Fast-Curing Geopolymer Foams with an Enhanced Pore Homogeneity Derived by Hydrogen Peroxide and Sodium Dodecyl Sulfate Surfactant
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Mix Proportions and Fabrication of Specimens
2.3. Testing Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Y.-S.; Alrefaei, Y.; Dai, J.-G. Silico-Aluminophosphate and Alkali-Aluminosilicate Geopolymers: A Comparative Review. Front. Mater. 2019, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Gao, Z.; Wang, J.; Guo, J.; Hu, S.; Ling, Y. Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review. J. Clean. Prod. 2020, 270, 122389. [Google Scholar] [CrossRef]
- Studart, A.R.; Gonzenbach, U.T.; Tervoort, E.; Gauckler, L.J. Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 2006, 89, 1771–1789. [Google Scholar] [CrossRef]
- Novais, R.M.; Pullar, R.; Labrincha, J. Geopolymer foams: An overview of recent advancements. Prog. Mater. Sci. 2020, 109, 100621. [Google Scholar] [CrossRef]
- Shimizu, T.; Matsuura, K.; Furue, H.; Matsuzak, K. Thermal conductivity of high porosity alumina refractory bricks made by a slurry gelation and foaming method. J. Eur. Ceram. Soc. 2013, 33, 3429–3435. [Google Scholar] [CrossRef] [Green Version]
- Meille, S.; Lombardi, M.; Chevalier, J.; Montanaro, L. Mechanical properties of porous ceramics in compression: On the transition between elastic, brittle, and cellular behavior. J. Eur. Ceram. Soc. 2012, 32, 3959–3967. [Google Scholar] [CrossRef]
- Bagherian, E.; Ariffin, M.K.; Sulaiman, S. Development of a Ceramic Foam Filter for Filtering Molten Aluminum Alloy in Casting Processes. Ph.D. Thesis, Universiti Putra Malaysia, Serdang, Malaysia, 2009. [Google Scholar]
- Geus, J.W.; Van Giezen, J. Catalysts supported by porous ceramic layers on ceramic or metallic substrates. MRS Online Proc. Libr. 1996, 454, 147. [Google Scholar] [CrossRef]
- Barhate, R.S.; Ramakrishna, S. Nanofibrous filtering media: Filtration problems and solutions from tiny materials. J. Membr. Sci. 2007, 296, 1–8. [Google Scholar] [CrossRef]
- Chou, K.-S.; Lee, T.-K.; Liu, F.-J. Sensing mechanism of a porous ceramic as humidity sensor. Sens. Actuators B Chem. 1999, 56, 106–111. [Google Scholar] [CrossRef]
- Wongkvanklom, A.; Posi, P.; Kasemsiri, P. Strength, thermal conductivity and sound absorption of cellular lightweight high calcium fly ash geopolymer concrete. Eng. Appl. Sci. Res. 2021, 48, 487–496. [Google Scholar]
- Zhu, L.; Li, S.; Li, Y.; Xu, N. Novel applications of waste ceramics on the fabrication of foamed materials for exterior building walls insulation. Constr. Build. Mater. 2018, 180, 291–297. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Zou, S.; Zhang, G. Experimental research on a feasible rice husk/geopolymer foam building insulation material. Energy Build. 2020, 226, 110358. [Google Scholar] [CrossRef]
- Seeber, B.S.M.; Gonzenbach, U.T.; Gauckler, L.J. Mechanical properties of highly porous alumina foams. J. Mater. Res. 2013, 28, 2281–2287. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, N.; Park, J.G.; Mazumder, S.; Pokhrel, A.; Aneziris, C.G.; Kim, I.J. Effect of amphiphile chain length on wet foam stability of porous ceramics. Ceram. Int. 2015, 41, 4021–4027. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Li, Y.; Sang, S.; Li, S. Effects of pore structure on thermal conductivity and strength of alumina porous ceramics using carbon black as pore-forming agent. Ceram. Int. 2016, 42, 8221–8228. [Google Scholar] [CrossRef]
- Brown, R.C.; Harrison, P.T. Alkaline earth silicate wools–A new generation of high temperature insulation. Regul. Toxicol. Pharmacol. 2012, 64, 296–304. [Google Scholar] [CrossRef]
- Provis, J.L.; Van Deventer, J.S.J. Geopolymers: Structures, Processing, Properties and Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Łach, M.; Mierzwiński, D.; Korniejenko, K.; Mikuła, J. Geopolymer foam as a passive fire protection. MATEC Web Conf. 2018, 247, 00031. [Google Scholar] [CrossRef] [Green Version]
- Oo, H.M.; Mohamed-Kamari, H.; Wan-Yusoff, W.M.D. Optical Properties of Bismuth Tellurite Based Glass. Int. J. Mol. Sci. 2012, 13, 4623–4631. [Google Scholar] [CrossRef] [Green Version]
