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Abstract: Sodium N-lauroylsarcosinate (SNLS) was employed as a selective flotation collector for
dolomite–apatite separation. The influence of pH, condition time, and collector dose on the flotation
performance of both apatite and dolomite minerals was investigated using single mineral and binary
mixed mineral flotation experiments. The performance of SNLS was compared to sodium oleate
(NaOL), as a standard collector. In this study, the adsorption mechanism of SNLS on both minerals
was studied using zeta-potential and FT-IR measurements. The results showed that SNLS prefers to
adsorb on the dolomite mineral. The maximum difference in floatability was 83% for single dolomite
and apatite minerals at pH 10 in the presence of 0.05 mmol/L SNLS. Binary mixtures of dolomite
and apatite minerals of different ratios were applied, to evaluate their separation efficiency. The
SNLS could separate dolomite from its mixtures with apatite minerals. Using 0.2 mmol/L of SNLS
at pH 10, a concentrate of 30.9% P2O5 and 0.79% MgO was obtained from a natural phosphate ore
having 25.8% P2O5 and 5.16% MgO.

Keywords: apatite; dolomite; SNLS collector; flotation; selective adsorption

1. Introduction

Phosphorous is one of the most common elements on Earth and is the main component
of plants, making it one of the most important industrial raw materials [1,2]. It is utilized
in a variety of industrial applications, such as fertilizers, detergents, pharmaceuticals, ef-
fluents, and cement. It is found in the Earth’s crust as a valuable mineral, in the form of
apatite. Apatite is a naturally occurring mineral in phosphate deposits, such as fluorapatite,
and is accompanied by gangue minerals such as dolomite, calcite, and silicate [3,4]. Fluora-
patite is more abundant in igneous phosphate deposits in crystalline form than in nature.
It contains a variety of phosphate minerals, including hydroxyapatite and chlorapatite,
which are rare in nature. Its structure always results from the transformation of existing
sedimentary phosphate rocks under different ionic substitutions. Sedimentary phosphates
have great industrial importance, since they account for the majority of world phosphorus
production [5–7].

Carbonates are typically connected with the apatite structure. Dolomite mineral
(CaMg(CO3)2) is the most common gangue mineral and the most troublesome impurity
in phosphate ores [8]. The presence of dolomite is linked to apatite. Several problems
arise during the manufacture of phosphoric acids; such as using too much sulfuric acid,
and decreasing filtration capacity by raising viscosity. In addition, it reduces the quality
of concentrates of phosphate products. The latter reduces the filtration rate, so it is vital
to remove it from the phosphate concentrate [9]. Although froth flotation is one of the
most commonly used approaches to this problem, it has limitations, due to the comparable
surface behavior of dolomite and apatite minerals. Dolomite is difficult to separate. As a
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result, it has played a vital role in the development of reagents. This is regarded as the most
crucial part of achieving an optimum separation and efficiency throughout the flotation
process [10].

Fatty acids such as sodium oleate (NaOL) have been used as collectors for flotation
separation of apatite from carbonate minerals, because of their low cost and poor selectivity.
The chemisorption mechanism of using fatty acids to separate dolomite-bearing phosphate
has been revealed. However, it is difficult to use only a fatty acid in the separation process,
due to the similarity of surface properties between the two minerals, so it is necessary to
develop novel flotation reagents to achieve economic recovery and improve the efficiency
of low-grade phosphate ore via reverse flotation [11]. Although, fatty acid is used as
a collector, depressants have been widely used to improve the separation of dolomite
from apatite mineral, and sodium pyrophosphate (NaPP) has been used as a depressant
in separating apatite from dolomite through reverse flotation. This may promote the
selective separation of apatite from dolomite by preventing the adsorption of NaOL onto
the apatite surface and also improving NaOL reactivity on the dolomite surface [12].
Conventional depressants such as sulfuric acid, phosphoric acid, cellulose enzyme, and
b-naphthyl sulfonate formaldehyde condensate have been used to separate apatite from
dolomite [13,14]. They have a number of drawbacks, including a negative environmental
effect, a large dosage, low selectivity, high toxicity, and a high price.

