Origin of the Bleaching in Lower Cretaceous Continental Red Beds in the Uragen Zn–Pb Deposit, Xinjiang, NW China, and Its Implications for Zn–Pb Mineralization
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geology
2.2. Geology of the Uragen Zn–Pb Deposit
2.3. Bleaching of the Lower Cretaceous Red Beds
3. Samples and Analytical Methods
3.1. Micro-Area X-ray Fluorescence Surface Scan Analysis (μ-XRF)
3.2. Tescan Integrated Mineral Analyzer (TIMA)
3.3. Whole-Rock Geochemistry Analysis
3.4. Mass Balance Calculation
3.5. C-O Isotope Analysis
4. Results
4.1. Petrol–Mineral Composition
4.2. Elemental Distribution
4.3. Whole-Rock Major and Trace Elements
4.4. C-O Isotopic Compositions
5. Discussion
5.1. Origin of the Bleaching
5.2. Implications for Zn–Pb Mineralization
6. Conclusions
- (1)
- The bleaching of red beds is related to regional oil–gas infilling, and the dissolution of hematite pigment may result from the interaction with H2S formed by in situ sulfate reduction in the Uragen Zn–Pb deposit.
- (2)
- Large amounts of Fe and minor Zn were extracted from red beds with little or no sulfates, and the red beds with considerable sulfate may be a sink for leached ore metals during the bleaching process.
- (3)
- The bleaching is pre-mineralization alteration, and the former accumulation of iron sulfides and reduced sulfur during the bleaching process may provide chemical traps for later sandstone-hosted Zn–Pb mineralization.
- (4)
- The bleached zones with high ∑S contents are the favorable prospective targets of the Uragen-style sandstone-hosted Zn–Pb deposits.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Qiu, X.; Wu, B.; Zhao, H. Subdivisions of the Central-east Asia multi-energy minerals metallogenetic domain and types of those basins. Energy Explor. Exploit. 2009, 27, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Fang, W.; Jia, R.; Wang, L. Types of basin fluids, mechanism of discolored alterations and metal mineralizations of glutenite-type Cu-Pb-Zn-U deposits in intercontinental red-bed basin of the western Tarim basin. J. Earth Sci. Environ. 2017, 39, 585–619, (In Chinese with English Abstract). [Google Scholar]
- Fang, W.; Wang, L.; Jia, R. Mosaic tectonics of Mesozoic to Cenozoic basin-mountain-plateau in the western Tarim basin: Glutenite-type Cu-Pb-Zn-celesite-U-coal metallogenic system. J. Earth Sci. Environ. 2018, 40, 663–705, (In Chinese with English Abstract). [Google Scholar]
- Fang, W.; Wang, L.; Lu, J.; Li, T.; Jia, R. Mesozoic-Cenozoic sedimentary basin, foreland fold-and-thrust mineralization regularities of copper-lead-zinc-celesite-uranium-cocal in Wulagen, Xinjiang, Chian. Geotecton. Metallog. 2020, 44, 881–912, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.; Yang, L.; Deng, J.; Wu, B.; Li, Z.; Wang, M. Accumulation system of cohabitating multi-energy minerals and their comprehensive exploration in sedimentary basin-a case study of Ordos basin, NW China. Acta Geol. Sin. 2014, 88, 815–824, (In Chinese with English Abstract). [Google Scholar]
