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Abstract: The interpretation of three-dimensional (3-D) magnetotelluric (MT) data is usually based
on the isotropic assumption of the subsurface structures, and this assumption could lead to erroneous
interpretation in the area with considerable electrical anisotropy. Although arbitrary anisotropy is
much closer to the ground truth, it is generally more challenging to recover full anisotropy parameters
from 3-D inversion. In this paper, we present a 3-D triaxial anisotropic inversion framework using
the edge-based finite element method with a tetrahedral mesh. The 3-D inverse problem is solved by
the Gauss-Newton (GN) method which shows fast convergence behavior. The computation cost of
the data-space method depends on the size of data, which is usually smaller than the size of model;
therefore, we transform the inversion algorithm from the model space to the data space for memory
efficiency. We validate the effectiveness and applicability of the developed algorithm using several
synthetic model studies.
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1. Introduction

With the fast development of computer hardware and numerical algorithm, 3-D
magnetotelluric (MT) inversion has been widely used in many applications, such as mineral
exploration [1,2], deep earth structure imaging [3–5], and geothermal exploration [6,7].

At present, the interpretation of magnetotelluric data is generally based on the isotropy
assumption of the Earth’s geoelectric structure, but numerous studies have revealed the
prevalence of electrical anisotropy in the Earth [8–10]. This electric anisotropy can affect
the magnetotelluric response [11,12]. If the isotropic inversion technique was adopted to
invert the data affected by electrical anisotropy, it could produce artifacts and even lead to
erroneous interpretation [13,14]. Although the arbitrary anisotropy assumption is much
closer to the ground truth, it needs to consider more model parameters compared to the
isotropic inversion. Moreover, it is more challenging to solve the arbitrary anisotropy
inversion due to the strong non-uniqueness [15].

The current research of anisotropic MT inversion mainly focuses on two-dimension
(2-D) inversion and 3-D triaxial inversion in the model space. Li et al. (2003) implemented
2-D anisotropic inversion using the Gauss-Newton method [16]. Pek et al. (2011) used the
nonlinear conjugate gradient (NLCG) method to solve 2-D arbitrary anisotropic inversion,
and they found that it is challenging to reconstruct the anisotropic dipping angle without
additional a priori information [17]. Yu et al. (2022) reported 2-D arbitrary anisotropic MT
inversion using the limited-memory quasi-Newton (Q-N) method [18]. For 3-D anisotropic
inversion, Cao et al. (2018) and Wang et al. (2021) realized 3-D magnetotelluric inversion
with triaxial anisotropy using the limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) method [15,19]. Kong et al. (2022) reported 3-D arbitrary anisotropic MT inversion
using the NLCG method [20]. These published results are based on the model-space
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algorithm, and the memory consumption depends on the size of model. Considering the
number of model parameters is relatively large for 3-D inversion, the iterative solver is
usually used to solve the model update in each inversion iteration.

We develop a 3-D triaxial anisotropic inversion scheme using the data space method,
and the Gauss–Newton method is used to solve this inversion problem. To accurately
simulate the rugged topography and complex geoelectric structures, the unstructured
tetrahedral mesh is used to discretize the computational domain. For simplicity, we
now only consider three principal resistivities. The anisotropic strike can be determined
by the phase tensor technique and induction arrows in some cases [21,22], and also by
considering the known geological information. At present, it is still challenging to resolve
the anisotropic dip and slant using the current inversion strategy. The anisotropic inversion
algorithm is transformed from the model space to the data space to reduce the memory
requirement [23–26]. Moreover, the direct solver is used to solve the normal equation in
each inversion iteration. Compared to the iterative solver, the direct solver can improve the
stability of the inversion process.

In this paper, we first introduce the anisotropic forward modeling with a secondary
field formulation. Following this, we describe the triaxial anisotropic inversion based on the
Gauss–Newton optimization in the data space. Finally, we demonstrate the effectiveness
and applicability of the developed algorithm using several synthetic models.

2. Basic Theory
2.1. 3-D Magnetotelluric Forward Modeling with a Secondary Field Formulation

We start from Maxwell’s equations and assume the time dependence term of eiωt. By
ignoring the displacement current, we can obtain the diffusion equation as follows:

∇×∇× Es + iωµ0
^
σEs = −iωµ0

(
^
σ− σp

)
Ep, (1)

where Es and Ep are the secondary field and the primary field, respectively; ω is the angular
frequency; µ0 is the free space magnetic permeability; σp is the background conductivity,

and
^
σ is the anisotropic conductivity tensor, described as follows [27]:

^
σ = Rz(−αS)Rx(−αD)Rz(−αL)

σx
σy

σz

Rz(αS)Rx(αD)Rz(αL), (2)

where σx, σy, and σz are three principal conductivities in the X, Y, and Z directions, respec-
tively; αS, αD, and αL are the anisotropic strike, dip, and slant, respectively; and Rz(αS),
Rx(αD), and Rz(αL) represent the rotations around the Z axis and X axis through the angle
αS, αD and αL, respectively.

