A Review of the G4 “Tin Granites” and Associated Mineral Occurrences in the Kivu Belt (Eastern Democratic Republic of the Congo) and Their Relationships with the Last Kibaran Tectono-Thermal Events
Abstract
:1. Introduction
2. Regional Framework
3. Geology of the Kivu Belt and Review of Granitic Occurrences within the Kivu Belt
3.1. Location
3.2. Lithostratigraphy
3.3. Granitoid Intrusions and Metamorphic Events
Location | Methods | Age | Granite Type | Host Rocks | References | |
---|---|---|---|---|---|---|
I | Rb/Sr, whole rock | 976 ± 10 Ma | G4 | KV1/KV2 | [28] | |
Kasika | Rb/Sr on microcline | 520 ± 9 Ma | G2/G4 | KV1/KV2 | [65] | |
U-Pb on zircon | 986 ± 10 Ma | G4 | KV1/KV2 | [17] | ||
II | Nzombe | Rb/Sr, whole rock | ~976 Ma | G4 | KV1/KV2 | [64] |
III | Kirumba | Rb/Sr, whole rock | 578 ± 9 | G4 | KV3 | [64] |
2 | Kobokobo | U-Pb on beryl | ~900 Ma | G4 | KV3 | [66] |
U-Pb on uranite | ~850 Ma | G4 | KV3 | [66] | ||
7 | Masisi | U-Pb on columbite-group minerals | 950.2 ± 4.4 Ma | G3/G4 | KV3 | [61] |
9 | Numbi | Rb/Sr, whole rock | ~648 Ma | G4 | KV2/KV3 | [64] |
10 | Nyamakubi | Rb/Sr, whole rock | ~976 Ma | G3/G4 | KV2/KV3 | [64] |
13 | Kalima-Moga | Rb/Sr, whole rock | 989 ± 28 Ma | G4 | KV2 | [28] |
Ar/Ar on muscovite (max.) | 1024.3 ± 5.5 Ma | G4 | KV2 | [35] | ||
Ar/Ar on muscovite (min.) | 986.6 ± 5.3 Ma | G4 | KV2 | [35] | ||
U-Pb on columbite-group minerals | 993 ± 1 Ma | G4 | KV2 | [35] |
- -
- M1 with staurolite + garnet + biotite + muscovite studied in the Kamituga district (1 in Figure 4).
- -
- M2 with staurolite + kyanite + garnet + biotite studied in the Kasika, Luntukulu, and Kalehe districts. (5, 6, and 10 in Figure 4).
- -
- M3 with staurolite + garnet + biotite + muscovite (locally andalusite) studied in the Masisi and Kamanyola districts (7 and 19 in Figure 4).
- -
- M4 with biotite + muscovite + sericite studied in the Nya-Ngezie district.
- -
- However, although we know the local impact of these metamorphic events, we do not know their regional effect. For example, we do not know if the M3 event is local and restricted to the Masisi or Kamanyola areas or if it is covering a large part of the KVB.
- -
- M5 is ascribed to the G4 granitic intrusive event but is not a part of this study.
- -
- However, there are some questions that remain unsolved:
- -
- Some of the smaller massifs could be the outcropping apexes of large concealed batholiths. Thus, several granitic massifs (G1, G3, G3, or G4) could be concealed underneath the sedimentary pile. However, they can be evidenced by their metamorphic aureole, such as in the Luntukulu area.
- -
- In the past, numerous geologists have considered that the G2 and G3 granites are extending along the main structures, while the G4 granites are cross-cutting these structures. In contrast, [36] notes that accordance between the magmatic batholiths and their host structures does not necessarily indicate a syn-kinematic emplacement. Thus, the N-S elongated G4 granites had likely used the older D2-2 structures (Figure 2) to reach the surface.
- -
- Reference [68] indicates that large granitic massifs (G2) are located in the center of large anticlines and are cross-cut by G4 intrusions.
- -
- -
- It is necessary to distinguish the metamorphic aureoles induced by the granitic intrusions in the field. For example, the G4 Kasika granite is not related to the large metamorphic imprint that stretches out for several km-wide concentric zones of staurolite, garnet, and biotite (more than 20 km away from Kasika), but it is related to a local imprint with skarns and breccias. The Barrovian metamorphism is associated with the G2 and G3 intrusions, while the contact metamorphism with andalusite is associated with the G4 intrusions. For example, the Luntukulu metamorphism with kyanite, staurolite, and biotite may be linked to concealed G2 granitic batholiths.
- -
- The lack of geochemical studies does not allow us to draw conclusions on the origin of the G4 granites that are considered by many geologists as “alkaline”. This is not in agreement with the occurrences of spodumene, beryl, and amblygonite mainly associated with peraluminous magmatism. These mineralogic associations and the spatial relationships between the G2 and G3 batholiths suggest a G4 thermo-metamorphism giving way to crustal feeding. Recent investigations [59] in the ca. 1 Ga G4 granitoids of Rwanda show the inheritance of zircon from the G1 granites in the G4 occurrences and thus favoring an intra-continental geodynamic context and an anatectic origin of melts. Migmatitic melting of a fractionation of large magma chambers is considered by these authors. This is also in accordance with our field observations.