As a result, a new depressant has been developed that is both effective and safe for
the environment. Acrylic acid-2-acrylamide-2-methylpropane sulfonic acid copolymer
[P (AA-AMPS)] has a strong interaction with magnesium ions on the dolomite surface,
which reduces the NaOL adsorption on the dolomite surface, while the NaOL can still
be significantly adsorbed on the apatite surface [15]. Furthermore, all previous studies
revealed that [P (AA-AMPS)] is a critical part in the selective adsorption of dolomite rather
than apatite and, thus, a strong dolomite depressant. There is a stronger interaction of
[P (AA-AMPS)] with magnesium sites than with calcium sites. Thus, it is considered an
eco-friendly and strong depressant for dolomite. Due to its limited ability to aggregate and
low separation efficiency [15,16], in recent years, many studies have been conducted to im-
prove the separation efficiency of apatite from carbonate minerals; and it has been reported
that sodium dodecyl benzene sulfonate (SDBS) has a significant collector impact on apatite
flotation, but has no effect on dolomite adsorption characteristics. SDBS was discovered
to interact with Ca active sites on the apatite surface through chemical bonding. SDBS
was used as a collector, to separate dolomite from apatite. Sodium N-lauroylsarcosinate
(SNLS) is a carboxyl and amide-based amino acid surfactant with strong reactivity, good
biodegradability, and safe application in biomedicine, electro-plating, dyeing, agriculture,
and environment-friendly and low-cost applications. The goal of this research was to eval-
uate the role of the SNLS as a novel collector for efficiently separating dolomite and apatite
minerals from phosphate ores. Furthermore, to enhance separation, pH and condition time
were investigated.

2. Materials and Methods
2.1. Materials

The Egyptian Mineral Resources Authority (EMRA) contributed two samples of high-
purity apatite and dolomite minerals. The sample was ground to less than 0.105 mm.
Desliming was used to remove fine fractions (−0.075 mm). NaOL and SNLS (Figure 1), with
a purity of over 95%, were supplied by Shanghai Macklin Biochemical Co., Ltd, Shanghai,
China. All other chemicals, such as NaOH or HCl from Sigma-Aldrich (Burlington, MA,
USA), were of analytical grade and were used to make 0.1 M solutions or served as pH
regulators.
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2.2. Experimental Techniques
2.2.1. Chemical Composition and X-ray Diffraction

X-ray diffraction (XRD) was used to detect the mineral phases on a Philips (Andover,
MA, USA) type 1710 XRD unit with Ni filter Cu radiation (K = 1.5446) at 40 kV and 20 mA
at a scan rate of one theta degree per minute. X-ray fluorescence (Rigakusuper Mini 200,
Rigaku, Akishima, Japan) was used to determine the chemical analysis of the apatite and
dolomite rocks. Using Fluxana PR-25N (Fluxana, Bedburg-Hau, Germany), the mixture
was pressed into a pellet at a pressure of 15 ton/cm3 for 25 s.

2.2.2. Zeta-Potential Measurements

The zeta-potential was determined using a laser Zeta Meter Malvern Instruments
Model Zeta Seizer Nano ZS (Malvern, Paoli, PA, USA). Then, 0.05 g of the sample was added
to 50 mL 2 × 10−2 M KCl solution and interacted with the known collector concentration,
after which it was conditioned for 5 min at room temperature to the required pH. The
measurements of each test were repeated at least three times as a function of pH and the
zeta potential was calculated.

2.2.3. FT-IR Measurements

The solid samples were filtered, air dried, and the FT-IR spectra were taken after
contact with the collector. The spectra were obtained of KBr pellets prepared with a solid
sample and analytical grade KBr from Merck. The FT-IR investigation was carried out
using a Perkin Elmer Spectrum 2000 spectrometer. The spectrum was recorded in the wave
number range from 400 to 4000 cm−1.

2.2.4. Flotation Experiments

In a bench-scale flotation experiment, a 100 mL flotation column was used. One gram
of mineral was prepared at different specific pH, collector concentrations, and interaction
times. At a rate of 0.65 cm3/min of air, flotation was performed for 5 min. The sink and
floating fractions were weighed after being collected and dried. To evaluate apatite grade
and determine recovery, the concentrate and tailing were weighed and subjected to binary
mixed mineral tests. Each experiment was carried out three times, and the average and
standard deviation of each grade and recovery were calculated.

