Joint Inversion with Borehole and Semi-Airborne TEM Data Based on Equivalent Filament Approximation
Abstract
:1. Introduction
2. Methodology
3. Joint Inversion
3.1. Anomaly Field Extraction
3.2. Joint Inversion Objective Function of Anomaly Field
- (1)
- Give an initial point , allow error , iterations number ;
- (2)
- Solve the linear programming problems , get the optimal solution ;
- (3)
- If , then the optimal solution is considered to have been found, stop the iteration, and select the estimated solution , otherwise, go to step 4;
- (4)
- Obtain the optimal step size factor by one-dimensional search , get the optimal step , set , number of iterations , go to step 2.
4. Numerical Modeling
4.1. Horizontal Conductive Thin Plate Embedded in Half Space
4.2. Inclined Conductive Thin Plate Embedded in Half Space
5. Discussion
5.1. Perturbation of Local Minimum during Inversion
5.2. Conductive Body Is Located below the Depth of the Borehole
5.3. A Model with Two Abnormal Bodies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barnett, C.T. Simple inversion of time-domain electromagnetic data. Geophysics 1984, 49, 925–933. [Google Scholar] [CrossRef]
- Cull, J.P. Rotation and resolution of three-component DHEM data. Explor. Geophys. 1996, 27, 155–159. [Google Scholar] [CrossRef]
- Polzer, B. The role of borehole EM in the discovery and definition of the Kelly Lake Ni-Cu deposit, Sudbury, Canada. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 2000; pp. 1063–1066. [Google Scholar]
- Alan, K. Deep drill hole electromagnetic surveys for nickel/copper sulphides at Sudbury, Canada. Explor. Geophys. 1996, 27, 105–118. [Google Scholar]
- Spicer, B. Geophysical signature of the Victoria property, vectoring toward deep mineralization in the Sudbury Basin. Interpretation 2016, 4, 281–290. [Google Scholar] [CrossRef]
- Duncan, A.C. Interpretation of down-hole transient EM data using current filaments. Explor. Geophys. 1987, 18, 36–39. [Google Scholar] [CrossRef]
- Fullagar, P.K. Inversion of Downhole TEM Data Using Circular Current Filaments. Explor. Geophys. 1987, 18, 341–344. [Google Scholar] [CrossRef]
- Hughes, N.A.; Ravenhurst, W. Three component DHEM surveying at Balcooma. Explor. Geophys. 1996, 27, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Lv, G.Y.; Zhao, J.X.; Chen, X.D.; Zhao, Y. The Method of Surface-borehole TEM Vector Intersection and its Application. Comput. Tech. Geophys. Geochem. Explor. 2007, 29, 162–165. [Google Scholar]
- Meng, Q.X.; Hu, X.Y.; Pan, H.P.; Zhou, F. Numerical analysis of multicomponent responses of surface-hole transient electromagnetic method. Appl. Geophys. 2017, 14, 175–186. [Google Scholar]