- -
- The thermo-tectonic environment of these G4 granitic bodies is also not well understood. Some bodies are tectonized (Kasika, Mt. Hango), while others remain undeformed. Finally, the metamorphic conditions are also not well studied. The results of [59] suggest a metamorphic origin in a compression context. However, such environmental studies have not been conducted in the Kivu area.
- -
- G1 and G2 granites in Rwanda are different from the Kivu ones. In Rwanda, such granites are hyper-alkaline with sand A types. They are related only to an intra-continental geodynamic model. Thus, no subduction process is considered in Rwanda and Burundi.
- -
- Cahen and Ledent [28] considered that the low 87Sr/86 Sr ratio (0.7002 ± 0.0021) in the G4 granite of Maniema and the higher ratio in Rwanda (0.7782 ± 0.0151) reflect the host gneisses of local G1 or G2 batholiths.
- -
- The detailed geological contexts of the granitic intrusions in the KIB, KAB, and KVB remain unclear despite recent specialized studies.
4. Review of the Main Occurrences of Ore Bodies in the KVB
N° | Location | Mineralization | Mineral Type | Associated Granites | Associated Met. Event | Host Fm. | Reference |
---|---|---|---|---|---|---|---|
1 | Kamituga | Au, Sn, Be | pegmatite | G4 | M1/M2 | KV1 | [77,79] |
2 | Kobokobo | Sn, Be, Nb, U, As, Li, Bi | pegmatite | G4 | M1/M2 | KV1 | [66] |
3 | Nzovu | Nb-Ta, Sn | pegmatite | G4? | M2 | KV2 | [66] |
4 | Lulingu | Nb-Ta, Sn, Au | pegmatite | G3/G4? | M2 | KV2 | [61,80] |
5 | Luntukulu | Sn, W, Au | qtz. veins, shales | G2/G4 | M2 | KV2 | [78] |
6 | Nzibira | Sn, W, Fe | qtz. veins | ? | M2? | KV2 | [81] |
7 | Masisi | Sn, Nb-Ta, W | n.a. | G3/G4 | M3 | KV3 | [61] |
8 | Walikale | W, Sn, Zn, Pb | n.a. | G4? | ? | KV2 | [37] |
9 | Mumba/Numbi | Sn, W, Nb-Ta | pegmatite, qtz. veins | G2/G3/G4 | M2/M3 | KV2/KV3 | [72,82,83] |
10 | Lemerat/Kalehe | Sn, Au, W | n.a. | G2/G3, G4 | M2/M3 | KV2 | [83] |
11 | Bishusha | W, Sn, Nb-Ta, Au | qtz. veins | G4? | ? | KV2 | [84] |
12 | Kama-Kampene | Nb-Ta, Sn, W | pegmatite in granite | G4? | M2? | KV2 | [37] |
13 | Kalima-Moga | Sn, W, Nb-Ta, Mo | pegmatite, qtz. veins | G4 | M2 | KV2 | [28,35,37] |
14 | Punia–Aissa | Sn, W, Nb-Ta | qtz. veins, greisen | G2/G4 | M2 | KV2 | [61,76] |
15 | Kailo-Kamilanga | W, Sn | qtz. veins | G4? | M2 | KV2 | [76] |
16 | Etaetu | Sn, W, Nb-Ta, Au | qtz. veins | ? | ? | ? | [61,76] |
17 | Kamole-Burhonga | W, Nb-Ta, Be | pegmatite, greisen | G4 | M1 | KV1? | Kalikone, pers.com; 3 March 2020 |
18 | Bihumba | W | pegmatite | G4 | M2 | KV3 | Kalikone, pers.com; 3 March 2020 |
19 | Mulengezi | W | qtz. veins | ? | M3 | KV3 | Kalikone, pers.com; 3 March 2020 |
4.1. In the South Kivu Province
4.2. In the North Kivu Province
4.3. In the Maniema Province
4.4. Columbite-Group Minerals in the KVB
5. Discussion
- (1)
- The first one deals with the duration of the Kibaran Orogeny. There is a general agreement to consider the beginning of the Kibaran Orogeny at around 1400 Ma, [17,18], but the assumptions about the end of this orogen varies between ca. 1250, 1200, 1000, and even 950 Ma [3,9,90]. By including the K3 and K4 units in the Kibaran Orogeny, a minimum age of ca. 1110 Ma should be accepted for the last tectonic events [11]. However, if the G4 granitic intrusions are interpreted as a late orogenic event, the duration of the Kibaran Orogeny has to be extended to ca. 960–950 Ma. If these granites are interpreted as post-tectonic, and therefore intruded during an extensive event giving way to the pan-African orogeny, the Kibaran Orogeny should have ended prior to ca. 1000 Ma.
- (2)
- The G3 and G4 granites should be differentiated by geochemistry as well as by geochronology. In the field, both groups cannot easily be distinguished from each other. For example, the Kasika granite was dated at 986 ± 10 Ma in [17], but this intrusion cannot be responsible for the regional metamorphic imprint observed in a distance of more than 20 km away from this granite. Therefore, a concealed G2 or G3 batholith suggests a remobilization at around 986 Ma. Such confusing interpretations arise in many places such as around the Kasese and the Mt. Hango batholiths and could be clarified by further studies.
