Effects of Charged Solute-Solvent Interaction on Reservoir Temperature during Subsurface CO2 Injection
Abstract
:1. Introduction
1.1. Separation Distance between the Diffusive Acidic and Alkaline Bulk Effluent Fronts
1.2. Contribution of Soulte-Solute Interaction on Temperature
1.3. Organization of This Article
2. Methodology
2.1. The Born Solvation Model
2.2. Aqueous Phase Thermal Transport
2.3. Transient Finite Element Method Formulation
2.4. Porous Media Flow
2.5. Mixed Finite Element Method Formulation
2.6. Fluid Density Equation of State
2.7. Poroelastic Model
2.8. Reservoir Porosity Model
2.9. Aqueous Phase Mass Transport
2.10. Mineral Kinetics
2.11. Frio Formation Simulated Configuration
2.11.1. Computational Domain
2.11.2. Lithologic Configuration
3. Results and Discussion
4. Conclusions
Funding
Conflicts of Interest
Nomenclature
Aγ | mineral specific surface area, cm2 cm−3 (i.e., cm−1) |
Dj | diffusion coefficient of molecular species j, cm2 s−1 |
Dw | dimensionless density of water = ρw g−1 cm3 |
E | electric (vector) field, N C−1 = V·m−1 |
Ea | Arrhenius model activation energy, J mol−1 |
F | force (vector) field, Nr |
K | permeability of the porous medium, cm2 |
Kγ | equilibrium constant for mineral γ dissolution reaction |
KB | measured depth below the Kelly bushing |
G | second Lame parameter (shear modulus), gram-force cm−2 |
Gγ | mineral reaction rate, mol cm−2 s−1 |
M | molar concentration, mol L−1 |
MB | Biot modulus, gram-force cm−2 |
Mwj | molecular weight of species j, g mol−1 |
Q | test charge, C (Coulombs) |
P | aqueous-phase pressure, bar |
Pi | initial reservoir aqueous-phase pressure, bar |
Pr | aqueous-phase reference pressure, 1 bar |
R | gas constant, 8.31446261815324 J mol−1 K−1 |
ST | aqueous-phase volumetric energy generation rate, J m−3 s−1 |
T | HKF model aqueous-phase temperature, K |
Ti | reservoir aqueous-phase initial temperature, 58.40 °C |
Tr | HKF model aqueous-phase reference temperature, 228K |
U | energy of an electric field E, J (Joules) |
Z | ion valence, integer |
cj | concentration of species j, mol L−1 |
cp | fluid compressibility constant, 5.8 × 10−10 Pa−1 |
specific heat capacity of ion j, J g−1 K−1 | |
specific molar heat capacity of ion j, J mol−1 K−1 | |
e | elementary charge, 1.60217662 × 10−19 C |
eβ | concentration of atoms of element β, mol cm−3 |
f | body force, gram-force |
g | gravitational acceleration, cm s−2 |
specific enthalpy of ion j, J g−1 | |
specific molar enthalpy of ion j, J mol−1 | |
j | aqueous-phase molecular species index |
k | thermal conductivity of H2O, W m−1 K−1 |
ke | Coulomb constant, 8.9875517873681764 ×109 N m2 C−2 |
kγ,diss | forward reaction rate for mineral dissolution |
q | point charge, C |
qres | reservoir fluid source density rate, g cm−3 s−1 |
p | reservoir fluid pressure, gram-force cm−2 |
p0 | initial reservoir fluid pressure, gram-force cm−2 |
u | rock displacement or fluid velocity vector field, cm s−1 |
vres | injectant fluid mass flux into the reservoir, g cm−2 s−1 |
∇z | gravitational direction unit vector, cm |
standard state molar Gibbs free energy of formation of an inner hydration sphere, J mol−1 | |
standard state molar Gibbs free energy of solvation of ion j, J mol−1 | |
standard state molar Gibbs free energy of solvation, J mol−1 | |
standard state molar entropy of solvation, J mol−1 K−1 | |
α | aqueous-phase thermal diffusivity, m2 s−1 |
αBW | Biot–Willis coefficient, dimensionless |