- Chan, M.A.; Parry, W.T.; Bowman, J.R. Diagenetic hematite and manganese oxides and fault-related fluid flow in Jurassic sandstones, southeastern Utah. Am. Assoc. Pet. Geol. Bull. 2000, 84, 1281–1310. [Google Scholar]
- Beitler, B.; Chan, M.A.; Parry, W.T. Bleaching of Jurassic Navajo Sandstone on Colorado Plateau Laramide highs: Evidence of exhumed hydrocarbon supergiants? Geology 2003, 31, 1041–1044. [Google Scholar] [CrossRef]
- Box, S.E.; Syusyura, B.; Seltmann, R.; Creaser, R.A.; Dolgopolova, A.; Zientek, M.L.; Hedenquist, J.W.; Harris, M.; Camus, F. Dzhezkazgan and associated sandstone copper deposits of the Chu-Sarysu Basin, Central Kazakhstan. Spec. Publ. Soc. Econ. Geol. 2012, 16, 303–328. [Google Scholar]
- Ma, Y.; Liu, C.; Zhao, J.; Huang, L.; Yu, L.; Wang, J. Characteristics of bleaching of sandstone in northeast of Ordos Basin and its relationship with natural gas leakage. Sci. China Ser. D Earth Sci. 2007, 50 (Suppl. S2), 153–164. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, C.; Lei, K. Green altered sandstone related to hydrocarbon migration from the uranium deposits in the northern Ordos Basin, China. Ore Geol. Rev. 2019, 109, 482–493. [Google Scholar] [CrossRef]
- Song, Y.; Hou, Z.; Xue, C.; Huang, S. New Mapping of the World-Class Jinding Zn-Pb Deposit, Lanping Basin, Southwest China: Genesis of Ore Host Rocks and Records of Hydrocarbon-Rock Interaction. Econ. Geol. 2020, 115, 981–1002. [Google Scholar] [CrossRef]
- Wang, L.; Ye, L.; Liu, Z. The “bleaching of sandstone” characteristics and its implications of the Kangxi lead-zinc deposit in Wuqia county, Xinjiang. Northwestern Geol. 2016, 49, 91–98, (In Chinese with English Abstract). [Google Scholar]
- Gao, R.; Xue, C.; Zhao, X.; Chen, X.; Li, Z.; Symons, D. Source and possible leaching process of ore metals in the Uragen sandstone-hosted Zn-Pb deposit, Xinjiang, China: Constraints from lead isotopes and rare earth elements geochemistry. Ore Geol. Rev. 2019, 106, 56–78. [Google Scholar] [CrossRef]
- Surdam, R.C.; Jiao, Z.S.; Macgowan, D.B. Redox reactions involving hydrocarbons and mineral oxidants: A mechanism for significant porosity enhancement in sandstones. Am. Assoc. Pet. Geol. Bull. 1993, 83, 1509–1518. [Google Scholar]
- Rainoldi, A.L.; Franchini, M.; Pons, G.; Giusiano, A.; Cesaretti, N. The Role of Hydrocarbons in the Genesis of the Sediment-Hosted Stratiform Copper Deposits, Neuquén Basin (Argentina). In Proceedings of the 13th SGA Biennial Meeting, Nancy, France, 24–27 August 2015; pp. 1989–1992. [Google Scholar]
- Parnell, J.; Wang, X.; Raab, A.; Feldmann, J.; Brolly, C.; Michie, R.; Armstrong, J. Metal flux from dissolution of iron oxide grain coatings in sandstones. Geofluids 2021, 2021, 5513490. [Google Scholar] [CrossRef]