3. Results and Discussion
3.1. Characterization of Pure Minerals and Natural Ore

The chemical analysis of the apatite mineral in Table 1 showed that it is composed of
56.97% CaO, 34.58% P2O5, 4.50% CO2, and 3.90% F. The dolomite mineral contains 30.37%
CaO, 21.69% MgO, and 47.85% CO2. The natural phosphate ore is mainly composed of
apatite and dolomite. It is composed of 50.36% CaO, 25.41% P2O5, 15.38% CO2, 5.48% MgO,
and 2.92% F. The impurities such as silica and iron are less than 0.4%. The X-ray diffraction
pattern of each mineral contains only its characteristic peaks, without significant peaks
from impurities (Figure 2). On the other hand, the pattern of phosphate ore contains only
the characteristic peaks of dolomite and apatite minerals.
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Table 1. Chemical composition of the pure minerals and natural phosphate ore.

Item
Weight %

Dolomite Apatite Natural Ore

P2O5 0.002 34.58 25.41
CaO 30.37 56.97 50.36
MgO 21.69 0.005 5.48
Fe2O3 0.016 0.001 0.013
SiO2 0.012 0.003 0.378

Al2O3 0.028 0.016 0.026
K2O 0.016 0.012 0.013

Na2O 0.015 0.018 0.021
CO2 47.85 4.498 15.38

F 0.001 3.897 2.92
Total 100 100 100
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Figure 2. X-ray diffraction patterns of natural phosphate rock ore and pure minerals.

The chemical analysis of apatite mineral, which has a chemical formula
[Ca5 (PO4)3(OH,F,Cl)], confirmed its high purity as a pure phosphate mineral and matched
the theoretical composition. The dolomite composition [CaMg(CO3)2] confirmed its high
purity. The XRD and chemical analysis showed that the phosphate ore was mainly com-
posed of apatite and dolomite.

3.2. Flotation of Single Minerals with NSLS or NaOL

Single mineral flotation tests using single mineral and binary mixed minerals were
performed, to evaluate the effects of pH, condition time, and collector dosage on the
flotation behavior of apatite and dolomite minerals. SNLS or NaOL was used as a collector,
and the flotation test results of a single mineral are shown in Figures 3–8 for pH, collector
dosage, and conditioning time.
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3.2.1. Effect of pH

Figure 3 shows that increasing the pH from 6 to 10 improved the flotation of dolomite
mineral in the presence of 0.05 mmol/L SNLS, and then declined. The floatability of
apatite minerals increased until pH 7, after which it decreased. The maximum floatability
difference (83%) was achieved at pH 10. In comparison, with NaOL as a collector in the
same pH range, the difference in recovery never exceeded 35%, as depicted in Figure 4,
which strongly indicates that SNLS has a higher selectivity than the commonly used NaOL
for flotation of dolomite mineral from apatite mineral. Therefore, pH 10 was chosen for the
subsequent tests.

3.2.2. Effect of Collector Dose

Figures 5 and 6 demonstrate that increasing the SNLS or NaOL dose improved the
recovery of dolomite and apatite minerals. However, when using SNLS as a collector, the
difference in flotation recoveries between the two minerals was roughly 83%, and when
using NaOL as a collector, it was about 37%.
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3.2.3. Effect of Conditioning Time

Figures 7 and 8 indicate that increasing the conditioning time improved the recovery
of dolomite mineral substantially up to 5 min, after which it became nearly constant in the
presence of SNLS or NaOL. While increasing the conditioning time increased the recovery
of apatite mineral up to 10 min, in the presence of SNLS or NaOL, it was only minimally
increased. This finding suggests that the optimum separation of dolomite from apatite was
achieved by conditioning the minerals with 0.05 mmol/L SNLS for 5 min at pH 10.

3.3. Flotation of Different Binary Mixed Minerals

Binary mixed mineral flotation experiments were performed in a flotation column,
to simulate the actual mineral flotation process. The flotation test results are presented
in Table 2 for binary mixed minerals with an SNLS dosage of 0.05 mmol/L at pH 10. As
the apatite content increased from 50 to 75%, the recovery of apatite increased from 85
to 95%, and furthermore, the content of P2O5 rose from 17 to 30%. The dosage effect of
SNLS as a collector at the same pH was also evaluated, to discover the effect of degree of
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concentration of different binary mixed minerals. This was also conducted to simulate the
different compositions of phosphate ores.
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Table 2. Flotation of binary mixed minerals of different ratios, using 0.05 mmol/L at pH 10.