- (3)
- There is also a debate on the age of the G4 intrusions. Although [17] proposes an age of 986 ± 10 Ma and [34] provides a similar age of 969 ± 8 Ma, it can also be considered that the whole intrusive events are not coeval at all. This becomes evident as some of them took place between ca. 1094 and 1020 Ma [35] depending on their location in the Kibaran Belt.
- (4)
- In many places the G4 bodies show a concordance in the axial trend with the main structures (folds and faults) and with the G3 batholiths [36]. Very often, the emplacements of the G4 intrusions follow the pre-existing structures. In many cases, the G3 batholiths and the associated G4 intrusions occur in the center of anticlines [21,72,82] and could be related to a regional compressional event.
- (5)
- Details of the mineralization process are still unclear. If the columbite-group minerals were crystallized during the first metasomatic stages close to the granitoid intrusions and the cassiterite was emplaced in a subsequent event, radiochronological data will be necessary to understand the period of the pegmatitic or quartz vein formation. Ages obtained from columbite–tantalite [91] do not have the same significance as those displayed by Ar/Ar dating on muscovite. More specific dating should be performed to separate the different tectono-thermal events that occurred between the emplacement of the G4 granitoids and the setting of the associated pegmatites and quartz veins.
- (6)
- The relationships between the G2, G3, and G4 granitic occurrences should be clarified. Of course, the pegmatites and quartz veins related to the G4 granitoids do not exceed 5 km from the granitoid body. Accordingly, they cannot have induced a metamorphism with staurolite and garnet more than 20 km away from the G4 granitic intrusions. Thus, a map with the G3 and G4 metamorphic envelopes could shed light on this problem. In the field, G2, G3, and G4 are closely associated, and potential further remobilizations of G2 and G3 during anatexis should be taken into account. Many G4 intrusions could be linked to concealed G2 or G3 batholiths.
- (7)
- The G4 granitic intrusions are scattered over the KVB but are not attached to a specific formation or terrane, implying that the presumed M5 tectono-thermal event (Figure 2) has affected the whole KVB and likely the entire Kibaride system. However, the G4 intrusions are largely dependent on previous structures.
- (8)
- According to several studies, the mineral concentrations are related to the fusion of previous gneisses or granitic rocks enriched by metasomatic fluids during the several metamorphic remobilizations (M1, M2, M3, M4, and M5) but not to the sedimentary deposits which are generally poor in such primary elements. Mineralizations in black shales seem to be related to the trapping of metasomatic fluids rather than containing sediments. The “tin belts”, “tungsten belts”, and “coltan belts” hypotheses should not be taken in consideration at this stage of knowledge.
- (9)
- Is there one or are there several geodynamic contexts for the different G4 intrusions? In other words, there may be several separated granitic occurrences linked to different geodynamic environments depending on the setting time.
- (10)
- Why have these granitic events generated such large quantities of strategic mineralizations with respect to similar granitoid occurrences around the world? Potentially, this is the consequence of the many (here: four) metamorphic stages that were not recorded in other mineral provinces.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pohl, W.L. Geotraverse Rwanda 1986: Preliminary Results of Metallogenic Studies. UNESCO Geol. Econ. Dev. Newsl. 1987, 5, 93–100. [Google Scholar]
- Tack, L.; Liégeois, J.P.; Deblond, A.; Duchesne, J.C. Kibaran A-Type Granitoids and Mafic Rocks Generated by Two Mantle Sources in a Late Orogenic Setting (Burundi). Precambrian Res. 1994, 68, 323–356. [Google Scholar] [CrossRef]
- Pohl, W.L. Kibaran Evolution and Metallogeny in Central Africa: A Synthesis at the End of IGCP-Project 255. IGCP Proj. No. 255 Newsl. 1992, 4, 1–8. [Google Scholar]