- Xue, C.; Chi, G.; Li, Z.; Dong, X. Geology, geochemistry and genesis of the Cretaceous and Paleocene sandstone- and conglomerate-hosted Uragen Zn-Pb deposit, Xinjiang, China: A review. Ore Geol. Rev. 2014, 63, 328–342. [Google Scholar] [CrossRef]
- Yang, B. Red bed Cu-Pb-Zn deposits and mineralization of hot brine in continental red bed basin. Geol. China 2018, 45, 441–455, (In Chinese with English Abstract). [Google Scholar]
- Gao, Y.; Zhang, Z.; Dong, F.; Wang, Z. Trace element geochemistry and S-Pb isotope compositions of the Wulagen Pb-Zn deposit, Xinjiang Province, China. Acta Geol. Sin. Engl. Ed. 2014, 88 (Suppl. S2), 154–155. [Google Scholar] [CrossRef]
- Li, P.; Hu, Y.; Dong, C.; Ren, T.; Guan, S. Characteristics of lead isotopic compositions of sulfides from the Uragen Pb-Zn deposit in Xinjiang, China. Bull. Mineral. Petrol. Geochem. 2020, 39, 1325–1340, (In Chinese with English Abstract). [Google Scholar]
- Liu, Z.; Chen, Z.; Han, F.; Chen, B.; Zhou, Y.; Cui, L.; Jiang, R.; Li, L. Preliminary analysis on the relationship between oil and gas reduction signs and mineralization in the Wulagen lead-zinc deposit in Kashi, Xinjiang. Miner. Depos. 2010, 29 (Suppl. S1), 1049–1050. (In Chinese) [Google Scholar]
- Dong, X.; Xue, C.; Li, Z.; Liu, Z. Characteristics and geological significances of the organic matter in the Wulagen Zn-Pb deposit, Kashi sag, Xinjiang. Earth Sci. Front. 2013, 20, 129–145, (In Chinese with English Abstract). [Google Scholar]
- Han, F.; Chen, Z.; Liu, Z.; Chen, B.; Cui, L.; Ding, W.; Jiang, R.; Li, L. Organic geochemistry of WulagenPb-Zn deposit in southwest Tianshan mountains and its implications. Miner. Depos. 2013, 32, 591–602, (In Chinese with English Abstract). [Google Scholar]
- Zhu, X.; Wang, J.; Liu, Z.; Fang, T. Geologic characteristics and the genesis of the Wulagen lead-zinc deposit, Xinjiang, China. Acta Geol. Sin. 2010, 84, 694–702, (In Chinese with English Abstract). [Google Scholar]
- Zhou, X.; Luo, J.; Mai, G. Structural Characteristics and Oil and Gas Geology in the Kashi Sag and Surrounding Areas in the Tarim Basin; Petroleum Industry Publishing House: Beijing, China, 2005; pp. 1–233, (In Chinese with English Abstract). [Google Scholar]
- Sobel, E.R.; Chen, J.; Schoenbohm, L.M.; Thiede, R.; Stockli, D.F.; Sudo, M.; Strecker, M.R. Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen. Earth Planet. Sci. Lett. 2013, 363, 204–218. [Google Scholar] [CrossRef]
- Zhao, M.; Xia, X.; Qin, S.; Song, Y.; Liu, S. Gas source study of Ake well 1 resource in Tarim basin. Nat. Gas Ind. 2003, 2, 31–33, (In Chinese with English Abstract). [Google Scholar]
- Hu, J.; Cui, J. Geochemical analysis of crude oils and oil sand in the Kashi Sag, Tarim basin. Sci. Technol. Eng. 2015, 15, 122–129, (In Chinese with English Abstract). [Google Scholar]
