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Abstract: Wastewater containing low concentrations of rare earth ions not only constitutes a waste
of rare earth resources but also threatens the surrounding environment. It is therefore necessary to
develop environmentally friendly methods of recovering rare earth ions. The spores produced by
Bacillus are resistant to extreme environments and are effective in the bioadsorption of rare earth
ions, but their adsorption behaviors and mechanisms are not well understood. In this study, the cells
and spores of Bacillus subtilis PS533 and PS4150 were used as biosorbents, and their adsorption of
terbium ions was compared under different conditions. The adsorption characteristics of the spores
were investigated, as were the possible mechanisms of interaction between the spores and rare earth
ions. The results showed that the PS4150 spores had the best adsorption effect on Tb(III), with the
removal percentage reaching 95.2%. Based on a computational simulation, SEM observation, XRD,
XPS, and FTIR analyses, it was suggested that the adsorption of Tb(III) by the spores conforms to
the pseudo−second−order kinetics and the Langmuir adsorption isotherm model. This indicates
that the adsorption process mainly consists of chemical adsorption, and that groups such as amino,
hydroxyl, methyl, and phosphate, which are found on the surface of the spores, are involved in the
bioadsorption process. All of these findings suggest that Bacillus subtilis spores can be used as a
potential biosorbent for the recovery of rare earth ions from wastewater.

Keywords: bioadsorption; Bacillus subtilis; spore; biosorbent; terbium(III); recovery

1. Introduction

Rare earths are important strategic resources that are used around the world in the
production of electronics, petrochemicals, machinery, and energy, as well as in smelting,
the light industry, environmental protection, and agriculture. However, rare earth elements
(REEs) have detrimental effects on the environment and on animals. Since the 1990s, REEs
have been classified as a major pollutant [1]. Studies have shown that REEs can induce
hormesis in animals, plants, and microorganisms, i.e., at low doses, REEs promote biological
growth, with inhibitory or toxic effects occurring as the dose or concentration increases [2].
During mining and metallurgical processes, rare earth ions and their compounds inevitably
enter the soil and water, thus damaging the surrounding soil and aquatic ecosystems;
this not only affects the animals and plants in the area, but also has a negative impact on
human health [3]. Therefore, the separation and recovery of REEs from the environment
are very important, so that valuable resources can be recycled and for the protection of
the environment.

Rare earth ions are difficult to separate from each other due to their similar chemical
properties, ionic radii, and trivalent positive charge [4]. The complexity of this task, coupled
with the demand for environmentally friendly technologies, is driving the development
of biohydrometallurgy [5]. Compared with chemical precipitation, dissolution extraction,
ion exchange, and membrane separation, biosorption is a more environmentally friendly,
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efficient, and economical technique for the treatment and recovery of REEs [6]. This method
commonly uses microorganisms for the adsorption of REEs, due to their large specific
surface area, abundant sources, environmental friendliness, and low cost. Under acidic
conditions, Bakers’ yeast and Penicillium sp. show strong adsorption of neodymium, and
the adsorbed amount is much higher than that of activated carbon [7]. The cell surface
of Penidiella sp. can accumulate dysprosium in large quantities from mine wastewater [8].
E. coli and Arthrobacter Nicotianae exhibit high adsorption levels and can recover more than
90% of medium and heavy REEs from lignite leachate [9]. Spirulina powder can also be
used as a biosorbent for the recovery of ytterbium from waste liquids, and has a maximum
adsorption rate of 87.6% and a maximum adsorbed amount of 72.4 mg·g−1 [10].

Cells of the Bacillus species have a general adsorption effect on REEs. The adsorption
rates of lanthanide and cerium ions by Bacillus megaterium cells were shown to be 29.2% and
30.2%, respectively [11]. Bacillus licheniformis can adsorb a variety of rare earth ions, includ-
ing lanthanum, samarium, europium, gadolinium, and yttrium [12,13]. Bacillus thuringiensis
shows strong capabilities in the adsorption of europium, terbium, and dysprosium ions [14].
Moreover, Tsuruta’s results demonstrate that Gram−positive bacteria (e.g., B. licheniformis
and B. subtilis) accumulated more Sm and Eu compared to actinomycetes, Gram−negative
bacteria, fungi, and yeasts [13,15]. Previous studies have shown that B. subtilis cells can
adsorb 17 REEs [4,13,16]. Spores are a type of dormancy formed by Bacillus in the absence
of nutrients, but their structures are different from those of cells. Bacillus spores consist
of an exosporium, a spore coat, an outer membrane, a peptidoglycan cortex, a germ cell
wall, an inner membrane, and a core [17–19]. B. subtilis spores have no exosporium, and
there is an electron−dense layer outside the spore coat, referred to by McKenney as the
“crust” [20]. Compared to Bacillus cells, there are few studies on the adsorption of rare
earth ions by spores. Bacillus spores are characterized by high-pressure resistance and rapid
reproduction; they can survive at high temperatures, and under aerobic and even anaerobic
conditions. Bacillus spores are highly resistant to harmful external factors and can also be
used as effective biosorbents of REEs [5].