- Adamson, M.; Ray, B.; Huizi, A. Using low frequency ground and downhole TDEM to explore for massive sulfide mineralisation in the Carajás mineral province. ASEG Ext. Abstr. 2019, 2019, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Xiao, J. Inversions of surface and borehole data from large-loop transient electromagnetic system over a 1-D earth. Geophysics 2001, 66, 1090–1096. [Google Scholar] [CrossRef]
- Liu, C. Study on 3D Forward Modeling & Inversion of Surface-Borehole Electromagnetic Data. Ph.D. Thesis, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada, 2021. [Google Scholar]
- Yang, D.; Fournier, D.; Kang, S.; Oldenburg, D.W. Deep mineral exploration using multi-scale electromagnetic geophysics: The Lalor massive sulphide deposit case study. Can. J. Earth Sci. 2019, 56, 544–555. [Google Scholar] [CrossRef]
- Eadie, T.; Staltari, G. Introduction to down hole electromagnetic methods. Explor. Geophys. 1987, 18, 247–351. [Google Scholar] [CrossRef]
- Thomas, L. A simple Interpretation Aid for Downhole Time-Domain Electromagnetic Anomalies. Explor. Geophys. 1987, 18, 349–351. [Google Scholar] [CrossRef]
- Wu, J.J.; Zhi, Q.Q.; Li, X.; Yang, Y.; Wang, X.C.; Zhang, J.; Deng, X.H. 3Dinversion method of fixed-loop TEM with three-component pure anomaly response. Prog. Geophys. 2015, 30, 2827–2835. [Google Scholar]
- Wu, J.J.; Li, X.; Zhi, Q.Q.; Qi, Z.P.; Guo, J.L.; Deng, X.H.; Zhang, J.; Wang, X.C.; Yang, Y. Full field apparent resistivity definition of Borehole TEM with electrical source. Chin. J. Geophys. 2017, 60, 1595–1605. [Google Scholar]
- Wu, J.J.; Li, X.; Zhi, Q.Q.; Qi, Z.P.; Guo, J.L.; Deng, X.H. Analysis of three component TEM response characteristic of electric source dill hole TEM. Prog. Geophys. 2017, 32, 1273–1278. [Google Scholar]
- Elliott, P. New airborne electromagnetic Method Provides Fast Deep-target Data Turnaround. Lead. Edge 1996, 15, 309–310. [Google Scholar] [CrossRef]
- Elliott, P. The Principles and Practice of FLAIRTEM. Explor. Geophys. 1998, 29, 58–60. [Google Scholar] [CrossRef]
- Mogi, T.; Tanaka, Y.; Kusunoki, K.; Morikawa, T.; Jomori, N. Development of Grounded Electrical Source Airborne Transient EM (GREATEM). Explor. Geophys. 1998, 29, 61–64. [Google Scholar] [CrossRef]
- Mogi, T.; Kusunoki, K.; Kaieda, H.; Ito, H.; Joromi, A.; Yuuki, Y. Grounded Electrical source Airborne Transient Electromagnetic (GREATEM) Survey of mount Bandai, North-eastern Japan. Explor. Geophys. 2009, 40, 1–7. [Google Scholar] [CrossRef]
- Lin, J.; Xue, G.Q.; Li, X. Technological innovation of semi-airborne electromagnetic detection method. Chin. J. Geophys. 2021, 64, 2995–3004. [Google Scholar]
- Ma, Z.J.; Di, Q.Y.; Lei, D.; Gao, Y.; Zhu, J.; Xue, G. The optimal survey area of the semi-airborne TEM method. J. Appl. Geophys. 2020, 172, 103884. [Google Scholar] [CrossRef]