- Kovářík, T.; Hájek, J.; Pola, M.; Rieger, D.; Svoboda, M.; Beneš, J.; Šutta, P.; Deshmukh, K.; Jandová, V. Cellular ceramic foam derived from potassium-based geopolymer composite: Thermal, mechanical and structural properties. Mater. Des. 2021, 19, 109355. [Google Scholar] [CrossRef]
- Pokhrel, A.; Seo, D.N.; Lee, S.T.; Kim, I.J. Processing of porous ceramics by direct foaming: A review. J. Korean Ceram. Soc. 2013, 50, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Zhang, R.; Gong, L.; Li, Y.; Cao, W.; Cheng, X. Development of porous fly ash-based geopolymer with low thermal conductivity. Mater. Des. 2015, 65, 529–533. [Google Scholar] [CrossRef]
- Ducman, V.; Korat, L. Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Mater. Charact. 2016, 113, 207–213. [Google Scholar] [CrossRef]
- Novais, R.M.; Buruberri, L.H.; Ascensão, G.; Seabra, M.P.; Labrincha, J. Porous biomass fly ash-based geopolymers with tailored thermal conductivity. J. Clean. Prod. 2016, 119, 99–107. [Google Scholar] [CrossRef]
- Prud’homme, E.; Michaud, P.; Joussein, E.; Peyratout, C.; Smith, A.; Arrii-Clacens, S.; Clacens, J.; Rossignol, S. Silica fume as porogent agent in geo-materials at low temperature. J. Eur. Ceram. Soc. 2010, 30, 1641–1648. [Google Scholar] [CrossRef]
- Natali Murri, A.; Medri, V.; Papa, E.; Laghi, L.; Mingazzini, C.; Landi, E. Porous geopolymer insulating core from a metakaolin/biomass ash composite. Environments 2017, 4, 86. [Google Scholar] [CrossRef] [Green Version]
- Davidovits, J.G. Geopolymer Chemistry and Applications; Institute Geopolymer: Saint-Quentin, France, 2008. [Google Scholar]
- Łach, M.; Korniejenko, K.; Mikuła, J. Thermal insulation and thermally resistant materials made of geopolymer foams. Procedia Eng. 2016, 151, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Yu, X.; Sheng, Y.; Zong, R.; Li, C.; Lu, S. Role of salts in performance of foam stabilized with sodium dodecyl sulfate. Chem. Eng. Sci. 2020, 216, 115474. [Google Scholar] [CrossRef]
- Han, Y.; Yang, J.; Jung, M.; Han, S.; Kim, S.; Jeon, H.-S. Controlling the pore size and connectivity of alumina-particle-stabilized foams using sodium dodecyl sulfate: Role of surfactant concentration. Langmuir 2020, 36, 10331–10340. [Google Scholar] [CrossRef]
- Wang, M. Geopolymerization Mechanism of Aluminosilicate Geopolymer and Microstructure and Properties of Fly Ash Cenosphere/Geopolymer Composite; Harbin Institute of Technology: Harbin, China, 2011. [Google Scholar]
- Bondar, D.; Lynsdale, C.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A. Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans. Cem. Concr. Compos. 2011, 33, 251–260. [Google Scholar] [CrossRef]
- Rocha, T.d.S.; Dias, D.P.; França, F.C.C.; de Salles Guerra, R.R.; de Oliveira, L.R.D.C. Metakaolin-based geopolymer mortars with different alkaline activators (Na+ and K+). Constr. Build. Mater. 2018, 178, 453–461. [Google Scholar] [CrossRef]
- Fasihnikoutalab, M.H.; Pourakbar, S.; Ball, R.J.; Huat, B.K. The Effect of Olivine Content and Curing Time on the Strength of Treated Soil in Presence of Potassium Hydroxide. Int. J. Geosynth. Ground Eng. 2017, 3, 12. [Google Scholar] [CrossRef]
- Li, N.; Shi, C.; Wang, Q.; Zhang, Z.; Ou, Z. Composition design and performance of alkali-activated cements. Mater. Struct. 2017, 50, 178. [Google Scholar] [CrossRef]
- Hafid, K.E.; Hajjaji, M. Geopolymerization of glassand silicate-containing heated clay. Constr. Build. Mater. 2018, 159, 598–609. [Google Scholar] [CrossRef]
- Gomez-Zamorano, L.Y.; Vega-Cordero, E.; Struble, L. Composite geopolymers of metakaolin and geothermal nanosilica waste. Constr. Build. Mater. 2016, 115, 269–276. [Google Scholar] [CrossRef]
- Bai, C.; Colombo, P. Processing, properties and applications of highly porous geopolymers: A review. Ceram. Int. 2018, 44, 16103–16118. [Google Scholar] [CrossRef]
- Siyal, A.A.; Shamsuddin, M.R.; Rabat, N.E.; Zulfiqar, M.; Man, Z.; Low, A. Fly ash based geopolymer for the adsorption of anionic surfactant from aqueous solution. J. Clean. Prod. 2019, 229, 232–243. [Google Scholar] [CrossRef]
- Ohji, T.; Fukushima, M. Macro-porous ceramics: Processing and properties. Int. Mater. Rev. 2012, 57, 115–131. [Google Scholar] [CrossRef]
- ASTM C39/C39M; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, American Society for Testing and Materials International (ASTM): West Conshohocken, PA, USA, 2015.