The large sparse system of linear equations can be obtained by applying finite element
analysis:

AEs = b. (3)

The Dirichlet boundary condition is adopted for solving the above equation by assum-
ing the secondary electrical field vanishes on the boundary of the modeling domain. We use
the tetrahedral mesh to discretize the computational domain. Compared to the total field
formulation, one has to select proper background conductivity when simulating models
with complex topography using the secondary field formulation. We solve Equation (3)
using the parallel direct solver MKL Paradiso [28]. Considering the independence of fre-
quency, we further parallelize the forward modeling algorithm over the frequencies to
speed up the computation.
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2.2. Data-Space Inversion Theory for Triaxial Anisotropic Medium

For the triaxial anisotropic inversion, three anisotropic rotation angles are constant,
and the objective functional can be written as:

ϕ(m) = ϕd(m) + βx ϕx(mx) + βy ϕy
(
my
)
+ βz ϕz(mz). (4)

where ϕd(m) is the data misfit; ϕx(mx), ϕy
(
my
)
, and ϕz(mz) are the model regularization

term in the X, Y, and Z directions, respectively; m =
(
mx my mz

)T is the model parame-
ter and mx = lnσx, my = lnσy, and mz = lnσz are the model parameters in three principal
directions; and βx, βy, and βz are the regularization parameters which are used to balance
the data fitting and model constraints.

The data misfit term is described as:

ϕd(m) =‖Wd(d
pre − dobs) ‖2

, (5)

where dpre = F(m) is the predicted data, F is the forward modeling operator, and dobs rep-
resents the observed data. Wd is the diagonal data weighting matrix, which is constructed
based on the reciprocal of the standard error of the observed data, and the readers can refer
to Appendix A for more details.

The model regularization term along each principal direction can be written as:

ϕi =‖ Li(mi −mre f
i ) ‖

2
, i = x, y, z, (6)

where mre f
i is reference model parameter; and Lx, Ly, and Lz are the model roughness

matrices for the conductivities in the X, Y, and Z directions, respectively. We adopted a
method similar to Cai et al., 2021, to calculate the roughness matrix. We can control the
smoothness of the inverted model by choosing the number of adjacent elements [29,30]. The
roughness matrix can stabilize the inversion by providing a measure of model variations
and avoiding spurious structures [31].

The Gauss–Newton method is used to minimize the objective functional, and we solve
the normal equation in each Gauss–Newton iteration to obtain the model update:

[Re{(WdJ)HWdJ}+ LTL]δm
= −[Re{(WdJ)HWd(d

pre − dobs)}+ LTL(m−mre f )],
(7)

J = [Jx, Jy, Jz], (8)

L =


√

βxLx √
βyLy √

βzLz

, (9)

mre f =
[
mre f

x , mre f
y , mre f

z

]T
, (10)

where Jx, Jy, and Jz are the sensitivity matrices for anisotropic inversion; H denotes the
Hermitian transpose; and T denotes the transpose.

We transform the system of normal equations from the model space to the data space
using the Sherman–Morrison–Woodbury formula [32], and the inverse of the reduced
Hessian matrix of Equation (7) can be written as:

[Re{(WdJ)HWdJ}+ LTL]−1 = U−1 −U−1DΓ−1DHU−1, (11)

D = [Re{(WdJ)H}, Im{(WdJ)H} ], (12)

U = LTL + ε·diag{LTL}, (13)

Γ = I + DHU−1D. (14)
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where I is an identity matrix, and ε is a small positive number, and it is added to Equation (13)
to enable the positive definiteness of matrix. Numerical tests show that its influence on the
inversion results is negligible [25,26].

We multiply both sides of Equation (7) by the inverse of the reduced Hessian matrix,
and substituting Equation (11) into Equation (7) to obtain the system of normal equations
in the data space:

δm = U−1R−U−1DΓ−1DHU−1R, (15)

R = −[Re{(WdJ)HWd(d
pre − dobs)}+ LTL(m−mre f )]. (16)

For simplicity, Equation (15) is written as:

δm = X1 − X2X3, (17)

X1 = U−1R, (18)

X2 = U−1D, (19)

X3 = Γ−1DHX1. (20)

It is computationally expensive to directly calculate the inverse of matrix U. We obtain
X1 and X2 by solving the linear equation with U as the coefficient matrix. U is a sparse
matrix with the size of Nm × Nm (Nm is the size of model), and it is efficient to obtain X1
and X2 using the direct solver. We notice that the size of matrix D is 2Nd × Nm (Nd is the
size of the data set), and we can solve the matrix X2 by hybrid programming with MPI and
OpenMP [33]. The matrix X3 is solved using the direct solver for dense matrix.