Mix

Feed (Mixture) Concentrate

Weight (g) % Weight % %

Apatite Dolomite P2O5 MgO Float Sink Rec. P2O5

1 1.0 1.0 16.5 10.8 16 84 85.5 16.8
2 1.2 0.8 19.8 8.7 26 74 88.2 23.6
3 1.5 0.5 24.7 5.4 21 79 95.6 29.9

Flotation of a binary mixture containing 50% apatite (16.5% P2O5 and 10.8% MgO).
Figure 9 shows that as the SNLS dosage increased from 0.001 to 0.05 mmol/L, the apatite
recovery of the concentrate decreased gradually, from 100 to 85.5%, but increased to 89.2%
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with 0.2 mmol. When the SNLS dosage was increased from 0.001 to 0.2 mmol/L, the grade
of apatite increased from 16.5 to 22.3%, while the MgO concentration decreased from 10.8
to 5.2%.
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A binary mixture containing 60% apatite (19.8% P2O5 and 10.8%% MgO) was floated.
Figure 10 shows that as the SNLS dosage increased from 0.001 to 0.05 mmol/L, the recov-
ery of apatite decreased gradually from 99.4 to 88.2%, while it increased to 92.8% with
0.2 mmol/L. The grade of apatite increased from 20.5 to 28.7% when increasing the SNLS
dosage from 0.001 up to 0.2 mmol/L and the MgO content reduced from 8.3 to 2.5%.
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For a binary mixture containing 75% apatite (24.7% P2O5) in Figure 11, as the SNLS
dosage increased from 0.05 mmol/L, the recovery increased from 93.5 to 95.6%, whereas it
decreased to 79.8% with 0.2 mmol/L. The P2O5% increased from about 25 to 31.8% when
increasing the SNLS dosage, whereas the MgO% reduced from 4.7 to 0.7%.
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3.4. Application of the Natural Phosphate Ore

Table 3 shows that as the SNLS dosage was increased, the recovery decreased from
97.5 to 81.5%, while the MgO content decreased from 5.16 to 0.79%. The P2O5 content, on
the other hand, rose from 25.8% to almost 31%. These findings suggest that even at low
dosages of 0.05–0.2 mmol/L, the new collector SNLS has a high selectivity for dolomite
over apatite.

Table 3. Results of natural phosphate ore flotation.

SNLS (mmol/L)
Concentrate

Weight % Rec. % P2O5 % MgO %

0.001 96 97.5 25.8 5.16
0.010 83 90.2 27.6 3.24
0.050 77 87.0 28.7 1.56
0.100 74 85.9 29.5 0.89
0.200 67 81.5 30.9 0.79
Head 100 100 25.4 5.48

3.5. Surface Behavior of Treated Mineral
3.5.1. Zeta-potential Measurements

The zeta potential measurements of apatite and dolomite were studied with varied
pH values, to determine the underlying chemical interaction between reagent and mineral,
in order to understand the adsorption behavior of SNLS. The results of zeta potential are
shown in Figure 12. The zeta potentials of apatite are positive within the pH range of 3–5.2,
but negative at pH values higher than 5.2. The addition of SNLS causes a slight positive
shift in the zeta potential of apatite in the pH range of 3–11, as well as a slight shift in the
point of zero charges from 5.2 to 5.3, indicating a weak interaction between SNLS and the
apatite surface [17,18].
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The decrease in the zeta potential of dolomite was significant when SNLS was added
in the pH range of 7–10, indicating a strong interaction between SNLS and the dolomite
surface (Figure 13). The zeta potential of apatite remained nearly unaltered (1 mV) after
SNLS treatment at pH 10, meanwhile the zeta potential of dolomite reduced by 13 mV
and the point of zero charge changed from 6.2 to 5.5. These results indicate a stronger
adsorption of SNLS on dolomite than that on apatite and agree well with the flotation
results.
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3.5.2. FT-IR Measurements

FT-IR measurements were performed on dolomite and apatite minerals before and
after conditioning with the SNLS collector at pH 10, to detect the SNLS functional group
responsible for the adsorption process.

