 781–795. [Google Scholar] [CrossRef]
- Momeni, E.; Armaghani, D.J.; Hajihassani, M.; Amin, M.F.M. Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 2015, 60, 50–63. [Google Scholar] [CrossRef]
- Gupta, D.; Natarajan, N. Prediction of uniaxial compressive strength of rock samples using density weighted least squares twin support vector regression. Neural Comput. Appl. 2021, 33, 15843–15850. [Google Scholar] [CrossRef]
- Gamal, H.; Alsaihati, A.; Elkatatny, S.; Haidary, S.; Abdulraheem, A. Rock Strength Prediction in Real-Time While Drilling Employing Random Forest and Functional Network Techniques. J. Energy Resour. Technol. 2021, 143, 093004. [Google Scholar] [CrossRef]
- Xie, S.J.; Lin, H.; Chen, Y.F.; Wang, Y.X. A new nonlinear empirical strength criterion for rocks under conventional triaxial compression. J. Cent. South Univ. 2021, 28, 1448–1458. [Google Scholar] [CrossRef]
- Farhadian, A.; Ghasemi, E.; Hoseinie, S.H.; Bagherpour, R. Prediction of Rock Abrasivity Index (RAI) and Uniaxial Compressive Strength (UCS) of Granite Building Stones Using Nondestructive Tests. Geotech. Geol. Eng. 2022, 40, 3343–3356. [Google Scholar] [CrossRef]
- Amirkiyaei, V.; Ghasemi, E.; Faramarzi, L. Estimating uniaxial compressive strength of carbonate building stones based on some intact stone properties after deterioration by freeze–thaw. Environ. Earth Sci. 2021, 80, 352. [Google Scholar] [CrossRef]
- Liang, N.; Huang, G.; Saratchandran, P.; Sundararajan, N. A Fast and Accurate Online Sequential Learning Algorithm for Feedforward Networks. IEEE Trans. Neural Netw. 2006, 17, 1411–1423. [Google Scholar] [CrossRef]
- Guang-Bin, H. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 2003, 14, 274–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, S.; Zhao, H.; Zhang, Y.; Xu, X.; Nie, R. Extreme learning machine: Algorithm, theory and applications. Artif. Intell. Rev. 2015, 44, 103–115. [Google Scholar] [CrossRef]
- Tran, V.Q. Machine learning approach for investigating chloride diffusion coefficient of concrete containing supplementary cementitious materials. Constr. Build. Mater. 2022, 328, 127103. [Google Scholar] [CrossRef]
- Wan, D. Research on Extreme Learning of Neural Networks. Chin. J. Comput. 2010, 33, 279–287. [Google Scholar]
- Han, Q.; Gui, C.; Xu, J.; Lacidogna, G. A generalized method to predict the compressive strength of high-performance concrete by improved random forest algorithm. Constr. Build. Mater. 2019, 226, 734–742. [Google Scholar] [CrossRef]
- Li, H.; Lin, J.; Lei, X.; Wei, T. Compressive strength prediction of basalt fiber reinforced concrete via random forest algorithm. Mater. Today Commun. 2022, 30, 103117. [Google Scholar] [CrossRef]
- He, B.; Lai, S.H.; Mohammed, A.S.; Sabri, M.M.; Ulrikh, D.V. Estimation of Blast-Induced Peak Particle Velocity through the Improved Weighted Random Forest Technique. Appl. Sci. 2022, 12, 5019. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S. Damage degree evaluation of masonry using optimized SVM-based acoustic emission monitoring and rate process theory. Measurement 2022, 190, 110729. [Google Scholar] [CrossRef]
- Li, N.; Nguyen, H.; Rostami, J.; Zhang, W.; Bui, X.-N.; Pradhan, B. Predicting rock displacement in underground mines using improved machine learning-based models. Measurement 2022, 188, 110552. [Google Scholar] [CrossRef]
- Bardhan, A.; Kardani, N.; GuhaRay, A.; Burman, A.; Samui, P.; Zhang, Y. Hybrid ensemble soft computing approach for predicting penetration rate of tunnel boring machine in a rock environment. J. Rock Mech. Geotech. Eng. 2021, 13, 1398–1412. [Google Scholar] [CrossRef]
- Liu, B.; Wang, R.; Guan, Z.; Li, J.; Xu, Z.; Guo, X.; Wang, Y. Improved support vector regression models for predicting rock mass parameters using tunnel boring machine driving data. Tunn. Undergr. Space Technol. 2019, 91, 102958. [Google Scholar] [CrossRef]