β | element index |
εr | relative permittivity of a medium (e.g., H2O), dimensionless = ε εo−1 |
ε | absolute permittivity of a medium, F m−1 |
εo | permittivity of a vacuum, 8.85 × 10−12 F m−1 |
ϵV | reservoir volumetric strain, dimensionless |
initial reservoir volumetric strain, dimensionless | |
γ | mineral index |
λ | first Lame parameter, gram-force cm−2 |
φ | reservoir porosity, dimensionless |
φ* | effective reservoir porosity, dimensionless |
φ(r) | electric potential at a distance r, V (Volts) |
ρ | density of water, g m−3 |
ρ0 | uncompressed density of reservoir fluid, g cm−3 |
ρres | compressed density of reservoir fluid, g cm−3 |
ρs | overburden saturated rock density, kg m−3 |
μ | dynamic viscosity of reservoir fluid, g cm−1 s−1 |
μJT | Joule–Thomson coefficient, dimensionless |
νβj | elemental stoichiometric conversion factor equal to the number of atoms of element β in molecular solute species j |
νβγ | elemental stoichiometric conversion factor equal to the number of atoms of element β in mineral γ |
νjγ | molecular stoichiometric conversion factor equal to the number of molecules of species j in mineral γ |
ωj | conventional electrostatic Born coefficient ωj |
absolute standard molal Gibbs free energy of solvation of the jth ion, J mol−1 | |
absolute standard molal Gibbs free energy of the H+ ion, 0.5387 J mol−1 | |
ΓD | Dirichlet boundary condition |
ΓN | Neumann boundary condition |
Ψ | H2O solvent singularity pressure, 2600 bar |
Θ | H2O singularity temperature, 228 K |
References
- Hovorka, S.D.; Sakurai, S.; Kharaka, Y.K.; Nance, H.S.; Doughty, C.; Benson, S.M.; Freifeld, B.M.; Trautz, R.C.; Phelps, T.; Daley, T.M. Monitoring CO2 storage in brine formations: Lessons learned from the Frio field test one year post injection. In Proceedings of the 2006 UIC Conference of the Groundwater Protection Council, San Antonio, TX, USA, 23–25 January 2006; Gulf Coast Carbon Center: Washington, DC, USA, 2006. [Google Scholar]
- Kharaka, Y.K.; Cole, D.R.; Hovorka, S.D.; Gunter, W.D.; Knauss, K.G.; Freifeld, B.M. Gas-water-rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins. Geology 2006, 34, 577–580. [Google Scholar] [CrossRef]
- Pruess, K.; Müller, N. Formation dry-out from CO2 injection into saline aquifers: 1. Effects of solids precipitation and their mitigation. Water Resour. Res. 2009, 45, W03402. [Google Scholar] [CrossRef] [Green Version]
- Pruess, K. Formation dry-out from CO2 injection into saline aquifers: 2. Analytical model for salt precipitation. Water Resour. Res. 2009, 45, W03403. [Google Scholar] [CrossRef] [Green Version]
- Paolini, C.; Park, A.; Castillo, J. An investigation of the variation in the sweep and diffusion front displacement as a function of reservoir temperature and seepage velocity with implications in CO2 sequestration. In Proceedings of the 9th Annual International Energy Conversion Engineering Conference, San Diego, CA, USA, 31 July–3 August 2011; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2011. [Google Scholar]
- Park, A.J. Water-rock interaction and reactive-transport modeling using elemental mass-balance approach: I. The methodology. Am. J. Sci. 2014, 314, 785–804. [Google Scholar] [CrossRef]
