Adsorption and Mechanism of Glycine on the Anatase with Exposed (001) and (101) Facets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Adsorption Experiment
2.3. Simulation Calculation
3. Results and Discussion
3.1. Synthesis of Anatase (TiO2) with Exposed (001) Facets and Characterization of the Sample
3.2. Adsorption of Glycine on Different Anatase Minerals and Influencing Factors
3.3. Spectroscopic Analysis of the Adsorption of Glycine on Different Anatase Minerals
3.3.1. Raman Spectroscopy Analysis
3.3.2. XPS Analysis
3.4. Analysis of the Adsorption Mechanism Based on a Molecular Simulation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Greiner, E.; Kumar, K.; Sumit, M.; Giuffre, A.; Zhao, W.; Pedersen, J.; Sahai, N. Adsorption of L-glutamic acid and L-aspartic acid to γ-Al2O3. GeCoA 2014, 133, 142–155. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, Q.; Huang, X.X.; Yun, J.; Hu, Q.; Yang, G. Adsorption of amino acids at clay surfaces and implication for biochemical reactions: Role and impact of surface charges. Colloids Surf. B Biointerfaces 2019, 183, 110458. [Google Scholar] [CrossRef] [PubMed]
- Gallori, E.; Benedetti, E.; Bramanti, E.; Franchi, M.; Orioli, P.L.; Vettori, C. Studies on the adsorption and binding of nucleic acids on clay minerals. Orig. Life Evol. Biosph. 1996, 26, 254–255. [Google Scholar] [CrossRef]
- Benetoli, L.O.; de Souza, C.M.; da Silva, K.L.; de Souza, I.G., Jr.; de Santana, H.; Paesano, A., Jr.; da Costa, A.C.; Zaia, C.T.; Zaia, D.A. Amino acid interaction with and adsorption on clays: FT-IR and Mossbauer spectroscopy and X-ray diffractometry investigations. Orig. Life Evol. Biosph. 2007, 37, 479–493. [Google Scholar] [CrossRef]
- Kitadai, N.; Yokoyama, T.; Nakashima, S. In situ ATR-IR investigation of L-lysine adsorption on montmorillonite. J. Colloid Interface Sci. 2009, 338, 395–401. [Google Scholar] [CrossRef] [PubMed]
- de Castro Silva, F.; Lima, L.C.B.; Silva-Filho, E.C.; Fonseca, M.G.; Lambert, J.-F.; Jaber, M. A comparative study of alanine adsorption and condensation to peptides in two clay minerals. Appl. Clay Sci. 2020, 192, 105617. [Google Scholar] [CrossRef]
- Jaber, M.; Georgelin, T.; Bazzi, H.; Costa-Torro, F.; Lambert, J.-F.; Bolbach, G.; Clodic, G. Selectivities in Adsorption and Peptidic Condensation in the (Arginine and Glutamic Acid)/Montmorillonite Clay System. J. Phys. Chem. C 2014, 118, 25447–25455. [Google Scholar] [CrossRef]
- Ramos, M.E.; Huertas, F.J. Adsorption of glycine on montmorillonite in aqueous solutions. Appl. Clay Sci. 2013, 80–81, 10–17. [Google Scholar] [CrossRef]
- Ikhsan, J.; Johnson, B.B.; Wells, J.D.; Angove, M.J. Adsorption of aspartic acid on kaolinite. J. Colloid Interface Sci. 2004, 273, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Porter, T.L.; Eastman, M.P.; Hagerman, M.E.; Price, L.B.; Shand, R.F. Site-Specific Prebiotic Oligomerization Reactions of Glycine on the Surface of Hectorite. J. Mol. Evol. 1998, 47, 373–377. [Google Scholar] [CrossRef]
- Lambert, J.-F.; Stievano, L.; Lopes, I.; Gharsallah, M.; Piao, L. The fate of amino acids adsorbed on mineral matter. Planet. Space Sci. 2009, 57, 460–467. [Google Scholar] [CrossRef]
- Noren, K.; Loring, J.S.; Persson, P. Adsorption of alpha amino acids at the water/goethite interface. J. Colloid Interface Sci. 2008, 319, 416–428. [Google Scholar] [CrossRef]
- Lambert, J.F. Adsorption and polymerization of amino acids on mineral surfaces: A review. Orig. Life Evol. Biosph. 2008, 38, 211–242. [Google Scholar] [CrossRef] [PubMed]