- Dewaele, S.; Henjes-Kunst, F.; Melcher, F.; Sitnikova, M.; Burgess, R.; Gerdes, A.; Fernandez, M.A.; De Clercq, F.; Muchez, P.; Lehmann, B. Late Neoproterozoic Overprinting of the Cassiterite and Columbite-Tantalite Bearing Pegmatites of the Gatumba Area, Rwanda (Central Africa). J. Afr. Earth Sci. 2011, 61, 10–26. [Google Scholar] [CrossRef]
- Villeneuve, M.; Gärtner, A.; Kalikone, C.; Wazi, N.; Hofmann, M.; Linnemann, U. U-Pb Ages and Provenance of Detrital Zircon from Metasedimentary Rocks of the Nya-Ngezie and Bugarama Groups (D.R. Congo): A Key for the Evolution of the Mesoproterozoic Kibaran-Burundian Orogen in Central Africa. Precambrian Res. 2019, 328, 81–98. [Google Scholar] [CrossRef]
- Cahen, L. Géologie Du Congo Belge; H. Vaillant-Carmanne Edits: Parise, France, 1954. [Google Scholar]
- Cahen, L.; Snelling, N.J.; Delhal, J.; Vail, J.R.; Bonhomme, M.; Ledent, D. The Geochronology and Evolution of Africa; Oxford Science Publications: Oxford, UK; Clarendon Press: New York, NY, USA, 1984; ISBN 978-0-19-857544-3. [Google Scholar]
- Kampunzu, A.B. Assembly and Break-up of Rodinia—No Link with Gondwana Assembly. Gondwana Res. 2001, 4, 647–650. [Google Scholar] [CrossRef]
- Kokonyangi, J.; Okudaira, T.; Kampunzu, A.B.; Yoshida, M. Geological Evolution of the Kibarides Belt, Mitwaba, Democratic Republic of Congo, Central Africa. Gondwana Res. 2001, 4, 663–664. [Google Scholar] [CrossRef]
- Gerards, J.; Ledent, D. Grands traits de la géologie du Rwanda, différents types de roches granitiques et premières données sur les âges de ces roches. Ann. Société Géologique Belg. 1970, 93, 477–489. [Google Scholar]
- Lavreau, J.; Liégeois, J.-P. Granites à étain et granito-gneiss burundiens au Rwanda (région de Kibuye): Âge et signification. Ann. Société Géologique Belg. 1982, 105, 289–294. [Google Scholar]
- Klerkx, J.; Lavreau, J.; Liégeois, J.-P.; Theunissen, K.; Michot, J. Granitoïdes Kibariens Précoces et Tectonique Tangentielle Au Burundi: Magmatisme Bimodal Lié à Une Distension Crustale. In African Geology; Klerkx, J., Michot, J., Eds.; Musée Royal d’Afrique Centrale: Tervuren, Belgium, 1984; pp. 29–46. [Google Scholar]
- Tack, L.; De Paepe, P.; Liégeois, J.P.; Nimpagaritse, G.; Ntungicimpaye, A.; Midende, G. Late Kibaran Magmatism in Burundi. J. Afr. Earth Sci. Middle East 1990, 10, 733–738. [Google Scholar] [CrossRef]
- Fernandez-Alonso, M.; Theunissen, K. Airborne Geophysics and Geochemistry Provide New Insights in the Intracontinental Evolution of the Mesoproterozoic Kibaran Belt (Central Africa). Geol. Mag. 1998, 135, 203–216. [Google Scholar] [CrossRef]
- Deblond, A.; Punzalan, L.E.; Boven, A.; Tack, L. The Malagarazi Supergroup of Southeast Burundi and Its Correlative Bukoba Supergroup of Northwest Tanzania: Neo- and Mesoproterozoic Chronostratigraphic Constraints from Ar-Ar Ages on Mafic Intrusive Rocks. J. Afr. Earth Sci. 2001, 32, 435–449. [Google Scholar] [CrossRef]
- Brinckmann, J.; Lehmann, B.; Hein, U.; Höhndorf, A.; Mussallam, K.; Weiser, T.; Timm, F. La Géologie et la Minéralisation Primaire de l’or de la Chaîne Kibarienne, Nord-Ouest du Burundi, Afrique Orientale; Geologisches Jahrbuch Reihe D, Band D 101; Bundesanstalt für Geowissenschaften und Rohstoffe: Hannover, Germany, 2001; ISBN 3-510-95877-2. [Google Scholar]
- Tack, L.; Wingate, M.T.D.; De Waele, B.; Meert, J.; Belousova, E.; Griffin, B.; Tahon, A.; Fernandez-Alonso, M. The 1375 Ma “Kibaran Event” in Central Africa: Prominent Emplacement of Bimodal Magmatism under Extensional Regime. Precambrian Res. 2010, 180, 63–84. [Google Scholar] [CrossRef]
- Fernandez-Alonso, M.; Cutten, H.; De Waele, B.; Tack, L.; Tahon, A.; Baudet, D.; Barritt, S.D. The Mesoproterozoic Karagwe-Ankole Belt (Formerly the NE Kibara Belt): The Result of Prolonged Extensional Intracratonic Basin Development Punctuated by Two Short-Lived Far-Field Compressional Events. Precambrian Res. 2012, 216–219, 63–86. [Google Scholar] [CrossRef]
- Koegelenberg, C.; Kisters, A.F.M.; Kramers, J.D.; Frei, D. U–Pb Detrital Zircon and 39Ar–40Ar Muscovite Ages from the Eastern Parts of the Karagwe-Ankole Belt: Tracking Paleoproterozoic Basin Formation and Mesoproterozoic Crustal Amalgamation along the Western Margin of the Tanzania Craton. Precambrian Res. 2015, 269, 147–161. [Google Scholar] [CrossRef]