The model-space method requires dealing with the sensitivity matrix J ∈ CNd×Nm and
the dense matrix of (WdJ)HWdJ ∈ CNm×Nm . The calculation and storage of the latter term
are considerably expensive, and it is generally impractical for the anisotropic inversion.
The data-space method deals with matrix J ∈ CNd×Nm and D ∈ R2Nd×Nm . Fortunately,
these matrices can be stored on the hard disk and some of them can be read into RAM. The
matrix of Γ ∈ R2Nd×2Nd also needs to be stored, but Nd is usually much smaller than Nm.
Moreover, for the model-space method based on the direct solver, the construction of the
coefficient matrix and the right-hand sides of this equation are unsuitable for parallelization.
In contrast, most of the solutions of the data space method can be efficiently parallelized.

The regularization parameter is important to obtain geophysical meaningful solutions.
We choose the regularization parameters in a similar way as Cai et al., 2021 [30]:

γi =
‖ Re{(WdJi)

H(WdJix)} ‖2

‖ LT
i (Lix) ‖2

, i = x, y, z, (21)

βi = qi
max

{
γx, γy, γz

}
nc

iter
, i = x, y, z, (22)

where 0 < qi < 1 is an empirical scaling parameter, niter is the iteration number, and c is
a positive integer that is usually less than 3, based on our numerical tests [34]. We have
tested the influence of qi and c on the inversion results as shown in Appendix B.

Once the model update direction δm is solved using the data-space method [23], a
new model is obtained as:

mn+1 = mn + αδmn. (23)

where α is the step length, which ensures the decreasing of the objective functional. An
appropriate step length can be obtained by a simple line search strategy [35].

The definition of RMS in this study is given as follows [36]:

RMS =

√
(Wd(d

pre − dobs))T(Wd(d
pre − dobs))

Nd
. (24)
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The workflow for 3-D triaxial anisotropic inversion in data space is shown in Figure 1.
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Figure 1. Workflow for 3-D magnetotelluric inversion with triaxial anisotropy.

3. Synthetic Model Studies

The developed code is run on the high-performance cluster at China University of
Geosciences, Wuhan, China. Each node has 2 Intel Xeon 2.5 GHz CPUs with 20 cores per
CPU and 384 GB RAM. We use two cluster nodes in this study. For each node, we set 2 MPI
processes and 40 OpenMP threads. The model-space inversion algorithm is solved by the
direct solver for dense matrix.

Firstly, we use an example to compare the performance of the model-space and data-
space algorithm based on the direct solver. The total number of synthetic observed data
is 16,224 (including the real and imaginary parts). We use different discretization to test
the performances. The size of models for these different discretization are 20,196, 30,945,
41,280, 61,455, and 82,512, respectively. The memory requirements and CPU time for these
models are shown in Figure 2 for the model-space and data-space methods. Although the
model-space method is more efficient than the data-space method when the model size is
small, the memory consumption and calculation time increase approximately quadratically
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with the increase of model size for the model-space method. For the data-space method, the
memory consumption and computation time increase linearly with the increase of model
size. The model-space method easily becomes impractical because the model parameters
can be extremely large. Therefore, the data-space method is more feasible for the large-scale
anisotropic inversion in certain scenarios.
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3.1. Algorithm Validation

The SM3 model from Cao et al., 2018 [15] is used to demonstrate the correctness of
the developed algorithm, as shown in Figure 3. The anisotropic anomaly with the size of
3.6 km × 3.6 km × 1 km is buried in the homogeneous half-space with a resistivity of 300 Ωm.
The three principal resistivities of the anisotropic block are ρx/ρy/ρz = 10 Ωm/30 Ωm/50 Ωm,
and the values of three rotation angles both are 0. The central location of the anomalous
body is (0, 0, 1) km. The resistivity of the air layer is chosen as 109 Ωm. We simulate the full
impedance tensor data for 5 frequencies (0.1 Hz, 1 Hz, 5 Hz, 10 Hz and 100 Hz) at 169 sites
and contaminate the synthetic data by 2% Gauss random noise.
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Figure 3. Panels (a) and (b) show the SM3 model from Cao et al., 2018 at x = 0 km and z = 1 km,
respectively. The black dots represent the MT receivers.