- Takano, Y.; Horiuchi, T.; Marumo, K.; Nakashima, M.; Urabe, T.; Kobayashi, K. Vertical distribution of amino acids and chiral ratios in deep sea hydrothermal sub-vents of the Suiyo Seamount, Izu-Bonin Arc, Pacific Ocean. Org. Geochem. 2004, 35, 1105–1120. [Google Scholar] [CrossRef] [Green Version]
- Tentorio, A.; Canova, L. Adsorption of a-amino acids on spherical TiO2 particles. Colloids Surf. 1989, 39, 311–319. [Google Scholar] [CrossRef]
- Lu, A.; Li, Y.; Jin, S. Interactions between Semiconducting Minerals and Bacteria under Light. Elements 2012, 8, 125–130. [Google Scholar] [CrossRef]
- Jonsson, C.M.; Jonsson, C.L.; Sverjensky, D.A.; Cleaves, H.J.; Hazen, R.M. Attachment of L-glutamate to Rutile (alpha-TiO2): A potentiometric, Adsorption, and Surface Complexation Study. Langmuir 2009, 25, 12127–12135. [Google Scholar] [CrossRef] [PubMed]
- Ustunol, I.B.; Gonzalez-Pech, N.I.; Grassian, V.H. pH-dependent adsorption of alpha-amino acids, lysine, glutamic acid, serine and glycine, on TiO2 nanoparticle surfaces. J. Colloid. Interface Sci. 2019, 554, 362–375. [Google Scholar] [CrossRef] [PubMed]
- Giacomelli, C.E.; Avena, M.J.; Pauli, C.P.D. Aspartic Acid Adsorption onto TiO2 Particles Surface. Experimental Data and Model Calculations. Am. Chem. Soc. J. 1995, 11, 3483–3490. [Google Scholar] [CrossRef]
- Pászti, Z.; Guczi, L. Amino acid adsorption on hydrophilic TiO2: A sum frequency generation vibrational spectroscopy study. Vib. Spectrosc. 2009, 50, 48–56. [Google Scholar] [CrossRef]
- Roddick-Lanzilotta, A.D.; McQuillan, A.J. An in situ Infrared Spectroscopic Study of Glutamic Acid and of Aspartic Acid Adsorbed on TiO(2): Implications for the Biocompatibility of Titanium. J. Colloid Interface Sci. 2000, 227, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Rozza, R.; Ferrante, F. Computational study of water adsorption on halloysite nanotube in different pH environments. Appl. Clay Sci. 2020, 190, 105589. [Google Scholar] [CrossRef]
- Ferrante, F.; Armata, N.; Cavallaro, G.; Lazzara, G. Adsorption Studies of Molecules on the Halloysite Surfaces: A Computational and Experimental Investigation. J. Phys. Chem. C 2017, 121, 2951–2958. [Google Scholar] [CrossRef]
- Ojamae, L.; Aulin, C.; Pedersen, H.; Kall, P.O. IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles. J. Colloid. Interface Sci. 2006, 296, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Szieberth, D.; Maria Ferrari, A.; Dong, X. Adsorption of glycine on the anatase (101) surface: An ab initio study. Phys. Chem. Chem. Phys. 2010, 12, 11033–11040. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Hameed, S.; Siddiqui, M.J.; Haque, M.M.; Umar, K.; Khan, A.; Muneer, M. Electrical and Optical Properties of Nickel- and Molybdenum-Doped Titanium Dioxide Nanoparticle: Improved Performance in Dye-Sensitized Solar Cells. J. Mater. Eng. Perform. 2014, 23, 3184–3192. [Google Scholar] [CrossRef]
- Wang, X.; Xu, H.; Nan, Y.; Sun, X.; Duan, J.; Huang, Y.; Hou, B. Research progress of TiO2 photocathodic protection to metals in marine environment. J Oceanol. Limnol. 2020, 38, 1018–1044. [Google Scholar] [CrossRef]
- Umar, K.; Haque, M.M.; Mir, N.A.; Muneer, M.; Farooqi, I.H. Titanium Dioxide-mediated Photocatalysed Mineralization of Two Selected Organic Pollutants in Aqueous Suspensions. J. Adv. Oxid. Technol. 2013, 16, 252–260. [Google Scholar] [CrossRef]