- Smirnova, M.; Becken, M.; Nittinger, C.; Yogeshwar, P.; Mörbe, W.; Rochlitz, R.; Steuer, A.; Costabel, S.; Smirnov, M.Y.; the DESMEX Working Group. A novel semi-airborne frequency-domain CSEM system.Three-dimensional inversion of semi-airborne data from the flight experiment over an ancient mining areanear Schleiz, Germany. Geophysics 2019, 84, E281–E292. [Google Scholar] [CrossRef]
- Smith, R.S.; Annan, P.; McGowan, P.D. A Comparison of Data from Airborne, Semi-airborne, and Ground Electromagnetic Systems. Geophysics 2001, 66, 1379–1385. [Google Scholar] [CrossRef]
- Yin, C.C.; Zhang, B.; Liu, Y.H.; Ren, X.Y.; Qi, Y.F.; Pei, Y.F.; Qiu, C.K.; Huang, X.; Huang, W.; Miao, J.J. Review on airborne EM technology and developments. Chin. J. Geophys. 2015, 58, 2637–2653. [Google Scholar]
- Di, Q.Y.; Zhu, R.X.; Xue, G.Q.; Yin, C.C.; Li, X. New development of the Electromagnetic (EM) methods for deep exploration. Chin. J. Geophys. 2019, 62, 2128–2138. [Google Scholar]
- Xue, G.Q.; Zhang, L.B.; Zhou, N.N.; Chen, W.Y. Developments measurements of TEM sounding in China. Geol. J. 2020, 55, 1636–1643. [Google Scholar] [CrossRef]
- Li, X.; Hu, W.M.; Xue, G.Q. 3D modeling of multi-radiation source semi-airborne transient electromagnetic response. Chin. J. Geophys. 2021, 64, 716–723. [Google Scholar]
- Li, X.; Zhang, Y.Y.; Lu, X.S.; Yao, W.H. Inverse Synthetic Aperture Imaging of Surface to airborne transient electromagnetic method with a galvanic source. Chin. J. Geophys. 2015, 58, 277–288. [Google Scholar]
- Ji, Y.J.; Li, S.Y.; Yu, S.B.; Zhu, K.G.; Zhou, F.D.; Wang, Y.Z.; Wang, S.L.; Liu, H.J.; Ren, G.Q.; Lin, J. A study on time-domain AEM testing and calibration method based on anomaly loop. Chin. J. Geophys. 2011, 54, 2690–2697. [Google Scholar]
- Zhi, Q.Q.; Wu, J.J.; Wang, X.C.; Yang, Y.; Zhang, J.; Deng, X.H. Three-component interpretation technique of fixed source TEM and its experimental application in metallic ore district. Geophys. Geochem. Explor. 2016, 40, 798–803. [Google Scholar]
- Jiang, B.Y. A Practical Near Zone Magnetic Source Transient Electromagnetic Exploration; Geological Publishing House: Beijing, China, 1998. [Google Scholar]
- Dyck, A.V. The role of simple computer models in interpretations of wide-band, drill-hole electromagnetic surveys in mineral exploration. Geophysics 1984, 49, 957. [Google Scholar] [CrossRef]
- Nabighian, M.N. Quasi-static transient response of a conducting half-space—An approximate representation. Geophysics 1979, 44, 1700–1705. [Google Scholar] [CrossRef]
Chn | t/ms | Chn | t/ms | Chn | t/ms | Chn | t/ms |
---|---|---|---|---|---|---|---|
1 | 0.0865 | 8 | 0.293 | 15 | 0.991 | 22 | 3.336 |