- Li, Z.; Xue, C.; Dong, X.; Liu, Z.; Zhong, T.; Qi, S. Ore geology, S- and Pb- isotopic compositions of the Wulagen Zn-Pb deposit, Wuqia county, Xinjiang. Earth Sci. Front. 2013, 20, 40–54, (In Chinese with English Abstract). [Google Scholar]
- Gao, R.; Xue, C.; Chi, G.; Zhao, X.; Man, R.; Ren, D. Provenance of the uppermost clastic rocks of the Lower Cretaceous Kezilesu Group from the Ulugqat Basin, Xinjiang, NW China and its tectonic implications: Insights from sedimentary records and detrital zircon U-Pb geochronology. Geol. J. 2020, 55, 2080–2109. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, P.; Zhu, X.; Chen, Z.; Chen, B.; Qi, S.; Ye, L.; Yu, Z.; Ren, J. Ore-forming geological characteristics and metallogenic model on Wulagen lead-zinc deposit, Xinjiang. Miner. Explor. 2011, 2, 669–680, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.; Zhang, Z.; Zhang, S.; Cheng, Z.; Huang, H.; Ye, J.; Zhao, Z.; Ma, Y.; Santosh, M. Palaeogene sediment-hosted Pb-Zn deposits in SE Asia: The Uragen example. Int. Geol. Rev. 2017, 59, 1–13. [Google Scholar] [CrossRef]
- Ma, W.; Deng, T.; Xu, D.; Chi, G.; Li, Z.; Zhou, Y.; Dong, G.; Wang, Z.; Zou, S.; Qian, Q.; et al. Geological and geochemical characteristics of hydrothermal alteration in the Wangu deposit in the central Jiangnan Orogenic Belt and implications for gold mineralization. Ore Geol. Rev. 2021, 139, 104479. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.; Hanyu, T.; Zhong, Y.; Shi, J.; Liu, X.; Kawabata, H.; Zeng, G.; Xie, L. Magnesium isotopic fractionation during basalt differentiation as recorded by evolved magmas. Earth Planet. Sci. Lett. 2021, 565, 116954. [Google Scholar] [CrossRef]
- Grant, J. The isocon diagram-A simple solution to Gresens’ equation for metasomatic alteration. Econ. Geol. 1986, 81, 1976–1982. [Google Scholar] [CrossRef]
- Friedman, I.; O’Neil, J.R. Compilation of stable isotope fractionation factors of geochemical interest. In Data of Geochemistry, 6th ed.; U.S. Government Publishing Office: Washington, DC, USA, 1977; pp. 13–59. [Google Scholar]
- Chu, H.; Chi, G.; Bosman, S.; Card, C. Diagenetic and geochemical studies of sandstones from drill core DV10-001 in the Athabasca basin, Canada, and implications for uranium mineralization. J. Geochem. Explor. 2015, 148, 206–230. [Google Scholar] [CrossRef]
- Wigley, M.; Kampman, N.; Dubacq, B.; Bickle, M. Fluid-mineral reactions and trace metal mobilization in an exhumed natural CO2 reservoir, Green River, Utah. Geology 2012, 40, 555–558. [Google Scholar] [CrossRef]
- Wigley, M.; Kampman, N.; Chapman, H.J.; Dubacq, B.; Bickle, M.J. In situ redeposition of trace metals mobilized by CO2-charged brines. Geochem. Geophys. Geosystems 2013, 14, 1321–1332. [Google Scholar] [CrossRef]
- Cao, B.F.; Bai, G.P.; Zhang, K.X.; Zhang, L.K.; He, B. A comprehensive review of hydrocarbons and genetic model of the sandstone-hosted Dongsheng uranium deposit, Ordos Basin, China. Geofluids 2016, 16, 624–650. [Google Scholar] [CrossRef] [Green Version]