- Liu, M.; Luo, L.; Dong, F.; Wei, H.; Nie, X.; Zhang, W.; Hu, W.; Ding, C.; Wang, P. Characteristics and mechanism of uranium photocatalytic removal enhanced by chelating hole scavenger citric acid in a TiO2 suspension system. J. Radioanal. Nucl. Chem. 2018, 319, 147–158. [Google Scholar] [CrossRef]
- Dong, Y.; Meng, F. Synthesis and photocatalytic properties of three dimensional laminated structure anatase TiO2/nano-Fe0 with exposed (001) facets. RSC Adv. 2020, 10, 11823–11830. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Meng, F. Effect of triblock copolymers on crystal growth and the photocatalytic activity of anatase TiO2 single crystals. RSC Adv. 2020, 10, 32400–32408. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.G.; Sun, C.H.; Qiao, S.Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H.M.; Lu, G.Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Li, G.; Yang, X.; Yu, J.C. A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets. Chem. Commun. 2009, 29, 4381–4383. [Google Scholar] [CrossRef]
- Fleming, G.J.; Adib, K.; Rodriguez, J.A.; Barteau, M.A.; White, J.M.; Idriss, H. The adsorption and reactions of the amino acid proline on rutile TiO2(110) surfaces. Surf. Sci. 2008, 602, 2029–2038. [Google Scholar] [CrossRef]
- Thomas, A.G.; Flavell, W.R.; Chatwin, C.P.; Kumarasinghe, A.R.; Rayner, S.M.; Kirkham, P.F.; Tsoutsou, D.; Johal, T.K.; Patel, S. Adsorption of phenylalanine on single crystal rutile TiO2(110) surface. Surf. Sci. 2007, 601, 3828–3832. [Google Scholar] [CrossRef]
- Tonner, R. Adsorption of proline and glycine on the TiO2(110) surface: A density functional theory study. ChemPhysChem 2010, 11, 1053–1061. [Google Scholar] [CrossRef]
- YazdanYar, A.; Aschauer, U.; Bowen, P. Adsorption Free Energy of Single Amino Acids at the Rutile (110)/Water Interface Studied by Well-Tempered Metadynamics. J. Phys. Chem. C 2018, 122, 11355–11363. [Google Scholar] [CrossRef]
- Gong, X.Q.; Selloni, A.; Vittadini, A. Density Functional Theory Study of Formic Acid Adsorption on Anatase TiO2(001): Geometries, Energetics, and Effects of Coverage, Hydration, and Reconstruction. J. Phys. Chem. B 2006, 110, 2804–2811. [Google Scholar] [CrossRef]
- Feng, S.; Yang, J.; Zhu, H.; Liu, M.; Zhang, J.; Wu, J.; Wan, J. Synthesis of Single Crystalline Anatase TiO2 (001) Tetragonal Nanosheet-Array Films on Fluorine-Doped Tin Oxide Substrate. J. Am. Ceram. Soc. 2011, 94, 310–315. [Google Scholar] [CrossRef]
- Raghunath, P.; Lin, M.C. Adsorption Configurations and Reactions of Boric acid on a TiO2 Anatase (101) Surface. J. Phys. Chem. C 2008, 112, 8276–8287. [Google Scholar] [CrossRef]
- Filippatos, P.P.; Soultati, A.; Kelaidis, N.; Petaroudis, C.; Alivisatou, A.A.; Drivas, C.; Kennou, S.; Agapaki, E.; Charalampidis, G.; Yusoff, A.; et al. Preparation of hydrogen, fluorine and chlorine doped and co-doped titanium dioxide photocatalysts: A theoretical and experimental approach. Sci. Rep. 2021, 11, 5700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shang, M.; Mi, Y.; Xia, T.; Wallenmeyer, P.; Murowchick, J.; Dong, L.; Zhang, Q.; Chen, X. Influence of the Amount of Hydrogen Fluoride on the Formation of (001)-Faceted Titanium Dioxide Nanosheets and Their Photocatalytic Hydrogen Generation Performance. Chem. Plus Chem. 2014, 79, 1159–1166. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhong, X.; Liu, S.; Li, D.; Han, M. Aminolysis route to monodisperse titania nanorods with tunable aspect ratio. Angew. Chem. Int. Ed. Engl. 2005, 44, 3466–3470. [Google Scholar] [CrossRef] [PubMed]