2 | 0.105 | 9 | 0.35 | 16 | 1.178 | 23 | 3.965 |
3 | 0.123 | 10 | 0.415 | 17 | 1.401 | 24 | 4.715 |
4 | 0.145 | 11 | 0.494 | 18 | 1.666 | 25 | 5.608 |
5 | 0.174 | 12 | 0.588 | 19 | 1.981 | 26 | 6.670 |
6 | 0.208 | 13 | 0.701 | 20 | 2.357 | 27 | 7.932 |
7 | 0.246 | 14 | 0.833 | 21 | 2.804 | 28 | 9.435 |
Channel | r (m) | I (mA) | x (m) | y (m) | z (m) | θ (°) | φ (°) | Fit Error % |
---|---|---|---|---|---|---|---|---|
10 15 20 25 | 143.34 139.31 135.56 133.93 | 119.92 80.07 31.18 3.26 | −6.14 −6.30 −6.63 −6.90 | 2.50 2.06 1.39 0.98 | −150.01 −150.09 −150.07 −150.10 | 0.18 0.26 | 0 0 359.53 0.00 | 1.57 1.54 1.49 1.47 |
Initial value | 100 | 100 | 100 | 100 | −100 | 0 | 0 | 0 |
Line | Chn | r (m) | I (mA) | x (m) | y (m) | z (m) | θ (°) | φ (°) | Fit Error % |
---|---|---|---|---|---|---|---|---|---|
L0 | 10 | 131.4 | 140.64 | −6.14 | 0.00 | −157.04 | 0.00 | 0.00 | 0.24 |
L0 | 15 | 126.2 | 96.08 | −6.30 | 0.00 | −157.50 | 0.01 | 0.00 | 0.22 |
L0 | 20 | 120.9 | 38.62 | −6.63 | 0.00 | −158.08 | 0.01 | 0.00 | 0.22 |
L0 | 25 | 118.1 | 4.13 | −6.90 | 0.00 | −158.47 | 0.01 | 0.00 | 0.22 |
L100 | 10 | 165.14 | 71.39 | 0.57 | −2.17 | −118.25 | 3.62 | 0.55 | 4.28 |
L100 | 15 | 131.62 | 92.99 | 0.02 | −0.77 | −159.62 | 2.14 | 0.01 | 0.85 |
L100 | 20 | 111.04 | 48.83 | −0.20 | 3.48 | −169.57 | 2.14 | 0.00 | 1.69 |
L100 | 25 | 91.99 | 7.87 | −0.48 | −0.66 | −179.77 | 2.21 | 0.31 | 2.37 |
L200 | 10 | 150.88 | 114.64 | −0.09 | −8.33 | −153.76 | 0.37 | 0.00 | 1.23 |
L200 | 15 | 136.58 | 89.48 | −0.11 | −7.24 | −158.60 | 0.43 | 0.00 | 1.37 |
L200 | 20 | 104.58 | 55.96 | −0.24 | 0.26 | −168.97 | 0.42 | 0.00 | 1.77 |
L200 | 25 | 69.73 | 13.47 | −0.09 | 1.53 | −177.74 | 6.55 | 0.00 | 2.26 |
initial value | 100 | 100 | 100 | 100 | −100 | 0 | 0 |
Line | Chn | r (m) | I (mA) | X (m) | Y (m) | Z (m) | θ (°) | φ (°) | Fit Error % |
---|---|---|---|---|---|---|---|---|---|
L0 | 10 | 138.28 | 121.49 | −1.60 | 2.62 | −148.52 | 3.75 | 1.02 | 3.89 |
L0 | 15 | 133.60 | 81.79 | −1.60 | 2.48 | −148.54 | 0.00 | 1.06 | 3.91 |
L0 | 20 | 129.10 | 32.15 | −1.60 | 2.15 | −148.67 | 0.10 | 1.07 | 3.98 |
L0 | 25 | 126.83 | 3.39 | −1.60 | 1.98 | −148.70 | 0.08 | 1.10 | 4.05 |
L100 | 10 | 139.06 | 119.40 | −1.32 | 3.09 | −149.71 | 1.54 | 0.00 | 3.97 |
L100 | 15 | 135.07 | 79.90 | −1.50 | 2.57 | −149.74 | 1.21 | 0.00 | 3.89 |
L100 | 20 | 131.37 | 31.17 | −1.77 | 1.89 | −149.79 | 0.85 | 0.04 | 3.88 |
L100 | 25 | 129.68 | 3.27 | −1.91 | 1.46 | −149.74 | 0.37 | 0.18 | 3.92 |
L200 | 10 | 140.65 | 117.81 | −2.13 | 3.56 | −149.95 | 9.07 | 0.00 | 5.18 |
L200 | 15 | 136.5 | 78.84 | −2.29 | 2.88 | −149.88 | 8.81 | 0.00 | 5.03 |
L200 | 20 | 132.48 | 30.95 | −2.54 | 1.71 | −149.45 | 8.07 | 0.34 | 4.92 |