- ASTM E136-19a; Standard Test Method for Assessing Combustibility of Materials Using a Vertical Tube Furnace at 750 °C. American Society for Testing and Materials International (ASTM): West Conshohocken, PA, USA, 2019.
- ASTM E2652-18; Standard Test Method for Assessing Combustibility of Materials Using a Tube Furnace with a Cone-Shaped Airflow Stabilizer, at 750 °C. American Society for Testing and Materials International (ASTM): West Conshohocken, PA, USA, 2018.
- ISO 1182; Reaction to Fire Tests for Products—Non Combustibility Test. International Organization for Standardization: Geneva, Switzerland, 2010.
- Bai, C.; Colombo, P. High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactant. Ceram. Int. 2017, 43, 2267–2273. [Google Scholar] [CrossRef]
- Bai, C.; Franchin, G.; Elsayed, H.; Conte, A.; Colombo, P. High strength metakaolin-based geopolymer foams with variable macroporous structure. J. Eur. Ceram. Soc. 2016, 36, 4243–4249. [Google Scholar] [CrossRef]
- Korat, L.; Ducman, V. The influence of the stabilizing agent SDS on porosity development in alkali-activated fly-ash based foams. Cem. Concr. Compos. 2017, 80, 168–174. [Google Scholar] [CrossRef]
- Novais, R.M.; Ascensão, G.; Buruberri, L.; Senff, L.; Labrincha, J. Influence of blowing agent on the fresh-and hardened-state properties of lightweight geopolymers. Mater. Des. 2016, 108, 551–559. [Google Scholar] [CrossRef]
- Samson, G.; Cyr, M. Porous structure optimisation of flash-calcined metakaolin/fly ash geopolymer foam concrete. Eur. J. Environ. Civ. Eng. 2018, 22, 1482–1498. [Google Scholar] [CrossRef]
- Samson, G.; Cyr, M.; Gao, X.X. Thermomechanical performance of blended metakaolin-GGBS alkali-activated foam concrete. Constr. Build. Mater. 2017, 157, 982–993. [Google Scholar] [CrossRef]
- Petlitckaia, S.; Poulesquen, A. Design of lightweight metakaolin based geopolymer foamed with hydrogen peroxide. Ceram. Int. 2019, 45, 1322–1330. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, F.; Liu, J.; Ren, B.; He, P.; Jia, D.; Yang, J. Green synthesis of high porosity waste gangue microsphere/geopolymer composite foams via hydrogen peroxide modification. J. Clean. Prod. 2019, 227, 483–494. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Z.; Zhang, Y.; Li, D. Preparation and characterization of ultra-lightweight foamed geopolymer (UFG) based on fly ash-metakaolin blends. Constr. Build. Mater. 2018, 168, 771–779. [Google Scholar] [CrossRef]
- Duan, P.; Song, L.; Yan, C.; Ren, D.; Li, Z. Novel thermal insulating and lightweight composites from metakaolin geopolymer and polystyrene particles. Ceram. Int. 2017, 43, 5115–5120. [Google Scholar] [CrossRef]
Sample | Weight of Input Materials (g) | |||||||