- Dinh, C.T.; Nguyen, T.D.; Kleitz, F.; Do, T.O. Shape-controlled synthesis of highly crystalline titania nanocrystals. ACS Nano 2009, 3, 3737–3743. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zeng, Y.; Huang, T.; Piao, L.; Liu, M. Controlled Synthesis of Anatase TiO2 Single Crystals with Dominant {001} Facets from TiO2 Powders. ChemPlusChem 2012, 77, 1017. [Google Scholar] [CrossRef]
- Zhao, X.; Jin, W.; Cai, J.; Ye, J.; Li, Z.; Ma, Y.; Xie, J.; Qi, L. Shape- and Size-Controlled Synthesis of Uniform Anatase TiO2 Nanocuboids Enclosed by Active {100} and {001} Facets. Adv. Funct. Mater. 2011, 21, 3554–3563. [Google Scholar] [CrossRef]
- Yang, W.; Li, J.; Wang, Y.; Zhu, F.; Shi, W.; Wan, F.; Xu, D. A facile synthesis of anatase TiO2nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells. Chem. Commun. 2011, 47, 1809–1811. [Google Scholar] [CrossRef]
- Hu, W.; Dong, F.; Zhang, J.; Liu, M.; He, H.; Wu, Y.; Yang, D.; Deng, H. Differently ordered TiO2 nanoarrays regulated by solvent polarity, and their photocatalytic performances. Appl. Surf. Sci. 2018, 442, 298–307. [Google Scholar] [CrossRef]
- Lazzeri, M.; Vittadini, A.; Selloni, A. Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 2001, 63, 011990. [Google Scholar] [CrossRef]
- Alivov, Y.; Fan, Z.Y. A method for fabrication of pyramid-shaped TiO2 nanoparticles with a high {001} facet percentage. J. Phys. Chem. C 2009, 113, 12954–12957. [Google Scholar] [CrossRef]
- Council, N.R. Protein and Amino Acids. In Recommended Dietary Allowances, 10th ed.; National Academies Press: Washington, DC, USA, 1989; pp. 52–77. [Google Scholar]
- Jonsson, C.M.; Jonsson, C.L.; Estrada, C.; Sverjensky, D.A.; Cleaves, H.J.; Hazen, R.M. Adsorption of l-aspartate to rutile (α-TiO2): Experimental and theoretical surface complexation studies. Geochim. Cosmochim. Acta 2010, 74, 2356–2367. [Google Scholar] [CrossRef]
- O’Connor, A.J.; Hokura, A.; Kisler, J.M.; Shimazu, S.; Stevens, G.W.; Komatsu, Y. Amino acid adsorption onto mesoporous silica molecular sieves. Sep. Purif. Technol. 2006, 48, 197–201. [Google Scholar] [CrossRef]
- Lausmaa, J.; Löfgren, P.; Kasemo, B. Adsorption and coadsorption of water and glycine on TiO2. J. Biomed. Mater. Res. 1999, 44, 227–242. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, M.; Lei, Y.; Pan, C.; Xiao, W. Formaldehyde on TiO2 anatase (101): A DFT study. Comput. Mater. Sci. 2012, 51, 389–395. [Google Scholar] [CrossRef]
- Perlovich, G.; Hansen, L.K.; Bauer-Brandl, A. The polymorphism of glycine. Thermochemical and structural aspects. J. Therm. Anal. Calorim. 2001, 66, 699–715. [Google Scholar] [CrossRef]
- Lee, A.Y.; Lee, I.S.; Myerson, A.S. Factors Affecting the Polymorphic Outcome of Glycine Crystals Constrained on Patterned Substrates. Chem. Eng. Technol. 2006, 29, 281–285. [Google Scholar] [CrossRef]
- Seyedhosseini, E.; Ivanov, M.; Bystrov, V.; Bdikin, I.; Zelenovskiy, P.; Shur, V.Y.; Kudryavtsev, A.; Mishina, E.D.; Sigov, A.S.; Kholkin, A.L. Growth and Nonlinear Optical Properties of β-Glycine Crystals Grown on Pt Substrates. Cryst. Growth Des. 2014, 14, 2831–2837. [Google Scholar] [CrossRef]
- Fleming, G.J.; Adib, K.; Rodriguez, J.A.; Barteau, M.A.; Idriss, H. Proline adsorption on TiO2(110) single crystal surface: A study by high resolution photoelectron spectroscopy. Surf. Sci. 2007, 601, 5726–5731. [Google Scholar] [CrossRef]
- Erdem, B.; Hunsicker, R.A.; Simmons, G.W.; Sudol, E.D.; Dimonie, V.L.; El-Aasser, M.S. XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation. Langmuir 2001, 17, 2664–2669. [Google Scholar] [CrossRef]