- Sun, L. Geological Characteristics and Genesis Analysis of Daying Sandstone-Type Uranium Deposit in Ordos Basin. Master’s Thesis, Northwest University, Xi’an, China, 2016; pp. 1–76, (In Chinese with English Abstract). [Google Scholar]
- Pang, K. The Characteristics of In-Situ Stable Isotopes and Their Geological Significance about Sandstone Uranium Deposits in Northern Ordos Basin. Master’s Thesis, Northwest University, Xi’an, China, 2018; pp. 1–106, (In Chinese with English Abstract). [Google Scholar]
- Ma, L. The Researches on the Binary Structure and Geochemical Evidence of Jinding Lead-Zinc Deposit in Yunnan Province. Master’s Thesis, China University of Geosciences, Beijing, China, 2016; pp. 1–68, (In Chinese with English Abstract). [Google Scholar]
- Zheng, H.; Guo, F.; Zhu, Z.; Jiang, Y. Carbon, oxygen and sulfur isotope geochemistry characteristics of the Jinding lead-zinc deposit in Yunnan and their geological significance. Resour. Surv. Environ. 2012, 33, 218–224, (In Chinese with English Abstract). [Google Scholar]
- Tang, Y.; Bi, X.; He, L.; Wu, L.; Feng, C.; Zou, Z.; Tao, Y.; Hu, R. Geochemical characteristics of trace elements, fluid inclusions and carbon-oxygen isotopes of calcites in the Jinding Zn-Pb deposit, Lanping, China. Acta Petrol. Sin. 2011, 27, 2635–2645, (In Chinese with English Abstract). [Google Scholar]
- Garden, I.R.; Guscott, S.C.; Burley, S.D.; Foxford, K.A.; Walsh, J.J.; Marshall, J. An exhumed palaeo-hydrocarbon migration fairway in a faulted carrier system, Entrada Sandstone of SE Utah, USA. Geofluids 2001, 1, 195–213. [Google Scholar] [CrossRef]
- Eichhubl, P.; Davatzes, N.C.; Becker, S.P. Structural and diagenetic control of fluid migration and cementation along the Moab fault, Utah. Am. Assoc. Pet. Geol. Bull. 2009, 93, 653–681. [Google Scholar] [CrossRef] [Green Version]
- Beitler, B.; Parry, W.T.; Chan, M.A. Fingerprints of fluid flow: Chemical diagenetic history of the Jurassic Navajo Sandstone, Southern Utah, USA. J. Sediment. Res. 2005, 75, 547–561. [Google Scholar] [CrossRef]
- Purser, G.; Rochelle, C.A.; Rushton, J.; Pearce, J.M.; Wagner, D. An experimental and analogue study of iron release from red sandstones. Energy Procedia 2014, 63, 3268–3274. [Google Scholar] [CrossRef] [Green Version]
- Maskell, A.; Scott, P.M.; Buisman, I.; Bickle, M. A siltstone reaction front related to CO2- and sulfur-bearing fluids: Integrating quantitative elemental mapping with reactive transport modeling. Am. Mineral. 2018, 103, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Horst, Z.; Andrew, T.; Liu, K.; Luo, X. K-Ar dating of authigenic illite and its applications to study of oil-gas histories of typical sandstone reservoirs, Tarim basin, Northwest China. Earth Sci. Front. 2004, 11, 637–648, (In Chinese with English Abstract). [Google Scholar]