- Jueyendah, S.; Lezgy-Nazargah, M.; Eskandari-Naddaf, H.; Emamian, S.A. Predicting the mechanical properties of cement mortar using the support vector machine approach. Constr. Build. Mater. 2021, 291, 123396. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, Y. Prediction and feature analysis of punching shear strength of two-way reinforced concrete slabs using optimized machine learning algorithm and Shapley additive explanations. Mech. Adv. Mater. Struct. 2022, 1–11. [Google Scholar] [CrossRef]
- Song, H.; Ahmad, A.; Farooq, F.; Ostrowski, K.A.; Maślak, M.; Czarnecki, S.; Aslam, F. Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms. Constr. Build. Mater. 2021, 308, 125021. [Google Scholar] [CrossRef]
- Chen, H.; Li, X.; Wu, Y.; Zuo, L.; Lu, M.; Zhou, Y. Compressive Strength Prediction of High-Strength Concrete Using Long Short-Term Memory and Machine Learning Algorithms. Buildings 2022, 12, 302. [Google Scholar] [CrossRef]
- Farooq, F.; Amin, M.N.; Khan, K.; Sadiq, M.R.; Javed, M.F.; Aslam, F.; Alyousef, R. A Comparative Study of Random Forest and Genetic Engineering Programming for the Prediction of Compressive Strength of High Strength Concrete (HSC). Appl. Sci. 2020, 10, 7330. [Google Scholar] [CrossRef]
- Nafees, A.; Javed, M.F.; Khan, S.; Nazir, K.; Farooq, F.; Aslam, F.; Musarat, M.A.; Vatin, N.I. Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP. Materials 2021, 14, 7531. [Google Scholar] [CrossRef] [PubMed]
Parameter | Length | Diameter | Grain Size | Bulk Density | P-Wave Velocity | Strain Rate | SCS | CS |
---|---|---|---|---|---|---|---|---|
Unit | mm | mm | mm | kg/m3 | m/s | s−1 | MPa | MPa |
Max | 70 | 70 | 3.5 | 2850 | 6651 | 223 | 212 | 352.71 |
Min | 10 | 2.5 | 0.03 | 2278 | 2437 | 0.000005 | 28.6 | 30.03 |
Mean | 40.43 | 41.95 | 0.75 | 2479.68 | 3542.99 | 59.48 | 87.55 | 128.14 |
Median | 49.77 | 49.50 | 0.23 | 2384.00 | 3031.00 | 56.00 | 71.91 | 101.42 |
Standard deviation | 15.81 | 18.15 | 1.07 | 186.21 | 1231.89 | 46.85 | 56.39 | 80.23 |
Coefficient of variation | 0.39 | 0.43 | 1.43 | 0.08 | 0.35 | 0.79 | 0.64 | 0.63 |
Kurtosis | −0.74 | −0.55 | 1.76 | −1.04 | 0.12 | 1.16 | −0.81 | −0.32 |
Skewness | −0.76 | −0.62 | 1.75 | 0.59 | 1.33 | 0.90 | 0.75 | 0.91 |
Pearson correlation coefficient | −0.22 | 0.13 | 0.54 | 0.71 | 0.78 | 0.16 | 0.89 | 1 |
Evaluation Metrics | Definition |
---|---|
Correlation coefficient | |
Mean absolute error | |
Mean absolute percentage error |
Model | MAE | MAPE/% | R2 |
---|---|---|---|
ELM training | 12.531 | 10.620 | 0.947 |
ELM test | 15.573 | 12.664 | 0.946 |
RF training | 9.429 | 8.411 | 0.972 |
RF test | 10.312 | 9.007 | 0.979 |
SVR training | 10.218 | 9.871 | 0.969 |
SVR test | 11.04145 | 9.278841 | 0.972 |
PSO-SVR training | 4.9511 | 4.718 | 0.992 |
PSO-SVR test | 10.052 | 7.944 | 0.980 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Wu, Y.; Zhou, Y.; Tang, H.; Fu, S. Assessment of Machine Learning Models for the Prediction of Rate-Dependent Compressive Strength of Rocks. Minerals 2022, 12, 731. https://doi.org/10.3390/min12060731
Yang Z, Wu Y, Zhou Y, Tang H, Fu S. Assessment of Machine Learning Models for the Prediction of Rate-Dependent Compressive Strength of Rocks. Minerals. 2022; 12(6):731. https://doi.org/10.3390/min12060731
Chicago/Turabian StyleYang, Ziquan, Yanqi Wu, Yisong Zhou, Hui Tang, and Shanchun Fu. 2022. "Assessment of Machine Learning Models for the Prediction of Rate-Dependent Compressive Strength of Rocks" Minerals 12, no. 6: 731. https://doi.org/10.3390/min12060731
APA StyleYang, Z., Wu, Y., Zhou, Y., Tang, H., & Fu, S. (2022). Assessment of Machine Learning Models for the Prediction of Rate-Dependent Compressive Strength of Rocks. Minerals, 12(6), 731. https://doi.org/10.3390/min12060731