The whole simulation domain for the forward modeling and the inversion are the
same, and their size are 40 km × 40 km × 40 km in the X, Y, and Z directions. The thickness
of the air layer is 20 km for this model. The forward modeling domain is discretized into
743,603 elements. The inversion domain extends from –4 km to 4 km in the horizontal
direction and from 0 km to 4 km in the vertical direction. The mesh of the inversion domain
is discretized into 171,370 elements, and the total number of elements in the whole mesh
is 480,795. Both the initial model and the reference model are set to be a homogeneous
half-space with a resistivity of 50 Ωm. The standard error is set to 0.02·sqrt

(∣∣Zxy·Zyx
∣∣). The

roughness matrix is calculated using the 20 surrounding elements of each inversion cell.
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We set the maximum number of iterations to be 10, and the threshold RMS for the inversion
is 1.05.

We terminate the inversion after five iterations when the convergence stalls as shown
in Figure 4. The RMS rapidly decrease from the initial value of 16.83 to 1.06. The runtime is
9.2 h and the memory consumption is 137.5 GB.
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Figure 4. Convergence plot for the SM3 model. The black dashed line indicates the threshold RMS.

The anisotropic inversion results are shown in Figures 5–8. The shape and conductivity
values in the anisotropic X and Y directions can be recovered well, and the anisotropic
coefficient between the resistivity in the X and Y directions (defined by log10

(
ρx/ρy

)
) is

also reasonably recovered. The main source of the magnetotelluric field is the plane wave
which propagates vertically. Therefore, the resistivity in the Z direction only has limited
influence on the MT response. As a result, the resolution of the recovered vertical resistivity
is relatively lower compared to that of the horizontal resistivities. [37]. Our inversion results
are in a good agreement with Cao et al., 2018 [15].
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Figure 5. The inverted principal conductivity along the X-axis. Panels (a) and (b) show the true
model and the recovered model at x = 0 km. Panels (c) and (d) show the true model and recovered
model at y = 0 km. Panels (e) and (f) show the true model and the recovered model at z = 1 km.
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Figure 6. The inverted principal conductivity along the Y-axis. Panels (a) and (b) show the true
model and recovered model at x = 0 km. Panels (c) and (d) show the true model and recovered model
at y = 0 km. Panels (e) and (f) show the true model and the recovered model at z = 1 km.
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Figure 7. The inverted principal conductivity along Z-axis. Panels (a) and (b) show the true model
and the recovered model at x = 0 km. Panels (c) and (d) show the true model and the recovered model
at y = 0 km. Panels (e) and (f) show the true model and the recovered model at z = 1 km.
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Figure 8. The inverted anisotropic coefficient. Panels (a) and (b) show the true model and the
recovered model at x = 0 km. Panels (c) and (d) show the true model and the recovered model at
y = 0 km. Panels (e) and (f) show the true model and the recovered model at z = 1 km.

The data fitting is shown in Figure 9, we choose the Zxy and Zyx components at the
frequency of 5 Hz as an example. We can see that the observed data compare well to the
predicted data.
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Figure 9. Data fitting of Zxy and Zyx components at the frequency of 5 Hz. Panels (a) and (b) show
the real and imaginary parts of the observed Zxy component. Panels (c) and (d) show the real and
imaginary parts of the observed Zyx component. Panels (e) and (f) show the real and imaginary parts
of the predicted Zxy component. Panels (g) and (h) show the real and imaginary parts of predicted
Zyx component.
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3.2. Two-Blocks Model

To test the effectiveness of our developed inversion algorithm and study the influence
of electrical anisotropy, we design a two-blocks model as shown in Figure 10a,b. These two
anisotropic anomalies with the resistivities of ρx/ρy/ρz = 100 Ωm/10 Ωm/100 Ωm and
ρx/ρy/ρz = 1000 Ωm/10, 000 Ωm/1000 Ωm are embedded in the homogeneous half-space
with a resistivity of 300 Ωm. Both of these anomalies are 10 km× 10 km× 5 km. The central
positions of these two bodies are (−7.5, 0, 4.5) km and (7.5, 0, 4.5) km, respectively. The
full impedance tensor data for 12 frequencies, evenly spaced in the logarithmic space from
0.001 Hz to 10 Hz, at 169 sites are used as the observed data. We contaminate the synthetic
data with 2% Gauss random noise. In Appendix C, we also study the influence of different
noise levels on the inversion results.
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Figure 10. Panels (a) and (b) show the true model at y = 0 km and z = 6 km. Panels (c) and (d) show
the isotropic inversion results at y = 0 km and z = 6 km. The black dots represent MT receivers.