- Zhang, J.; Wang, D.; Wang, Z.; Li, X.; Su, X. Natural gas deposit formation geochemistry of Akmomu gas field, Kashi Sag in Tarim basin. Nat. Gas Geosci. 2005, 16, 507–513, (In Chinese with English Abstract). [Google Scholar]
- Wang, Z.; Zhao, M.; Zhang, S.; Song, Y.; Xiao, Z. A preliminary study on formation of Akemo gas field in the Kashi Sag, Tarim basin. Chin. J. Geol. 2005, 40, 237–247, (In Chinese with English Abstract). [Google Scholar]
- Leach, D.L.; Sangster, D.F.; Kelley, K.D.; Large, R.R.; Garven, G.; Allen, C.R.; Gutzmer, J.; Walters, S. Sediment-hosted lead-zinc deposits: A global perspective. Econ. Geol. 2005, 100, 561–607. [Google Scholar]
- Chen, J.; Wang, B.; Guo, X.; Cao, Z.; Liu, Y.; Geng, F.; Zhang, X.; Xu, H.; Zhao, J. Application of laser in-situ U-Pb dating of calcite to determination of the absolute time of hydrocarbon accumulation in polycyclic superimposed basins: A case study on Tahe oilfield, Tarim basin. Oil Gas Geol. 2021, 42, 1365–1375, (In Chinese with English Abstract). [Google Scholar]
- Lv, X.; Shi, S.; Yang, W.; Hu, H.; Maihemuti, D.; Li, S.; Zhu, X. The key ore-controlling factors of the Wulagen superlarge Zn-Pb deposit, Xinjiang, China. Miner. Explor. 2021, 12, 900–909, (In Chinese with English Abstract). [Google Scholar]
- Saintilan, N.J.; Spangenberg, J.E.; Chiaradia, M.; Chelle-Michou, C.; Stephens, M.B.; Fontboté, L. Petroleum as source and carrier of metals in epigenetic sediment-hosted mineralization. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanz-Robinson, J.; Williams-Jones, A.E. Zinc solubility, speciation and deposition: A role for liquid hydrocarbons as ore fluids for Mississippi Valley Type Zn-Pb deposits. Chem. Geol. 2019, 520, 60–68. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Guo, X.; Williams-Jones, A.E.; Sun, C.J.; Vasyukova, O.; Sugiyama, I.; Fuchs, S.; Pearce, K.; Roback, R. Hydrocarbons as ore fluids. Geochem. Perspect. Lett. 2017, 5, 47–52. [Google Scholar] [CrossRef] [Green Version]
Sample Types | Red Sandstone | Bleached Sandstone (Slightly Mineralized) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample No. | WG18-3 | WG18-4 | WG18-5 | WG18-6 | Average | WG18-1 | WG18-2 | WG18-7 | WG18-8 | Average | |
SiO2 | % | 62.71 | 58.65 | 55.33 | 57.65 | 58.59 | 68.32 | 64.82 | 63.21 | 68.91 | 66.32 |
Al2O3 | % | 6.64 | 6.35 | 5.81 | 5.88 | 6.17 | 7.06 | 6.65 | 6.34 | 6.99 | 6.76 |
FeOT | % | 2.05 | 1.65 | 1.35 | 1.91 | 1.74 | 0.76 | 0.74 | 0.76 | 0.73 | 0.74 |
MgO | % | 0.52 | 0.50 | 0.46 | 0.48 | 0.49 | 0.57 | 0.45 | 0.44 | 0.51 | 0.49 |
CaO | % | 12.21 | 15.65 | 17.77 | 16.23 | 15.46 | 9.22 | 11.79 | 13.01 | 9.54 | 10.89 |
Na2O | % | 0.91 | 0.99 | 0.93 | 0.89 | 0.93 | 1.06 | 0.87 | 0.81 | 0.97 | 0.93 |
K2O | % | 2.85 | 2.46 | 2.26 | 2.45 | 2.51 | 3.37 | 3.26 | 3.18 | 3.49 | 3.32 |