- Nambaje, C.; Williams, I.S.; Satish-Kumar, M.; Sajeev, K. Direct Evidence for Archean Crust in the Western Domain of the Karagwe Ankole Belt, Rwanda: Implications for Neoarchean to Paleoproterozoic Crustal Evolution. Precambrian Res. 2020, 350, 105851. [Google Scholar] [CrossRef]
- Boutakoff, N. Géologie des territoires situés a l’ouest et au nord-ouest du fossé tectonique du Kivu. Mém. Inst. Géologique Univ. Louvain 1939, 9, 7–207. [Google Scholar]
- Safiannikoff, A. Les systèmes de l’Urundi et de la Ruzizi au Kivu et les intrusions granitiques. Ann. Société Géologique Belg. 1950, 63, 87–97. [Google Scholar]
- Peeters, L. Contribution à la géologie des terrains anciens du Rwanda-Urundi et Kivu. Ann. Mus. R. Congo Belge Tervuren Belg.-Sci. Géologiques 1956, 16, 1–197. [Google Scholar]
- Villeneuve, M. Le Précambrien du sud du lac Kivu (République du Zaïre); Université Aix-Marseille III: Marseille, France, 1977. [Google Scholar]
- Villeneuve, M.; Chorowicz, J. Les sillons plissés du Burundien supérieur dans la chaîne Kibarienne d’Afrique centrale. Comptes Rendus Geosci. 2004, 336, 807–814. [Google Scholar] [CrossRef]
- Villeneuve, M.; Guyonnet-Benaize, C. Apports de l’imagerie spatiale à la résolution des structures géologiques en zone équatoriale: Exemples du Précambrien au Kivu (Congo Oriental). Photo Interprétation 2006, 4, 3–22. [Google Scholar]
- Rumvegeri, B.T. Le Precambrien de L’Ouest du Lac Kivu, (Zaire) et sa Place dans L’évolution Géodynamique de L’AFRIQUE Centrale et Orientale. Ph.D. Thesis, Université Lubumbashi, Lubumbashi, Democratic Republic of the Congo, 1987; p. 352. [Google Scholar]
- Cahen, L.; Ledent, D. Précisions sur l’âge, la pétrogenèse et la position stratigraphique des «granites à étain» de l’Est de l’Afrique centrale. Bull. Société Belge Géologie 1979, 88, 33–49. [Google Scholar]
- Vernon-Chamberlain, V.E.; Snelling, N.J. Age and isotope studies on the “arena” granites of SW Uganda. Ann. Mus. R. Congo Belge Tervuren Belg.-Sci. Géologiques 1972, 73, 5–44. [Google Scholar]
- Buchwaldt, R.; Toulkeridis, T.; Todt, W.; Ucakuwun, E.K. Crustal Age Domains in the Kibaran Belt of SW-Uganda: Combined Zircon Geochronology and Sm–Nd Isotopic Investigation. J. Afr. Earth Sci. 2008, 51, 4–20. [Google Scholar] [CrossRef]
- Rumvegeri, B.T.; Katabarwa, J.B. Géochimie des granitoïdes kibariens du Kivu (Est-Zaire) et du Rwanda: Implications géodynamiques. Comptes Rendus L’Académie Sci. Sér. IIa Sci. Terre Planètes 1990, 311, 959–961. [Google Scholar]
- Ledent, D. Données géochronologiques relatives aux granites Kibariens de type A (ou G1) et B (ou G2) du Shaba, du Rwanda, du Burundi et du SW Uganda. Mus. R. Afr. Cent. Tervuren Dép. Géologie Minéralogie Rapp. Annu. 1978, 1, 101–105. [Google Scholar]
- Liégeois, J.-P.; Theunissen, K.; Nzogibwami, E.; Klerkx, J. Granitoïdes syncinématiques kibariens au Burundi: Étude pétrographique, géochimique et géochronologique préliminaire. Ann. Société Géologique Belg. 1982, 105, 345–356. [Google Scholar]
- Brinckmann, J.; Lehmann, B. Exploration de la Bastnaesite-Monazite dans la Région de Gakura-Burundi; German Geological Survey: Hannover, Germany, 1983; p. 157. [Google Scholar]
- Dewaele, S.; Muchez, P.; Burgess, R.; Boyce, A. Geological Setting and Timing of the Cassiterite Vein Type Mineralization of the Kalima Area (Maniema, Democratic Republic of Congo). J. Afr. Earth Sci. 2015, 112, 199–212. [Google Scholar] [CrossRef]
- Blès, J.L. Etude Photo-Interprétative et Reconnaissance Géologique et Structurale de la Zone Exclusive de Recherches Masisi-Saké; BRGM-SEREMI: Orleans, France, 1972; p. 28. [Google Scholar]
- Pohl, W.L.; Biryabarema, M.; Lehmann, B. Early Neoproterozoic Rare Metal (Sn, Ta, W) and Gold Metallogeny of the Central Africa Region: A Review. Appl. Earth Sci. 2013, 122, 66–82. [Google Scholar] [CrossRef]
- Buttgenbach, M.H. Les minéraux à columbium et tantale du Congo Belge. Bull. Inst. R. Colon. Belge 1933, 4, 209–219. [Google Scholar]
- Steenstra, B. Les pegmatites du Maniema et du Rwanda et les roches de transition entre les aplites et les pegmatites du Maniema. Miner. Deposita 1967, 2, 271–285. [Google Scholar] [CrossRef]