The size of the whole simulation domain for the forward modeling and inversion
are both 200 km × 200 km × 100 km. The domain extends from −100 km to 100 km in
the horizontal direction and from −20 km to 80 km in the vertical direction. The mesh
for forward modeling is discretized into 834,627 cells. For the inversion, the mesh in the
inversion domain is discretized into 188,389 cells, and the total number of mesh is 417,504.
The inversion domain extends from −20 km to 20 km in the horizontal direction and from
0 km to 20 km in the vertical direction. The initial and reference models are set to be
100 Ωm homogeneous half-space. The standard error is set to be 0.02·sqrt

(∣∣Zxy·Zyx
∣∣). The

roughness matrix is calculated by the 20 surrounding elements of each cell. The maximum
number of inversion iterations is set to 10, and the threshold RMS for the inversion is 1.05.

The model difference between the true model and the inverted model is defined as
follows [38]:

δ =

√
∑Nm

i=1

(
minv

i −mtrue
i
)2

Nm
, (25)

where minv
i and mtrue

i are the inverted model and the true model.
The isotropic inversion results are shown in Figure 10c,d. From this figure, we can see

that the isotropic inversion produces some artifacts surrounding the anisotropic conductive
body. Moreover, the shape and location of the conductive body are poorly recovered. The
shape and location of the anisotropic resistive body can be recovered in this scenario, which
reveals that the effect of electrical anisotropic on the resistive body is smaller than the
conductive body [36]. The anisotropic inversion results are shown in Figures 11 and 12.
From these two figures, we can see that the shapes and locations of these two anisotropic
anomalies are well recovered in the principal X and Y directions. The anisotropic coefficient
between the resistivity in the principal X and Y directions is also reasonably recovered.
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Considering the resistivity in the Z direction cannot be effectively recovered in anisotropic
inversion, we calculate the model difference δ using the resistivity in the X and Y direction.
The model difference δ is 0.94 and 0.75 for isotropic and anisotropic inversion, respectively.
With anisotropic inversion, we can obtain a better data fitting for this model.
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Figure 11. Anisotropic inversion results at y = 0 km. Panels (a), (c), and (e) show the true model
for the principal X, Y directions and the anisotropic coefficient. Panels (b), (d), and (f) show the
corresponding inversion results.
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Figure 12. Anisotropic inversion results at z = 6 km. Panels (a), (c), and (e) show the true model for
the principal X and Y directions, and the anisotropic coefficient. Panels (b), (d), and (f) show the
corresponding inversion results.
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The convergence plots for the isotropic and anisotropic inversion are shown in Fig-
ure 13. We terminate both inversions after five iterations when the convergence stalls.
For the isotropic inversion, the RMS decrease from the initial value of 23.57 to 1.97. The
runtime is 5.6 h and the memory consumption is 45.6 GB. For the anisotropic inversion, the
RMS decrease from the initial value of 23.57 to 1.12. The runtime is 9.7 h and the memory
consumption is 138.7 GB. If the model space method was used for the anisotropic inversion,
the memory requirement would be 4759.6 GB.
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Figure 13. Convergence plot for the isotropic and anisotropic inversion. The black dashed line
indicates the threshold RMS.

We show the data fitting for isotropic and anisotropic inversion in Figure 14. The Zxy
and Zyx components at the frequency of 0.46 Hz are chosen as an example. It is clear that
the data fitting for the anisotropic inversion is better than that of the isotropic inversion.
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Figure 15. Anisotropic inversion results at y = 0 km. Panels (a) and (b) show the inverted resistivity 
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Figure 14. Data fitting for Zxy and Zyx components at the frequency of 0.46 Hz. Panels (a) and (b)
show the real and imaginary parts of observed Zxy component. Panels (c) and (d) show the real and
imaginary parts of observed Zyx component. Panels (e) and (f) show the real and imaginary parts of
predicted Zxy component for isotropic inversion. Panels (g) and (h) show the real and imaginary parts
of predicted Zyx component for isotropic inversion. Panels (i) and (j) show the real and imaginary
parts of predicted Zxy component for anisotropic inversion. Panels (k) and (l) show the real and
imaginary parts of predicted Zyx component for anisotropic inversion.
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We know that MT only has limited sensitivity to the vertical resistivity. As a result,
we may exclude the vertical resistivity from the model parameters. We examine the effect
of including/excluding the vertical resistivity in the inversion parameters, as shown in
Figures 15 and 16. We can see that the inversion results are almost the same when including
and excluding the vertical resistivity from the model parameters. When excluding the
vertical resistivity from the inversion model parameters, we assume its value is the same as
the initial horizontal resistivity. The model difference δ are 0.75 and 0.74 for the inversion
with including/excluding the vertical resistivity from the model parameters. Therefore, we
do not consider the influence of vertical resistivity in the later section.
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Figure 15. Anisotropic inversion results at y = 0 km. Panels (a) and (b) show the inverted resistivity in
the principal X direction when including and excluding the vertical resistivity in the inversion. Panels
(c) and (d) show the inverted resistivity in the principal Y direction when including and excluding
the vertical resistivity in the inversion. Panels (e) and (f) show the inverted anisotropic coefficient
when including and excluding the vertical resistivity in the inversion.
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Figure 16. Anisotropic inversion results at z = 6 km. Panels (a) and (b) show the inverted resistivity in
the principal X direction when including and excluding the vertical resistivity in the inversion. Panels
(c) and (d) show the inverted resistivity in the principal Y direction when including and excluding
the vertical resistivity in the inversion. Panels (e) and (f) show the inverted anisotropic coefficient
when including and excluding the vertical resistivity in the inversion.