---|---|---|---|---|---|---|---|---|
GP and Additives | Activators | Foaming Agents | ||||||
MK | Ca(OH)2 | F-SiO2 | KOH | K2SiO3 | H2O | H2O2 | SDS | |
H-5% | 20 | 1.50 | 0.60 | 6.36 | 6.67 | 17.29 | 1 | - |
H-10% | 20 | 1.50 | 0.60 | 6.36 | 6.67 | 17.29 | 2 | - |
H-15% | 20 | 1.50 | 0.60 | 6.36 | 6.67 | 17.29 | 3 | - |
HS-5% | 20 | 1.50 | 0.60 | 6.36 | 6.67 | 17.29 | 1 | 1 |
HS-10% | 20 | 1.50 | 0.60 | 6.36 | 6.67 | 17.29 | 2 | 1 |
HS-15% | 20 | 1.50 | 0.60 | 6.36 | 6.67 | 17.29 | 3 | 1 |
Material | Foam Agent | Bulk-Density (g/cm3) | Curing Time (d) | Porosity (%) | σC (MPa) | TC (W/m·K) | Ref. | |
---|---|---|---|---|---|---|---|---|
MK | H2O2 | 0.30–0.58 | ~780 | 14 (C) | 74–87 | 0.30–4.40 | 0.09–0.16 | [46] |
MK | H2O2 | 0.40–0.51 | ~247 | 10 (C) | 62–81 | 2.19–3.11 | NA | [47] |
MK | H2O2 ★ | 0.48 | ~30 | 5 | ~54 | 3.63 | 0.0803 | This work |
MK | H2O2 | 0.75 | ~100 | 5 | ~29 | 1.57 | 0.0654 | |
Fly ash | H2O2 | 0.24–0.34 | ~300 | 2 (C) | 79–81 | 0.60–0.38 | 0.07–0.09 | [23] |
Biomass fly ash | H2O2 | 0.56–1.20 | ~105 | 28 | NA | 0.12–0.42 | 0.005–0.39 | [25] |
Fly ash | H2O2 ★ | 0.13–0.58 | ~600 | 4 (C) | NA | 2.60–12.20 | NA | [48] |
MK + Fly ash | H2O2 | 0.44–1.10 | ~300 | 28 | 52–81 | 0.26–10.00 | 0.08–0.22 | [49] |
MK + Fly ash | H2O2 ★ | 0.22–0.50 | ~160 | ~1 (C) | NA | 0.50–1.85 | 0.07–0.12 | [50] |
MK + Slag | H2O2 ★ | 0.26–0.48 | ~285 | 28 | NA | 0.53–3.34 | 0.084–0.139 | [51] |
MK | H2O2 | 0.23–1.10 | 150~3000 | ~1(C) | 28–83 | 0.57–5.90 | NA | [52] |
MK | H2O2 | 0.21–0.63 | ~100 | 7(C) | 67–93 | 0.10–5.70 | NA | [53] |
MK + Fly ash | H2O2 | 0.15–0.30 | 570–1130 | 0.5(C) | 72–85 | 0.70–2.24 | 0.062–0.085 | [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.W.; Lim, H.M.; Yoon, S.-Y.; Ko, H. Fast-Curing Geopolymer Foams with an Enhanced Pore Homogeneity Derived by Hydrogen Peroxide and Sodium Dodecyl Sulfate Surfactant. Minerals 2022, 12, 821. https://doi.org/10.3390/min12070821
Kim KW, Lim HM, Yoon S-Y, Ko H. Fast-Curing Geopolymer Foams with an Enhanced Pore Homogeneity Derived by Hydrogen Peroxide and Sodium Dodecyl Sulfate Surfactant. Minerals. 2022; 12(7):821. https://doi.org/10.3390/min12070821
Chicago/Turabian StyleKim, Kyung Won, Hyung Mi Lim, Seog-Young Yoon, and Hyunseok Ko. 2022. "Fast-Curing Geopolymer Foams with an Enhanced Pore Homogeneity Derived by Hydrogen Peroxide and Sodium Dodecyl Sulfate Surfactant" Minerals 12, no. 7: 821. https://doi.org/10.3390/min12070821
APA StyleKim, K. W., Lim, H. M., Yoon, S. -Y., & Ko, H. (2022). Fast-Curing Geopolymer Foams with an Enhanced Pore Homogeneity Derived by Hydrogen Peroxide and Sodium Dodecyl Sulfate Surfactant. Minerals, 12(7), 821. https://doi.org/10.3390/min12070821