- Varlamoff, N. Gisements de cassiterite de la région de Kalima (Maniema, Congo Belge). Ann. Société Géologique Belg. 1948, 71, 194–237. [Google Scholar]
- Varlamoff, N. Granites et minéralisations au Maniema (Congo Belge). Ann. Société Géologique Belg. 1950, 73, 111–169. [Google Scholar]
- Varlamoff, N. Géologie des gisements stannifères de Symetain (Maniema-Congo Belge). Inst. R. Colon. Belge IRCB Sect. Sci. Nat. Médicales Mém.-8° 1953, 22, 1–55. [Google Scholar]
- Varlamoff, N. Répartition des types de pegmatites autour de la partie Nord-Ouest du grand massif granitique de Nyanza. Ann. Société Géologique Belg. 1954, 78, 1–21. [Google Scholar]
- Varlamoff, N. Tendances actuelles dans l’étude des pegmatites à travers le monde: Revue des travaux sur les pegmatites du Congo Belge et du Ruanda-Urundi; proposition d’une classification des pegmatites du Congo Belge et du Ruanda-Urundi. Ann. Société Géologique Belg. 1954, 77, 245–267. [Google Scholar]
- Varlamoff, N. Transition entre les aplites et les pegmatites dans les zones de contact des massifs granitiques des concessions de Symétain à Kalima (Maniema, Congo Belge). Ann. Société Géologique Belg. 1954, 77, 101–120. [Google Scholar]
- Varlamoff, N. Transitions entre les pegmatites et les filons de quartz dans les massifs granitiques des régions stannifères du Maniema (Congo Belge). Ann. Société Géologique Belg. 1956, 79, 385–403. [Google Scholar]
- Varlamoff, N. Central and West African Rare-Metal Granitic Pegmatites, Related Aplites, Quartz Veins and Mineral Deposits. Miner. Depos. 1972, 7, 202–216. [Google Scholar] [CrossRef]
- Bertossa, A. La pegmatite de Buranga. Bull. Serv. Geol. Rwandaise 1965, 2, 1–5. [Google Scholar]
- Brinckmann, J. The post Kibaran tin and Tungsten mineralization in north Burundi (Mulehe and Nyabisaka). IGCP Newsl. 2 1988, 7–9. [Google Scholar]
- Franceschi, G. Primary Gold Mineralization in SW Rwanda. Int. Geol. Correl. Programme Proj. 255 1990, 1, 19–25. [Google Scholar]
- Pohl, W.L. Metallogeny of the Northeastern Kibara Belt, Central Africa—Recent Perspectives. Ore Geol. Rev. 1994, 9, 105–130. [Google Scholar] [CrossRef]
- Romer, R.L.; Lehmann, B. U-Pb Columbite Age of Neoproterozoic Ta-Nb Mineralization in Burundi. Econ. Geol. 1995, 90, 2303–2309. [Google Scholar] [CrossRef]
- Daltry, V.D.C.; von Knorring, O. Type-Mineralogy of Rwanda with Particular Reference to the Buranga Pegmatite. Geol. Belg. 1998, 1, 9–15. [Google Scholar] [CrossRef]
- Lehmann, B.; Melcher, F.; Sitnikova, M.; Rudzindana Munana, J. The Gatumba Rare-Metal Pegmatites: Chemical Signature and Environmental Impact. Etudes Rwandaises 2008, 16, 25–40. [Google Scholar]
- De Clercq, F.; Muchez, P.; Dewaele, S.; Boyce, A.J. The Tungsten Mineralisation at Nyakabingo and Gifurwe (Rwanda): Preliminary Results. Geol. Belg. 2008, 11, 251–258. [Google Scholar]
- Dewaele, S.; Tack, L.; Fernandez-Alonso, M.; Boyce, A.; Muchez, P. Cassiterite Mineralization in Vein-Type Deposits of the Kibara Orogen (Central Africa): Nyamiumba (Rutongo Area, Rwanda). In Proceedings of the 9th Biennal SGA Meeting, Dublin, Ireland, 20–23 August 2007; pp. 1007–1010. [Google Scholar]
- Dewaele, S.; Tack, L.; Fernandez-Alonzo, M.; Boyce, A.; Muchez, P.; Schneider, J.; Cooper, G.; Wheeler, K. Geology and Mineralization of the Gatumba Area, Rwanda: Present State of Knowledge. Etudes Rwandaises 2008, 16, 6–23. [Google Scholar]
- Dewaele, S.; De Clercq, F.; Muchez, P.; Schneider, J.; Burgess, R.; Boyce, A.; Fernandez-Alonso, M. Geology of the Cassiterite Mineralisation in the Rutongo Area, Rwanda (Central Africa): Current State of Knowledge. Geol. Belg. 2010, 13, 91–112. [Google Scholar]
- De Clercq, S.; Chew, D.; O’Sullivan, G.; De Putter, T.; De Grave, J.; Dewaele, S. Characterisation and Geodynamic Setting of the 1 Ga Granitoids of the Karagwe-Ankole Belt (KAB), Rwanda. Precambrian Res. 2021, 356, 106124. [Google Scholar] [CrossRef]
- Melcher, F.; Sitnikova, M.A.; Graupner, T.; Martin, N.; Oberthür, T.; Henjes-Kunst, F.; Gäbler, E.; Gerdes, A.; Brätz, H.; Davis, D.W.; et al. Fingerprinting of Conflict Minerals: Columbite-Tantalite (“Coltan”) Ores. SGA News 2008, 23, 1–14. [Google Scholar]