- Boudreau, B.P. Diagenetic Models and Their Implementation: Modelling Transport and Reactions in Aquatic Sediments; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Frio Brine Project Data, Frio Brine Pilot Study, Gulf Coast Carbon Center, Bureau of Economic Geology, Jackson School of Geosciences; The University of Texas at Austin, Regional Carbon Sequestration Partnership: Austin, TX, USA, 2018. Available online: https://edx.netl.doe.gov/dataset/frio-brine-project-data (accessed on 15 April 2022). [CrossRef]
- Carneiro, J.N.E.; Pasqualette, M.A.; Reyes, J.F.R.; Krogh, E.; Johansen, S.T.; Ciambelli, J.R.P.; Rodrigues, H.T.; Fonseca, R. Numerical Simulations of High CO2 Content Flows in Production Wells, Flowlines and Risers. In Proceedings of the OTC Brasil. Offshore Technology Conference, Rio de Janeiro, Brazil, 4–7 May 2015; p. 12. [Google Scholar]
- Helgeson, H.C.; Kirkham, D.H.; Flowers, G.C. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb. Am. J. Sci. 1981, 281, 1249–1516. [Google Scholar]
- Bjerrum, N. Neuere Anschauungen über Elektrolyte. Ber. Der Dtsch. Chem. Ges. A B Ser. 1929, 62, 1091–1103. [Google Scholar] [CrossRef]
- Born, M. Volumen und Hydratationswärme der Ionen. Z. Für Phys. 1920, 1, 45–48. [Google Scholar] [CrossRef]
- Johnson, J.W.; Norton, D. Critical phenomena in hydrothermal systems: State, thermodynamic, electrostatic, and transport properties of H2O in the critical region. Am. J. Sci. 1991, 291, 541–648. [Google Scholar] [CrossRef]
- Anderson, G.M. Thermodynamics of Natural Systems, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Griffiths, D.J. Introduction to Electrodynamics, 4th ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Marini, L. Geological Sequestration of Carbon Dioxide, Volume 11 Thermodynamics, Kinetics, and Reaction Path Modeling, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Tanger, J.C.; Helgeson, H.C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures; revised equations of state for the standard partial molal properties of ions and electrolytes. Am. J. Sci. 1988, 288, 19–98. [Google Scholar] [CrossRef]
- Shock, E.L.; Oelkers, E.H.; Johnson, J.W.; Sverjensky, D.A.; Helgeson, H.C. Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures. Effective electrostatic radii, dissociation constants and standard partial molal properties to 1000 °C and 5 kbar. J. Chem. Soc. Faraday Trans. 1992, 88, 803–826. [Google Scholar] [CrossRef]
- Cherie. Thermodynamic Treatment of Ion-Solvent-Interactions: The Born Model. 2014. Available online: https://www.scribd.com/document/184980407/Born-Solvation-from-Cherie (accessed on 15 April 2022).
- Johnson, J.W.; Oelkers, E.H.; Helgeson, H.C. SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. Comput. Geosci. 1992, 18, 899–947. [Google Scholar] [CrossRef]
- Bangerth, W.; Hartmann, R.; Kanschat, G. deal. II—A general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 2007, 33, 24. [Google Scholar] [CrossRef]
- Ganis, B.; Mear, M.E.; Sakhaee-Pour, A.; Wheeler, M.F.; Wick, T. Modeling fluid injection in fractures with a reservoir simulator coupled to a boundary element method. Comput. Geosci. 2014, 18, 613–624. [Google Scholar] [CrossRef]
- Huang, Z.Q.; Winterfeld, P.H.; Xiong, Y.; Wu, Y.S.; Yao, J. Parallel simulation of fully-coupled thermal-hydro-mechanical processes in CO2 leakage through fluid-driven fracture zones. Int. J. Greenh. Gas Control. 2015, 34, 39–51. [Google Scholar] [CrossRef]
- Gregory, A.R.; Kendall, K.K.; Lawal, A.S. Study Effects of Geopressured-Geothermal Subsurface Environment on Elastic Properties of Texas Gulf Coast Sandstones and Shales Using Well Logs, Core Data, and Velocity Surveys; Bureau of Economic Geology: Austin, TX, USA, 1980. [Google Scholar]