L200 | 25 | 130.44 | 3.26 | −2.69 | 1.15 | −149.2 | 4.66 | 0.56 | 4.87 |
Initial value | 100 | 100 | 100 | 100 | −100 | 0 | 0 |
Noise | Chn | r (m) | I (mA) | x (m) | y (m) | z (m) | θ (°) | φ (°) | Fit Error % |
---|---|---|---|---|---|---|---|---|---|
10% | 10 | 141.52 | 118.34 | −2.73 | 0.77 | −149.32 | 1.85 | 0 | 6.03 |
10% | 15 | 136.24 | 79.72 | −1.96 | 1.34 | −149.49 | 1.60 | 0 | 6.08 |
10% | 20 | 132.13 | 31.42 | −1.95 | 0.52 | −150.03 | 1.26 | 0.53 | 4.91 |
10% | 25 | 128.04 | 3.37 | −2.54 | 0.40 | −148.79 | 0.13 | 0.71 | 5.63 |
20% | 10 | 139.67 | 121.21 | −4.86 | 0.60 | −148.52 | 0.05 | 1.56 | 9.29 |
20% | 15 | 141.12 | 76.78 | −3.86 | −1.12 | −149.09 | 0 | 2.07 | 12.06 |
20% | 20 | 126.54 | 33.61 | −3.63 | 0.62 | −148.05 | 0 | 2.77 | 10.78 |
20% | 25 | 136.06 | 3.11 | −4.21 | −4.46 | −148.67 | 1.33 | 3.16 | 10.22 |
40% | 10 | 152.45 | 111.01 | −6.96 | −11.2 | −147.15 | 1.23 | 2.35 | 17.60 |
40% | 15 | 126.65 | 82.64 | 2.26 | 1.12 | −152.02 | 180.0 | 1.40 | 21.04 |
40% | 20 | 131.18 | 32.60 | −8.27 | 5.42 | −148.97 | 90.90 | 4.17 | 20.28 |
40% | 25 | 135.40 | 3.00 | −3.58 | 2.35 | −151.16 | 179.4 | 0 | 22.04 |
Initial value | 100 | 100 | 100 | 100 | −100 | 0 | 0 |
Channel | r (m) | I (mA) | x (m) | y (m) | z (m) | θ (°) | φ (°) | Fit Error % |
---|---|---|---|---|---|---|---|---|
10 | 137.29 | 18.79 | −1.67 | −0.33 | −877.69 | 29.68 | 0 | 0.14 |
15 | 128.48 | 13.84 | −4.17 | −0.11 | −881.65 | 29.96 | 0 | 0.06 |
20 | 123.32 | 5.51 | −4.30 | −0.12 | −881.67 | 29.95 | 0 | 0.06 |
25 | 120.29 | 0.59 | −4.59 | −0.12 | −882.08 | 30.04 | 0 | 0.06 |
Line | Chn | r (m) | I (mA) | x (m) | y (m) | z (m) | θ (°) | φ (°) | Fit Error % |
---|---|---|---|---|---|---|---|---|---|
L0 | 0.415 | 66.01 | 78.73 | 0.82 | 26.69 | −874.53 | 27.97 | 8.66 | 0.61 |
L0 | 0.991 | 53.27 | 77.46 | −5.11 | 0.24 | −879.67 | 28.87 | 0 | 0.17 |
L0 | 2.357 | 33.81 | 69.41 | −1.04 | 0.21 | −876.64 | 27.75 | 0.07 | 0.24 |
L0 | 5.608 | 11.89 | 52.73 | 21.09 | 0.83 | −860.84 | 21.82 | 0.31 | 0.59 |
L100 | 0.415 | 111.54 | 27.84 | 6.41 | 51.99 | −874.63 | 29.27 | 17.02 | 1.25 |
L100 | 0.991 | 110 | 18.11 | −2.02 | 4.77 | −874.53 | 29.42 | 1.17 | 0.14 |
L100 | 2.357 | 104.44 | 7.42 | −1.71 | 4.49 | −876.59 | 29.33 | 1.37 | 0.08 |
L100 | 5.608 | 96.61 | 0.88 | −1.95 | 3.65 | −876.94 | 29.27 | 1.09 | 0.09 |
L200 | 0.415 | 120.88 | 23.49 | −2.03 | 54.85 | −874.1 | 30.99 | 0.37 | 1.4 |
L200 | 0.991 | 113.55 | 17.06 | −0.75 | 1.06 | −875.04 | 29.36 | 0.43 | 0.1 |
L200 | 2.357 | 108.35 | 6.89 | −1.02 | 1.07 | −875.82 | 29.34 | 0.42 | 0.07 |
L200 | 5.608 | 93.58 | 0.94 | −2.73 | 1.58 | −877.21 | 29.39 | 5 | 0.09 |
initial value | 100 | 10 | 100 | 100 | −800 | 0 | 0 |
Line | Chn | r (m) | I (mA) | x (m) | y (m) | z (m) | θ (°) | φ (°) | Fit Error % |