- Melcher, F.; Graupner, T.; Gäbler, H.-E.; Sitnikova, M.; Henjes-Kunst, F.; Oberthür, T.; Gerdes, A.; Dewaele, S. Tantalum–(Niobium–Tin) Mineralisation in African Pegmatites and Rare Metal Granites: Constraints from Ta–Nb Oxide Mineralogy, Geochemistry and U–Pb Geochronology. Ore Geol. Rev. 2015, 64, 667–719. [Google Scholar] [CrossRef]
- Melcher, F.; Graupner, T.; Oberthür, T.; Schütte, P. Tantalum-(Niobium-Tin) Mineralisation in Pegmatites and Rare-Metal Granites of Africa. S. Afr. J. Geol. 2017, 120, 77–100. [Google Scholar] [CrossRef]
- Lubala, R.T.; Pottier, Y.; Vellutini, P.J. A propos du massif granitique de Kalehe (Kivu-Zaïre). Ann. Fac. Sci. Univ. Lubumbashi 1979, 2, 31–38. [Google Scholar]
- Cahen, L.; Ledent, D.; Villeneuve, M. Existence d’une chaîne plissée Protérozoïque supérieur au Kivu oriental (Zaire). Données géochronologiques relatives au Supergroupe de l’Itombwe. Bull. Société Belge Géologie 1979, 88, 71–83. [Google Scholar]
- Monteyene-Poulaert, G.; Delwiche, R.; Safiannikoff, A.; Cahen, L. Âges de minéralisations pegmatitiques et filoniennes du Kivu méridional (Congo oriental). Indications préliminaires sur les âges de phases pegmatitiques successives. Bull. Société Belge Géologie Paléontol. Hydrol. 1962, 71, 272–295. [Google Scholar]
- Akilimali Maheshe, S. Gitologie, métallogénie et exploitation minière artisanale dans le Kivu: Bref aperçu sur les gisements stanniferes. Cah. BEGE-RDC 2016, 1, 27–32. [Google Scholar]
- Ledent, D.; Cahen, L. Quelques données géochronologiques nouvelles sur les minéraux et roches du Kivu méridional. Mus. R. Afr. Cent. Tervuren Dép. Géologie Minéralogie Rapp. Annu. 1964 1965, 1, 92–94. [Google Scholar]
- Pohl, W.L. “Post-Orogenic” Events within and Nearby the Kibara Belt in Central Africa. IGCP Proj. No 255 Newsl. 1988, 1, 47–50. [Google Scholar]
- Blaise, F.; Boutakoff, N. Note Sur Les Différenciations de Certains Batholites Granitiques Du Kivu. Ann. Société Géologique Belg. 1934, 57, 93–100. [Google Scholar]
- Legraye, M. Relations entre les granites du N-E et de l’E. du Congo Belge et ses minéralisations. Ann. Société Géologique Belg. 1949, 73, 39–49. [Google Scholar]
- Thoreau, J. Pegmatites et minéralisations associées à l’Est du Congo. Ann. Société Géologique Belg. 1949, 73, 257–261. [Google Scholar]
- Agassiz, J.F. Géologie et Pegmatites Stannifères de la Région Mumba-Numbi, Kivu (Congo Belge); Nouvelle Série; Comité National du Kivu: Bruxelles, Belgium, 1954. [Google Scholar]
- Intiomale, M. Cours de Métallogénie et Complément de Géologie du Congo; Kinshasa University: Kinshasa, Democratic Republic of the Congo, 1999. [Google Scholar]
- Ngaboyeka, M.; Sanganyi, N. L’exploitation du Coltan en République Démocratique du Congo: Trafic et Guerre; Rapport du Recherche; Southern African Research Watch: Kinshasa, Democratic Republic of the Congo, 2008. [Google Scholar]
- Makubu, K. Gitologie et Métallogenie du Congo. Notes de Cours; Université de Bukavu: Bukavu, Democratic Republic of the Congo, 2013. [Google Scholar]
- Prigogine, A. Concentration des Minerais de Wolfram et de Niobium-Tantale au Congo Belge et au Ruanda-Urundi; Mémoires in-8°; Nouvelle Série; Académie Royale des Sciences Coloniales, Classe des Sciences Techniques: Bruxelles, Belgium, 1956; Volume 1. [Google Scholar]
- Villeneuve, M. Observations Géologiques sur le Secteur Minier de Kamituga (Sud Kivu). Rapport du Stage de Terrain du 4 au 12 Avril 1972; Département Géologie-Minéralogie de l’INM: Bukavu, Democratic Republic of the Congo, 1972; p. 7. [Google Scholar]
- Villeneuve, M. Etude Géologique du Secteur Minier de Luntukulu (Sud Kivu). Rapport du Stage de Terrain du 1 au 4 Novembre 1971; Département Géologie-Minéralogie de l’INM: Bukavu, Democratic Republic of the Congo, 1972; p. 5. [Google Scholar]
- Ilombe, G.M.; Mukokya, Y.M.; Nzolang, C.; Kalikone, C.B.; Birhenjira, E.M.; Mugaruka, B.T.; Delvaux, D. Géologie et structure du gisement aurifère de Mobale à Kamituga: Contribution à l’étude du Supergroupe du Kivu. Geo-Eco-Trop 2017, 41, 151–168. [Google Scholar]