3.3. Isotropic and Anisotropic Blocks Model with Topography

To further test the performance of the developed algorithm, we design an isotropic and
anisotropic blocks model, as shown in Figure 17. The background model is a homogeneous
half-space with the resistivity of 300 Ωm. The three principal resistivities of the anisotropic
block are ρx/ρy/ρz = 10 Ωm/100 Ωm/10 Ωm, and its central location is (0, −7.5, 5.5) km.
The resistivity of the isotropic block is 1000 Ωm, and its central location is (0, 7.5, 5.5) km.
The full impedance tensor data for 12 frequencies, evenly spaced in the logarithmic scale
from 0.01 Hz to 100 Hz, at 169 sites are used for inversion. We add 2% Gauss random noise
to the synthetic data. The topography in the inversion domain is shown in Figure 18.
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Figure 17. Panels (a) and (b) show the isotropic and anisotropic blocks model at x = 0 km and z = 6
km, respectively. The black dots represent the MT receivers.

Minerals 2022, 12, x FOR PEER REVIEW 16 of 26 
 

 

 

Figure 17. Panels (a) and (b) show the isotropic and anisotropic blocks model at x = 0 km and z = 6 

km, respectively. The black dots represent the MT receivers. 

 

Figure 18. The topography in the inversion domain (with exaggeration in the vertical direction). The 

black dots indicate the MT receivers. 

The whole simulation domain extends from −100 km to 100 km in the horizontal di-

rection and from −20 km to 80 km in the vertical direction. The inversion domain extends 

from −20 km to 20 km in the horizontal direction and from −1.16 km to 20 km in the vertical 

direction. The mesh for forward modeling is discretized into 824,132 cells. The inversion 

domain is discretized into 200,934 cells, and the total number of cells for the inversion 

mesh is 644,824. The initial and reference models of the inversion are a homogeneous half-

space with the resistivity of 100 Ωm. The standard error is set to 0.02 ∙ 𝑠𝑞𝑟𝑡(|𝑍𝑥𝑦 ∙ 𝑍𝑦𝑥|). 

The maximum number of inversion iterations is set to 10, and the threshold RMS for the 

inversion is 1.05. 

The convergence plot is shown in Figure 19, we can see that the RMS decreases from 

21.72 to 1.05 after five iterations, the runtime is 8.2 h and the memory consumption is 99.2 

GB. 

The inversion results are shown in Figures 20 and 21, we can see that the shape and 

position of the isotropic and anisotropic blocks are well recovered. The inversion does not 

produce obvious artifacts for the isotropic anomalous body. 

(a) 
(b) 

Figure 18. The topography in the inversion domain (with exaggeration in the vertical direction). The
black dots indicate the MT receivers.
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The whole simulation domain extends from −100 km to 100 km in the horizontal
direction and from−20 km to 80 km in the vertical direction. The inversion domain extends
from−20 km to 20 km in the horizontal direction and from−1.16 km to 20 km in the vertical
direction. The mesh for forward modeling is discretized into 824,132 cells. The inversion
domain is discretized into 200,934 cells, and the total number of cells for the inversion
mesh is 644,824. The initial and reference models of the inversion are a homogeneous
half-space with the resistivity of 100 Ωm. The standard error is set to 0.02·sqrt

(∣∣Zxy·Zyx
∣∣).

The maximum number of inversion iterations is set to 10, and the threshold RMS for the
inversion is 1.05.

The convergence plot is shown in Figure 19, we can see that the RMS decreases from
21.72 to 1.05 after five iterations, the runtime is 8.2 h and the memory consumption is 99.2 GB.
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Figure 19. Convergence plot for the isotropic and anisotropic blocks model with topography. The
black dashed line indicates the threshold RMS.

The inversion results are shown in Figures 20 and 21, we can see that the shape and
position of the isotropic and anisotropic blocks are well recovered. The inversion does not
produce obvious artifacts for the isotropic anomalous body.
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Figure 20. Anisotropic inversion results at x = 0 km. Panels (a), (c), and (e) show the true model
for principal X and Y directions, and the anisotropic coefficient. Panels (b), (d), and (f) show the
anisotropic inversion results for the principal X and Y directions, and the anisotropic coefficient.