TiO2 | % | 0.351 | 0.308 | 0.243 | 0.247 | 0.287 | 0.305 | 0.209 | 0.267 | 0.294 | 0.269 |
P2O5 | % | 0.068 | 0.059 | 0.052 | 0.054 | 0.058 | 0.063 | 0.058 | 0.059 | 0.061 | 0.060 |
MnO | % | 0.047 | 0.057 | 0.058 | 0.054 | 0.054 | 0.081 | 0.049 | 0.076 | 0.080 | 0.072 |
LOI | % | 10.98 | 13.62 | 15.10 | 14.02 | 13.43 | 8.20 | 10.39 | 11.05 | 8.33 | 9.49 |
SUM | % | 99.34 | 100.28 | 99.36 | 99.87 | 99.71 | 99.00 | 99.28 | 99.20 | 99.91 | 99.35 |
SO3 | % | 0.120 | 0.023 | 0.016 | 0.020 | 0.045 | 0.431 | 0.428 | 0.437 | 0.391 | 0.422 |
FeO | % | 0.41 | 0.41 | 0.27 | 0.34 | 0.36 | 0.36 | 0.63 | 0.56 | 0.29 | 0.46 |
Fe2O3 | % | 1.59 | 1.19 | 1.05 | 1.53 | 1.34 | 0.36 | 0.04 | 0.14 | 0.40 | 0.23 |
Li | ppm | 19.4 | 19.4 | 17.1 | 17.1 | 18.2 | 21.6 | 18.0 | 13.7 | 14.0 | 16.8 |
Be | ppm | 1.54 | 1.29 | 1.17 | 1.34 | 1.33 | 1.28 | 1.45 | 0.95 | 1.12 | 1.20 |
Sc | ppm | 5.8 | 5.6 | 4.8 | 4.9 | 5.3 | 4.7 | 6.3 | 5.3 | 3.9 | 5.1 |
V | ppm | 43 | 32 | 23 | 38 | 34 | 23 | 19 | 20 | 19 | 20 |
Cr | ppm | 54 | 26 | 25 | 22 | 32 | 23 | 21 | 16 | 15 | 19 |
Co | ppm | 6.1 | 5.4 | 5.7 | 5.3 | 5.6 | 3.9 | 4.6 | 5.3 | 4.0 | 4.5 |
Ni | ppm | 14.6 | 12.8 | 12.2 | 14.6 | 13.6 | 10.9 | 12.9 | 11.1 | 8.5 | 10.8 |
Cu | ppm | 24.1 | 8.9 | 5.3 | 8.3 | 11.6 | 23.2 | 13.7 | 4.9 | 5.6 | 11.8 |
Zn | ppm | 288 | 206 | 164 | 182 | 210 | 212 | 144 | 132 | 130 | 154 |
Ga | ppm | 7.23 | 6.44 | 5.78 | 6.19 | 6.41 | 7.32 | 6.79 | 6.40 | 6.35 | 6.71 |
Rb | ppm | 63.6 | 57.2 | 50.6 | 53.1 | 56.1 | 65.1 | 67.8 | 61.5 | 58.8 | 63.3 |
Sr | ppm | 75.9 | 86.3 | 81.7 | 73.3 | 79.3 | 80.4 | 82.9 | 82.8 | 80.6 | 81.7 |
Y | ppm | 14.0 | 12.2 | 10.9 | 11.8 | 12.2 | 13.9 | 32.9 | 14.1 | 12.4 | 18.3 |
Zr | ppm | 199 | 146 | 73 | 103 | 130 | 129 | 134 | 105 | 150 | 130 |
Nb | ppm | 4.8 | 4.1 | 3.7 | 3.6 | 4.1 | 4.4 | 4.0 | 4.1 | 4.0 | 4.1 |
Cs | ppm | 4.73 | 3.81 | 3.26 | 3.86 | 3.91 | 4.42 | 4.07 | 4.07 | 3.68 | 4.06 |
Ba | ppm | 540 | 432 | 395 | 426 | 448 | 483 | 474 | 475 | 470 | 476 |
La | ppm | 16.7 | 15.3 | 13.8 | 14.2 | 15.0 | 16.2 | 15.1 | 14.4 | 13.1 | 14.7 |
Ce | ppm | 27.8 | 20.3 | 18.5 | 21.5 | 22.0 | 29.4 | 24.7 | 25.8 | 24.6 | 26.1 |
Pr | ppm | 3.77 | 2.99 | 2.85 | 3.09 | 3.18 | 3.52 | 3.40 | 3.28 | 3.08 | 3.32 |
Nd | ppm | 14.4 | 12.1 | 11.0 | 12.1 | 12.4 | 14.0 | 12.7 | 12.7 | 11.6 | 12.7 |
Sm | ppm | 2.72 | 2.15 | 2.13 | 2.14 | 2.28 | 2.88 | 3.10 | 2.62 | 2.47 | 2.77 |
Eu | ppm | 0.66 | 0.49 | 0.51 | 0.53 | 0.55 | 0.66 | 0.73 | 0.60 | 0.54 | 0.63 |
Gd | ppm | 2.71 | 2.30 | 2.01 | 2.16 | 2.29 | 2.81 | 4.23 | 2.65 | 2.33 | 3.01 |
Tb | ppm | 0.40 | 0.32 | 0.28 | 0.33 | 0.33 | 0.39 | 0.76 | 0.40 | 0.35 | 0.48 |
Dy | ppm | 2.38 | 1.97 | 1.79 | 1.97 | 2.02 | 2.34 | 4.99 | 2.26 | 1.92 | 2.88 |
Ho | ppm | 0.49 | 0.41 | 0.36 | 0.38 | 0.41 | 0.47 | 1.09 | 0.49 | 0.43 | 0.62 |
Er | ppm | 1.43 | 1.24 | 1.02 | 1.14 | 1.21 | 1.45 | 3.18 | 1.37 | 1.34 | 1.83 |
Tm | ppm | 0.19 | 0.18 | 0.14 | 0.16 | 0.17 | 0.20 | 0.44 | 0.20 | 0.20 | 0.26 |