- De Kun, N. Die Zinn-Niob-Tantal-Lagerstätten Des Bezirks von Nord-Lugulu in Belgisch Kongo. Neues Jahrb. Für Mineral. Abh. 1960, 95, 106–140. [Google Scholar]
- Basimike Ombeni, C.; Ndwasanga Kikukama, J. Contribution à L’étude Géologique de La Partie Nord-Ouest de Nzibira, Cas Des Collines de Tchembeke, Muyeye et Kamagema : Approches Structurale, Pétrographique et Cartographique; Université Officielle de Bukavu (UOB): Bukavu, Democratic Republic of the Congo, 2015. [Google Scholar]
- Pasteels, P. Géologie et Pétrographie de la Région de Kirotshe; Mémoires in-8°; Nouvelle Série; Académie Royale des Sciences d’Outre-Mer, Classe des Sciences Techniques: Bruxelles, Belgium, 1961; Volume 2. [Google Scholar]
- Villeneuve, M. Géologie des Régions de Kalehe, Nyamakubi, Saké, Mumba et Masisi. Rapport de la Mission de Terrain du 6 au 18 Juin 1974; Département de Géologie–Volcanologie de l’IRSAC: Lwiro, Kivu, Zaïre, 1974; p. 14. [Google Scholar]
- Taylor, C.D.; Schulz, K.J.; Doebrich, J.L.; Orris, G.; Denning, P.; Kirschbaum, M.J. Geology and Nonfuel Mineral Deposits of Africa and the Middle East; Open-File Report; Version 1.0; U.S. Geological Survey: Reston, VA, USA, 2009; p. 246. [Google Scholar]
- Caron, J.P.H.; Kampunzu, A.B.; Lwango, B.L.; Manteka, B.; Nkanika, R.W. Les Ressources Minerales d’âge Proterozoique Moyen En Afrique Equatoriale et l’evolution Geodynamique de La Chaine Kibarienne. UNESCO Geol. Econ. Dev. Newsl. 1986, 5, 139–152. [Google Scholar]
- Villeneuve, M. Géologie du synclinal de l’Itombwe (Zaïre oriental) et le problème de l’existence d’un sillon plissé pan-africain. J. Afr. Earth Sci. 1983 1987, 6, 869–880. [Google Scholar] [CrossRef]
- Walemba, K.M.A. Geology, Geochemistry and Tectono-Metallogenic Evolution of the Neoproterozoic Gold Deposits in the Kadubu Area. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2001. [Google Scholar]
- Lehmann, B. Tantalum: Market outlook to 2016. Miner. Depos. 2012, 47, 957–958. [Google Scholar] [CrossRef]
- Simandl, G.J.; Burt, R.O.; Trueman, D.L.; Pardis, S. Economic Geology Models 4. Tantalum and Niobium: Deposits, Resources, Exploration Methods and Market—A Primer for Geoscientists. Geosci. Can. 2018, 452, 85–96. [Google Scholar] [CrossRef] [Green Version]
- De Waele, B.; Wingate, M.T.D.; Fitzsimons, I.C.W.; Mapani, B.S.E. Untying the Kibaran Knot: A Reassessment of Mesoproterozoic Correlations in Southern Africa Based on SHRIMP U-Pb Data from the Irumide Belt. Geology 2003, 31, 509–512. [Google Scholar] [CrossRef]
- Legros, H.; Mercadier, J.; Villeneuve, J.; Romer, R.L.; Deloule, E.; Van Lichtervelde, M.; Dewaele, S.; Lach, P.; Che, X.-D.; Wang, R.-C.; et al. U-Pb Isotopic Dating of Columbite-Tantalite Minerals: Development of Reference Materials and in Situ Applications by Ion Microprobe. Chem. Geol. 2019, 512, 69–84. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villeneuve, M.; Wazi, N.; Kalikone, C.; Gärtner, A. A Review of the G4 “Tin Granites” and Associated Mineral Occurrences in the Kivu Belt (Eastern Democratic Republic of the Congo) and Their Relationships with the Last Kibaran Tectono-Thermal Events. Minerals 2022, 12, 737. https://doi.org/10.3390/min12060737
Villeneuve M, Wazi N, Kalikone C, Gärtner A. A Review of the G4 “Tin Granites” and Associated Mineral Occurrences in the Kivu Belt (Eastern Democratic Republic of the Congo) and Their Relationships with the Last Kibaran Tectono-Thermal Events. Minerals. 2022; 12(6):737. https://doi.org/10.3390/min12060737
Chicago/Turabian StyleVilleneuve, Michel, Nandefo Wazi, Christian Kalikone, and Andreas Gärtner. 2022. "A Review of the G4 “Tin Granites” and Associated Mineral Occurrences in the Kivu Belt (Eastern Democratic Republic of the Congo) and Their Relationships with the Last Kibaran Tectono-Thermal Events" Minerals 12, no. 6: 737. https://doi.org/10.3390/min12060737
APA StyleVilleneuve, M., Wazi, N., Kalikone, C., & Gärtner, A. (2022). A Review of the G4 “Tin Granites” and Associated Mineral Occurrences in the Kivu Belt (Eastern Democratic Republic of the Congo) and Their Relationships with the Last Kibaran Tectono-Thermal Events. Minerals, 12(6), 737. https://doi.org/10.3390/min12060737