---|---|---|---|---|---|---|---|---|---|
L0 | 10 | 147.02 | 16.04 | 3.05 | −0.20 | −870.91 | 29.14 | 0.00 | 0.94 |
L0 | 15 | 133.85 | 12.43 | −1.06 | −0.24 | −876.92 | 29.71 | 0.00 | 0.32 |
L0 | 20 | 127.34 | 5.06 | −1.76 | −0.19 | −877.94 | 29.77 | 0.00 | 0.29 |
L0 | 25 | 110.94 | 0.69 | −7.46 | 0.84 | −885.20 | 30.40 | 0.46 | 0.95 |
L100 | 10 | 147.02 | 16.04 | 3.05 | −0.20 | −870.91 | 29.14 | 0.00 | 0.94 |
L100 | 15 | 133.85 | 12.43 | −1.06 | −0.24 | −876.92 | 29.71 | 0.00 | 0.32 |
L100 | 20 | 127.34 | 5.06 | −1.76 | −0.19 | −877.94 | 29.77 | 0.00 | 0.29 |
L100 | 25 | 110.94 | 0.69 | −7.46 | 0.84 | −885.20 | 30.40 | 0.46 | 0.95 |
L200 | 10 | 147.24 | 16.03 | 1.76 | −1.67 | −870.32 | 29.18 | 0.00 | 1.26 |
L200 | 15 | 131.87 | 12.85 | −2.03 | −0.18 | −878.04 | 29.83 | 0.00 | 0.28 |
L200 | 20 | 127.71 | 5.03 | −1.58 | −0.20 | −877.80 | 29.77 | 0.00 | 0.28 |
L200 | 25 | 113.19 | 0.66 | −6.86 | 0.43 | −883.83 | 30.31 | 0.30 | 0.82 |
initial value | 100 | 10 | 100 | 100 | −800 | 0 | 0 |
Filament No. | Chn | r (m) | I (mA) | x (m) | y (m) | z (m) | θ (°) | φ (°) |
---|---|---|---|---|---|---|---|---|
1 | 5 | 82.21 | 56.67 | −80.62 | −4.59 | −168.00 | 43.83 | 353.04 |
1 | 10 | 80.85 | 47.00 | −80.63 | −4.84 | −167.97 | 43.80 | 352.90 |
1 | 15 | 78.17 | 29.46 | −80.95 | −5.14 | −168.11 | 43.82 | 352.71 |
1 | 20 | 77.15 | 8.14 | −80.50 | −5.29 | −167.94 | 43.69 | 352.53 |
1 | 25 | 76.85 | 0.31 | −80.25 | −5.42 | −167.70 | 43.58 | 352.51 |
2 | 5 | 58.51 | 57.22 | 111.28 | 44.64 | −518.51 | 32.02 | 174.33 |
2 | 10 | 72.00 | 51.68 | 118.81 | 34.59 | −516.82 | 33.09 | 183.19 |
2 | 15 | 71.71 | 15.36 | 127.79 | 32.21 | −525.40 | 35.64 | 181.01 |
2 | 20 | 60.21 | 9.23 | 111.61 | 35.64 | −521.69 | 33.43 | 178.42 |
2 | 25 | 53.46 | 0.73 | 128.89 | 35.95 | −510.68 | 33.19 | 179.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Zhi, Q.; Deng, X.; Wang, X.; Yang, Y. Joint Inversion with Borehole and Semi-Airborne TEM Data Based on Equivalent Filament Approximation. Minerals 2022, 12, 803. https://doi.org/10.3390/min12070803
Wu J, Zhi Q, Deng X, Wang X, Yang Y. Joint Inversion with Borehole and Semi-Airborne TEM Data Based on Equivalent Filament Approximation. Minerals. 2022; 12(7):803. https://doi.org/10.3390/min12070803
Chicago/Turabian StyleWu, Junjie, Qingquan Zhi, Xiaohong Deng, Xingchun Wang, and Yi Yang. 2022. "Joint Inversion with Borehole and Semi-Airborne TEM Data Based on Equivalent Filament Approximation" Minerals 12, no. 7: 803. https://doi.org/10.3390/min12070803
APA StyleWu, J., Zhi, Q., Deng, X., Wang, X., & Yang, Y. (2022). Joint Inversion with Borehole and Semi-Airborne TEM Data Based on Equivalent Filament Approximation. Minerals, 12(7), 803. https://doi.org/10.3390/min12070803