Yb | ppm | 1.38 | 1.18 | 1.11 | 1.14 | 1.20 | 1.35 | 3.06 | 1.37 | 1.24 | 1.76 |
Lu | ppm | 0.21 | 0.18 | 0.17 | 0.17 | 0.18 | 0.21 | 0.39 | 0.19 | 0.19 | 0.25 |
Hf | ppm | 5.1 | 3.6 | 2.0 | 2.7 | 3.3 | 3.5 | 3.2 | 2.7 | 3.9 | 3.3 |
Ta | ppm | 0.37 | 0.33 | 0.40 | 0.27 | 0.34 | 0.32 | 0.29 | 0.33 | 0.29 | 0.31 |
Pb | ppm | 362.5 | 121.9 | 57.6 | 49.2 | 147.8 | 2868.0 | 456.0 | 877.2 | 2158.0 | 1589.8 |
Th | ppm | 6.82 | 3.75 | 3.09 | 3.44 | 4.28 | 4.58 | 3.65 | 3.82 | 4.28 | 4.08 |
U | ppm | 0.96 | 0.75 | 0.68 | 0.65 | 0.76 | 0.81 | 0.63 | 0.62 | 0.69 | 0.69 |
As | ppm | 37.4 | 6.3 | 4.0 | 6.4 | 13.5 | 22.3 | 9.4 | 11.3 | 12.0 | 13.8 |
Ge | ppm | 0.84 | 0.70 | 0.73 | 0.70 | 0.74 | 0.94 | 0.97 | 0.67 | 0.69 | 0.82 |
Mo | ppm | 3.51 | 1.95 | 1.60 | 1.88 | 2.23 | 2.52 | 16.97 | 1.25 | 1.36 | 5.52 |
Cd | ppm | 0.62 | 0.19 | 0.12 | 0.10 | 0.26 | 0.61 | 0.13 | 0.07 | 0.13 | 0.23 |
In | ppm | 0.024 | 0.015 | 0.008 | 0.009 | 0.014 | 0.012 | 0.006 | 0.010 | 0.004 | 0.008 |
Sn | ppm | 1.6 | 1.4 | 1.2 | 1.0 | 1.3 | 1.5 | 1.4 | 1.2 | 1.2 | 1.3 |
Sb | ppm | 8.66 | 2.18 | 0.96 | 1.19 | 3.25 | 3.42 | 0.52 | 0.58 | 0.76 | 1.32 |
W | ppm | 2.1 | 1.9 | 0.8 | 1.0 | 1.5 | 1.5 | 0.8 | 0.8 | 1.0 | 1.0 |
Tl | ppm | 0.67 | 0.42 | 0.36 | 0.37 | 0.46 | 0.70 | 0.64 | 0.65 | 0.65 | 0.66 |
Bi | ppm | 0.69 | 0.27 | 0.19 | 0.09 | 0.31 | 0.56 | 0.11 | 0.09 | 0.12 | 0.22 |
Sample No. | Location | Lithology | Mineral | δ13Cv-PDB/‰ | δ18Ov-SMOW/‰ |
---|---|---|---|---|---|
CHO-1 | Fifth member of the Lower Cretaceous Kezilesu Group in the south ore zone | Bleached pebbly sandstone | Calcite | −5.50 | 22.16 |
CHO-2 | Calcite | −5.36 | 20.94 | ||
CHO-3 | Calcite | −5.75 | 27.91 | ||
CHO-4 | Calcite | −5.63 | 23.62 | ||
CHO-5 | Calcite | −5.94 | 22.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, R.; Xue, C.; Dai, J.; Man, R. Origin of the Bleaching in Lower Cretaceous Continental Red Beds in the Uragen Zn–Pb Deposit, Xinjiang, NW China, and Its Implications for Zn–Pb Mineralization. Minerals 2022, 12, 740. https://doi.org/10.3390/min12060740
Gao R, Xue C, Dai J, Man R. Origin of the Bleaching in Lower Cretaceous Continental Red Beds in the Uragen Zn–Pb Deposit, Xinjiang, NW China, and Its Implications for Zn–Pb Mineralization. Minerals. 2022; 12(6):740. https://doi.org/10.3390/min12060740
Chicago/Turabian StyleGao, Rongzhen, Chunji Xue, Junfeng Dai, and Ronghao Man. 2022. "Origin of the Bleaching in Lower Cretaceous Continental Red Beds in the Uragen Zn–Pb Deposit, Xinjiang, NW China, and Its Implications for Zn–Pb Mineralization" Minerals 12, no. 6: 740. https://doi.org/10.3390/min12060740
APA StyleGao, R., Xue, C., Dai, J., & Man, R. (2022). Origin of the Bleaching in Lower Cretaceous Continental Red Beds in the Uragen Zn–Pb Deposit, Xinjiang, NW China, and Its Implications for Zn–Pb Mineralization. Minerals, 12(6), 740. https://doi.org/10.3390/min12060740