Minerals 2022, 12, 734 16 of 24
Minerals 2022, 12, x FOR PEER REVIEW 18 of 26 
 

 

 

Figure 21. Anisotropic inversion results at z = 5.5 km. Panels (a), (c), and (e) show the true model for 

the principal X and Y directions, and the anisotropic coefficient. Panels (b), (d), and (f) show the 

anisotropic inversion results for the principal X and Y directions, and the anisotropic coefficient. 

The data fitting is shown in Figure 22, we choose the Zxy and Zyx components at the 

frequency of 0.285 Hz as an example. We can see that the observed data compare well 

with the predicted data. 

(c) (d) 

(e) (f) 

(a) (b) 

Figure 21. Anisotropic inversion results at z = 5.5 km. Panels (a), (c), and (e) show the true model
for the principal X and Y directions, and the anisotropic coefficient. Panels (b), (d), and (f) show the
anisotropic inversion results for the principal X and Y directions, and the anisotropic coefficient.

The data fitting is shown in Figure 22, we choose the Zxy and Zyx components at the
frequency of 0.285 Hz as an example. We can see that the observed data compare well with
the predicted data.
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Figure 22. Data fitting for Zxy and Zyx components at the frequency of 0.285 Hz. Panels (a) and
(b) show the real and imaginary parts of observed Zxy component. Panels (c) and (d) show the real
and imaginary parts of the observed Zyx component. Panels (e) and (f) show the real and imaginary
parts of the predicted Zxy component. Panels (g) and (h) show the real and imaginary parts of the
predicted Zyx component.
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4. Conclusions

In this paper, we develop a triaxial anisotropic 3-D MT inversion algorithm with
unstructured tetrahedral mesh. To reduce the memory requirement, we transform the
algorithm from the model space to the data space and derived the inversion workflow
using the Gauss–Newton approach. In the data-space inversion, the model update direction
can be effectively solved by the parallel direct solver.

We compare the efficiency of the model-space and data-space methods by an example.
We found that the data-space algorithm requires much less memory and computation
time than the model space method when the number of model parameters is large. We
demonstrate the effectiveness and applicability of the anisotropic inversion algorithm by
several synthetic models. The electrical structures in the principal X and Y directions can
be well recovered, but the resistivity of the principal Z direction cannot be reasonably
recovered by the current inversion algorithm. We will apply the developed anisotropic
inversion algorithm in data space to the field data in the future research.
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writing—original draft preparation, J.X.; writing—review and editing, H.C.; supervision, X.H. and
H.C. All authors have read and agreed to the published version of the manuscript.
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Appendix A

The data weighted matrix Wd usually is used with nonuniform and uniform data
variance [39], and other forms. We tested the effect of Wd with nonuniform and uniform
data variance using the synthetic data (with 2% Gauss random noise) using the two-blocks
model in Section 3.2.

The data weighted matrix Wd can be written as follows:

Wd =


1/e1

1/e2
. . .

1/eNd

, (A1)

where ei is the data variance of the ith observed data.
The nonuniform data variance can be written as follows [18,20,24]:

e
(
Zij
)
= ε·

√∣∣Zxy·Zyx
∣∣, i, j = x, y. (A2)

where ε is error floor, we choose ε = 0.02 in this case.
The uniform data variance can be written as [24]:

e
(
Zij
)
= max

{
3.5%·

(∣∣Zxy − Zyx
∣∣/2
)}

, i, j = x, y. (A3)

These inversion results are shown in Figures A1 and A2, and we reset the color bar for
a higher contrast. The RMS for Wd with nonuniform and uniform data variance are 1.12
and 1.17, and the model difference δ are 0.75 and 0.76, respectively.

We can see that these two anisotropic anomalies are both well recovered for Wd
with nonuniform and uniform data variance. However, the conductive artifact blows the
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resistive body, for Wd with uniform data variance, more seriously than that for Wd with
nonuniform data variance. Moreover, the anisotropic coefficient for Wd with nonuniform
data variance is better recovered.
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Figure A1. Anisotropic inversion results at y = 0 km. Panels (a) and (b) show the inverted resistivity
in the principal X direction for Wd with nonuniform and uniform data variance. Panels (c) and
(d) show the inverted resistivity in the principal Y direction for Wd with nonuniform and uniform
data variance. Panels (e) and (f) show the inverted anisotropic coefficient for Wd with nonuniform
and uniform data variance.
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Figure A2. Anisotropic inversion results at z = 6 km. Panels (a) and (b) show the inverted resistivity
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in the principal X direction for Wd with nonuniform and uniform data variance. Panels (c) and
(d) show the inverted resistivity in the principal Y direction for Wd with nonuniform and uniform
data variance. Panels (e) and (f) show the inverted anisotropic coefficient for Wd with nonuniform
and uniform data variance.