- Molina, O.; Vilarrasa, V.; Zeidouni, M. Geologic Carbon Storage for Shale Gas Recovery. Energy Procedia 2017, 114, 5748–5760. [Google Scholar] [CrossRef] [Green Version]
- Bruno, M.S.; Nakagawa, F.M. Pore pressure influence on tensile fracture propagation in sedimentary rock. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1991, 28, 261–273. [Google Scholar] [CrossRef]
Zone | Injection Well (ft, m) | Observation Well (ft, m) |
---|---|---|
Top “A” sandstone | ||
Top “B” Shale | ||
Top “B” Sandstone | −4966, −1514 | −4938, −1505 |
Top “C” shale | −4978, −1517 | −4950, −1509 |
Top “C” sandstone | −5034, −1534 | −5000, −1524 |
Top Perforation | −5014, −1528 | |
Bottom Perforation | −5034, −1534 | |
Bottom “C” sandstone |
H+ | OH− | SiO2(aq) | K+ | CO2(aq) | HCO3− | CO3−2 | Na+ | Al(OH)3(aq) | Ca+2 | Fe+2 | Mg+2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tc | 54.40 | 25.90 | 5.00 | 9.55 | 5.50 | 5.06 | 4.33 | 6.06 | 4.46 | 3.60 | 3.31 | 3.43 |
Tf | 1.555 | 1.094 | 0.500 | 0.409 | 0.325 | 0.275 | 0.199 | 0.297 | 0.243 | 0.179 | 0.150 | 0.144 |
D | 1.6 × 10−4 | 9.7 × 10−5 | 3.8 × 10−5 | 3.6 × 10−5 | 2.7 × 10−5 | 2.3 × 10−5 | 1.7 × 10−5 | 2.5 × 10−5 | 2.0 × 10−5 | 1.5 × 10−5 | 1.3 × 10−5 | 1.3 × 10−5 |
a1 | a2 | a3 | a4 | a5 |
0.1470333593 × 102 | 0.2128462733 × 103 | −0.1154445173 × 103 | 0.1955210915 × 102 | −0.8330347980 × 102 |
a6 | a7 | a8 | a9 | a10 |
0.3213240048 × 102 | −0.6694098645 × 101 | −0.3786202045 × 102 | 0.6887359646 × 102 | −0.2729401652 × 102 |
Mineral | Volume Fraction | Grain Radius, mm |
---|---|---|
Shale | ||
Calcite, CaCO3 | 0.20 | 0.001 |
Quartz, SiO2 | 0.28 | 0.02 |
Halite, NaCl | 0.00 | 0.01 |
K-Feldspar, KAlSi3O8 | 0.01 | 0.03 |
Illite, (0.65 K, 0.08 Na) (2.27 Al, 0.14 Fe, 0.2 Mg)3.41 SiO10(OH)2 | 0.41 | 0.0001 |
Initial shale porosity φ = 10% | ||
Sandstone | ||
Calcite, CaCO3 | 0.00 | 0.001 |
Dolomite, CaMg(CO3)2 | 0.00 | 0.020 |
Quartz, SiO2 | 0.55 | 0.02 |
Halite, NaCl | 0.00 | 0.01 |
K-Feldspar, KAlSi3O8 | 0.13 | 0.03 |
Initial sandstone porosity φ = 32% |
Property | Shale | Sandstone |
---|---|---|
Bulk modulus, GPa [24] | 10.1 | 8.83 |
Shear modulus, GPa [24] | 11.0 | 9.64 |
Biot Modulus, GPa | 8.82 | 12.56 |
Biot–Willis coefficient, αBW | 0.35 | 0.79 |
Poisson’s ratio [25] | 0.43 | 0.32 |
Tensile Strength, Pa [26] | 8.25 × 106 | 8.45 × 106 |
Solute | Concentration, M |
---|---|
Initial Formation Water | |
OH− | 1.0 × 10−7 |
Ca2+ | 2.5 × 10−3 |
Al(OH)3,aq | 1.7 × 10−5 |
K+ | 5.0 × 10−5 |
SiO2,aq | 1.0 × 10−3 |
CO2,aq | 2.0 × 10−3 |
Na+ | 4.0 × 10−1 |
Fe2+ | 1.0 × 10−4 |
Mg2+ | 1.0 × 10−5 |
Cl− | 4.0 × 10−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paolini, C. Effects of Charged Solute-Solvent Interaction on Reservoir Temperature during Subsurface CO2 Injection. Minerals 2022, 12, 752. https://doi.org/10.3390/min12060752
Paolini C. Effects of Charged Solute-Solvent Interaction on Reservoir Temperature during Subsurface CO2 Injection. Minerals. 2022; 12(6):752. https://doi.org/10.3390/min12060752
Chicago/Turabian StylePaolini, Christopher. 2022. "Effects of Charged Solute-Solvent Interaction on Reservoir Temperature during Subsurface CO2 Injection" Minerals 12, no. 6: 752. https://doi.org/10.3390/min12060752
APA StylePaolini, C. (2022). Effects of Charged Solute-Solvent Interaction on Reservoir Temperature during Subsurface CO2 Injection. Minerals, 12(6), 752. https://doi.org/10.3390/min12060752