- Zubavichus, Y.; Fuchs, O.; Weinhardt, L.; Heske, C.; Umbach, E.; Denlinger, J.D.; Grunze, M. Soft X-ray-induced decomposition of amino acids: An XPS, mass spectrometry, and NEXAFS study. Radiat. Res. 2004, 161, 346–358. [Google Scholar] [CrossRef]
- Schmidt, M.; Steinemann, S.G. XPS studies of amino acids adsorbed on titanium dioxide surfaces. Fresenius’ J. Anal. Chem. 1991, 341, 412–415. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, R.; Yang, W.J.L. Scanning tunneling microscopy investigation of L-lysine adsorbed on Cu (001). J. Therm. Anal. Calorim. 2000, 16, 9812–9818. [Google Scholar] [CrossRef]
- Ederer, J.; Janoš, P.; Ecorchard, P.; Tolasz, J.; Štengl, V.; Beneš, H.; Perchacz, M.; Pop-Georgievski, O. Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation. RSC Adv. 2017, 7, 12464–12473. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M. X-ray photoelectron spectroscopy studies on adsorption of amino acids from aqueous solutions onto oxidised titanium surfaces. Arch. Orthop. Trauma Surg. 2001, 121, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Zubavichus, Y.; Zharnikov, M.; Yang, Y.; Fuchs, O.; Heske, C.; Umbach, E.; Tzvetkov, G.; Netzer, F.P.; Grunze, M. Surface chemistry of ultrathin films of histidine on gold as probed by high-resolution synchrotron photoemission. J. Phys. Chem. B 2005, 109, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.Q.; Selloni, A. Reactivity of anatase TiO2 nanoparticles: The role of the minority (001) surface. J. Phys. Chem. B 2005, 109, 19560–19562. [Google Scholar] [CrossRef]
- Roy, R.N.; Gibbons, J.J.; Guilio LaCross, J.; Krueger, C.W. Dissociation constants of the ampholyte glycine in 50 mass% methanol-water from 5 to 55 °C, with related thermodynamic quantities. J. Solut. Chem. 1976, 5, 333–343. [Google Scholar] [CrossRef]
- Sowmiya, M.; Senthilkumar, K. Adsorption of proline, hydroxyproline and glycine on anatase (001) surface: A first-principle study. Theor. Chem. Acc. 2015, 135, 1–8. [Google Scholar] [CrossRef]
- Bates, S.P.; Kresse, G.; Gillan, M.J. The adsorption and dissociation of ROH molecules on TiO2 (110). Surf. Sci. 1998, 409, 336–349. [Google Scholar] [CrossRef]
- Langel, W.; Menken, L. Simulation of the interface between titanium oxide and amino acids in solution by first principles MD. Surf. Sci. 2003, 538, 1–9. [Google Scholar] [CrossRef]
Adsorption Type | Energy (001) | Energy (101) |
---|---|---|
Ti–O + –OOC–CH2–NH3+ | 25.78 | 120.52 |
Ti–O + HCOO–CH2–NH3+ | 97.34 | 37.49 |
Ti–O + –OOC–CH2–NH2 | 124.93 | 45.71 |
Ti–O + NH2–CH2–COO– | 41.11 | 117.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhong, X.; Liu, Y.; Rao, H.; Wei, H.; Hu, W.; Nie, X.; Liu, M. Adsorption and Mechanism of Glycine on the Anatase with Exposed (001) and (101) Facets. Minerals 2022, 12, 798. https://doi.org/10.3390/min12070798
Liu Z, Zhong X, Liu Y, Rao H, Wei H, Hu W, Nie X, Liu M. Adsorption and Mechanism of Glycine on the Anatase with Exposed (001) and (101) Facets. Minerals. 2022; 12(7):798. https://doi.org/10.3390/min12070798
Chicago/Turabian StyleLiu, Zeling, Xiaomei Zhong, Yifan Liu, Hanyun Rao, Hongfu Wei, Wenyuan Hu, Xiaoqin Nie, and Mingxue Liu. 2022. "Adsorption and Mechanism of Glycine on the Anatase with Exposed (001) and (101) Facets" Minerals 12, no. 7: 798. https://doi.org/10.3390/min12070798
APA StyleLiu, Z., Zhong, X., Liu, Y., Rao, H., Wei, H., Hu, W., Nie, X., & Liu, M. (2022). Adsorption and Mechanism of Glycine on the Anatase with Exposed (001) and (101) Facets. Minerals, 12(7), 798. https://doi.org/10.3390/min12070798