Appendix B

We also carried out some numerical tests on the choices of qi and c using the synthetic
data (with 2% Gauss random noise) of the two-blocks model in Section 3.2, and the standard
error is set to 0.02·sqrt

(∣∣Zxy·Zyx
∣∣). The final RMS for the case with qi = 0.05, 0.1, 0.4, 0.8

are 1.05, 1.06, 1.09, 1.15, and the model difference δ are 0.78, 0.75, 0.75, 0.76. The final RMS
for c = 1, 2, 3 are 1.12, 1.06, 1.04, and the model difference δ are 0.75, 0.75, 0.79.

We can see from Figures A3 and A4 that the recovered background model is inaccurate
when qi = 0.05, but these two anisotropic bodies can be reasonably recovered. Although
these inversion results are similar, the background model can be better recovered when
qi increases from 0.1 to 0.8. Taking the above factors into consideration, we believe that
qi = 0.8 is appropriate.

We can see from Figures A5 and A6 that these inversion results are similar, but the
larger value of c, the worse the inverted background model. As a result, we choose c = 1 in
this case.
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Figure A3. Anisotropic inversion results at y = 0 km for different qi, and c = 1. Panels (a)–(d) show
the inverted resistivity in the principal X direction for qi = 0.05, 0.1, 0.4, 0.8. Panels (e)–(h) show the
inverted resistivity in principal Y direction for qi = 0.05, 0.1, 0.4, 0.8. Panels (i)–(l) show the inverted
anisotropic coefficient for qi = 0.05, 0.1, 0.4, 0.8.
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Figure A4. Anisotropic inversion results at z = 6 km for different qi, and c = 1. Panels (a)–(d) show
the inverted resistivity in the principal X direction for qi = 0.05, 0.1, 0.4, 0.8. Panels (e)–(h) show the
inverted resistivity in principal Y direction for qi = 0.05, 0.1, 0.4, 0.8. Panels (i)–(l) show the inverted
anisotropic coefficient for qi = 0.05, 0.1, 0.4, 0.8.
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Figure A5. Anisotropic inversion results at y = 0 km for different c, and qi = 0.6. Panels (a)–(c) show
the inverted resistivity in the principal X direction for c = 1, 2, 3. Panels (d)–(f) show the inverted
resistivity in the principal Y direction for c = 1, 2, 3. Panels (g)–(i) show the inverted anisotropic
coefficient for c = 1, 2, 3.
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Figure A5. Anisotropic inversion results at y = 0 km for different 𝑐, and 𝑞𝑖 = 0.6. Panels (a)–(c) 
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Figure A6. Anisotropic inversion results at z = 6 km for different c, and qi = 0.6. Panels (a)–(c) show
the inverted resistivity in the principal X direction for c = 1, 2, 3. Panels (d)–(f) show the inverted
resistivity in the principal Y direction for c = 1, 2, 3. Panels (g)–(i) show the inverted anisotropic
coefficient for c = 1, 2, 3.

Appendix C

We test the effects of noise level on the inversion results in this section. In this study, 2%,
5%, and 8% Gauss random noise are added to synthetic observed data for the two-blocks
model in Section 3.2.

The inversion results are shown in Figures A7 and A8. We can see that although
the shape and location of these two anisotropic anomalies are well recovered for the
resistivity in the principal X and Y directions, and the anisotropic coefficient, the recovered
background model is distorted when the noise increases. The convergence stalls after five
iterations for all cases. The RMS are 1.12, 2.65, and 4.24, and the model difference δ are 0.75,
0.76, and 0.77 when 2%, 5%, and 8% random noise are added to observed data.
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Figure A7. Anisotropic inversion results at y = 0 km. Panels (a)–(c) show the inverted resistivity in
the principal X direction for 2%, 5%, 8% noise level. Panels (d)–(f) show the inverted resistivity in
the principal Y direction for 2%, 5%, 8% noise level. Panels (g)–(i) show the inverted anisotropic
coefficient for 2%, 5%, 8% noise level.
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Figure A8. Anisotropic inversion results at z = 6 km. Panels (a)–(c) show the inverted resistivity in
the principal X direction for 2%, 5%, 8% noise level. Panels (d)–(f) show the inverted resistivity in
the principal Y direction for 2%, 5%, 8% noise level. Panels (g)–(i) show the inverted anisotropic
coefficient for 2%, 5%, 8% noise level.
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