Carbonate was demonstrated by strong absorption bands between 3050 and 2850 cm−1,
2650 and 2500 cm−1, 1790 and 1820 cm−1, 1400 and 1500 cm−1, and 877, 730, and 710 cm−1.
The presence of these bands in the sample verified the existence of dolomite, which exhibits
distinctive FT-IR absorptions at 3021, 2869, 2547, 1435, and 730 cm−1. FT-IR bands were
detected at 3021, 2869, 2547, and 1435 cm−1 with a combination of frequencies, and the
band of 730 cm−1 was assigned to the in-plane bending (v4) mode of CO3 in the dolomite
structure [19]. The presence of absorption bands at both 2547 and 730 cm−1 in a sample is
especially useful for indicating the presence of dolomite (Figure 14).
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As shown in Figure 15, apatite has various bands in its spectrum. PO4
3− is responsible

for the highest peak, at 1046 cm−1. P–O mode is assigned to the peaks at 792 and 606 cm−1,
and the v2 phosphate mode produces a 469 cm−1 band. There were further bands at 875,
1425, and 1646 cm−1 related to CO3

2− ions. The stretching vibrations of adsorbed water
molecules were responsible for the IR peaks at 2915 and 3436 cm−1 [20–25].
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The FT-IR spectrum of the SNLS (Figures 14 and 15) includes two peaks at 2922 and
2848 cm−1 from the stretching vibrations of the CH2 and CH3 groups, respectively. The
peaks at 1608 and 1396 cm−1 were related to the carbonyl group stretching vibration of the
carboxyl (–COO) group. Another property peak of SNLS appeared at 1633 cm−1, which
was ascribed to the amide carbonyl stretching vibration in –CON [26]. It was attributed
to the amide carbonyl stretching in –CON after the SNLS treatment, which indicated the
adsorption of SNLS onto dolomite surfaces.

Zeta-potential measurements discovered that the SNLS treatment was unfavorable for
apatite adsorption, but had a selective adsorption for the dolomite surface.

New bands appeared in the FT-IR spectrum of the treated dolomite at 2926 and
2851 cm−1 for the CH2 and CH3 groups of SNLS (Figure 14). This results indicated that
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SNLS was significantly adsorbed on the surface of the dolomite. The SNLS peaks at
2922, 2848, and 1396 cm−1 changed to 2926, 2851, and 1544 cm−1 after interaction with
dolomite [27]. The characteristic bands attributed to the –COO and –CON groups of the
SNLS were significantly shifted after their interaction with dolomite, from the original
values of 1608 and 1633 cm−1, to 1562 and 1598 cm−1, respectively. This reveals the strong
SNLS adsorption on the surface of dolomite.

The treated apatite spectrum had two new bands at 2922 and 2848 cm−1, attributed to
the –CH2 and –CH3 groups of SNLS, and two bands at 1631 and 1609 cm−1, attributed to
the –CON and –COO groups of SNLS, which had shifted from 1633 to 1631 cm−1 and from
1608 to 1609 cm−1, respectively (Figure 15). There were slight band shifts of the –CON
and –COO groups in the treated apatite compared to dolomite [28]. SNLS is chemisorbed
onto the apatite surface, according to these findings. This result indicates that SNLS has a
weaker chemical adsorption on apatite surfaces than on dolomite surfaces. The chemical
adsorption of the three active O atoms of SNLS on dolomite was stronger than that on
apatite. These O atoms could form a Ca–NLS complex because of the higher Ca reactivity
on dolomite than on apatite (Figure 16).
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4. Conclusions

Sodium N-lauroylsarcosinate (SNLS) has a strong selectivity for dolomite minerals
over apatite minerals. The zeta-potential and PZC of the dolomite surface were significantly
changed in the presence of SNLS, showing a strong interaction with the dolomite surface.
Through the active O atoms of the amide and carboxyl groups, FT-IR investigations revealed
that SNLS can be chemically adsorbed on both dolomite and apatite minerals, to generate
Ca–NLS chelates. Based on chemical adsorption, dolomite has a higher Ca-reactivity
than apatite. In the presence of 0.05 mmol/L SNLS at pH 10, the maximum floatability
difference (83%) of dolomite and apatite minerals was achieved. At pH 10, the dolomite
was successfully separated from its mixture of apatite, in various ratios. From a binary
mixture containing 16.5 and 19.8% P2O5, two concentrations of 22.3 and 28.7% P2O5 were
obtained. A concentration comprising 31.8% P2O5 and 0.70% MgO was obtained from the
flotation of a binary mixture containing 24.7% P2O5 and 4.7% MgO, with a P2O5 recovery
of roughly 79%. Another concentration was produced from natural phosphate ore, which
contained 25.8% P2O5 and 5.16% MgO at pH 10 with 0.2 mmol/L SNLS, and was produced
at 30.9% P2O5 and 0.79% MgO. Thus, SNLS can be employed as a dolomite collector on an
industrial scale, due to its high selectivity and low cost.
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