In this study, the strains B. subtilis PS533 and PS4150 were used to investigate the
adsorption characteristics of rare earth ions in water. We examined the effects of various
adsorption conditions, such as the biomass concentration, the initial concentration of rare
earth ions, time, pH, and temperature, on the adsorption of Tb(III) by the cells and spores
of the two bacteria. Isothermal adsorption and a kinetic analysis were performed via model
fitting. The cells and spores of B. subtilis were also characterized and analyzed before and
after adsorption to infer the possible mechanisms of adsorption occurrence; this provides a
scientific basis for the separation and recovery of REEs in wastewater.

2. Materials and Methods
2.1. Bacterial Strains and the Preparation of Cells and Spores

The bacterial strains B. subtilis PS533 and PS4150 were generously provided by Dr.
Peter Setlow (UConn Health) and kept in our laboratory. Both strains are derived from
wild-type strain B. subtilis PS832. The PS533 strain was inserted with the Kar gene and is
therefore resistant to kanamycin. The PS4150 strain was inserted with the tetR and spnR
genes, replacing the cotE and gerE genes; therefore, it is resistant to spectinomycin and has
a highly defective spore surface that lacks most spore coat proteins [5,21].

The activated single colonies of PS533 and PS4150 were inoculated in a Luria−Bertani
liquid medium with 1‰ kanamycin and 1‰ spectinomycin; then, they were incubated at
37 ◦C and 250 rpm until the logarithmic growth phase. The supernatant was removed after
centrifugation, and the bacteria were washed three times with an appropriate amount of
sterile water to obtain pure cells, which were then stored in the refrigerator at 4 ◦C.

During the logarithmic growth phase, the liquid cells of PS533 and PS4150 were
coated on a 2× Schaeffer’s−glucose solid (2× SG) medium with 1‰ kanamycin and 1‰
spectinomycin, and the bacteria on the surface of the medium were collected after 3~5 d of
incubation at 37 ◦C. The collected bacteria were washed using sterile water and purified by
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an ultrasonic cell crusher, removing the supernatant and the non−spore structures after
centrifugation at 4 ◦C. The remaining material was suspended and kept in the refrigerator
overnight at 4 ◦C. After repeating the previous step 3~4 times, the suspension was observed
under a phase−contrast microscope to ensure that spores constituted at least 95%; it was
then stored in a refrigerator at 4 ◦C for later use [18,22].

The precipitates obtained after the centrifugation of the suspended cells and spores
were pre−cooled at −80◦C for 6~8 h in an ultra-low temperature refrigerator, and then put
into a vacuum freeze dryer for 24 h to dry into powder.

2.2. Adsorption of Tb(III) by B. subtilis

The Tb(III) used here was terbium nitrate hexahydrate (Tb (NO3)3·6H2O; 99.9%)
dissolved in sterile water. Rare earth ions can combine with 2,6-pyridinedicarboxylic acid
(DPA) to form complexes, which produce fluorescence at specific wavelengths. Within a
certain range, the intensity of this fluorescence has a significant linear relationship with the
concentration of rare earth ions [5].

We investigated the effects of biomass concentration, the initial concentration of Tb(III),
the pH, and the adsorption temperature on the adsorption performance of B. subtilis. A
certain amount of the cells or spores were added to the solution that contained a given
concentration of Tb(III); the solution was left for a period of time, and then centrifuged at
12,000 rpm for 2 min. Three replicates were set in each group. The fluorescence intensity of
the rare earth ions in the solution was measured before and after adsorption by B. subtilis,
and the concentration was calculated according to the Tb(III) concentration standard curve.
The removal percentage R (%) and the adsorbed amount qe (µmol g−1) were calculated
according to Equations (1) and (2), respectively:

R =

(
1− Ce

C0

)
× 100 (1)

qe = (C0 − C)×V ÷m (2)

where C0 is the concentration of rare earth ions in the solution before adsorption (µmol·L−1),
and Ce is the concentration of rare earth ions in the solution after adsorption (µmol·L−1). V
stands for the total volume of the adsorption solution (L), and m for the mass of the cells or
the spores (g).

2.3. Adsorption of Rare Earth Ions in Wastewater

Soil from a mining area in Ganzhou, China, that contains rare earth elements was
dried and ground. The soil was mixed with sterile water at a ratio of 1:1. After shaking, the
supernatant was used as the experimental wastewater.

According to the adsorption steps described in Section 2.2, PS4150 spores were used to
adsorb rare earth ions in the wastewater. The solution was filtered using a filter membrane
before and after adsorption, and the content of rare earth elements was determined by
inductively coupled plasma mass spectrometry (ICP-MS) (Angilent; 8800; Tokyo; Japan).

2.4. Characterization of B. subtilis Spores before and after Adsorption of Tb(III)

Before and after adsorption of Tb(III), the PS4150 spores were turned into a powder
using a vacuum freeze dryer; then, they were screened (pore size ≤ 75 µm) and collected
for characterization.

After being sprayed gold, the micrographs of the samples were observed using SEM
(FEI; MLA650F; Hillsboro, OR, USA). XRD (Bruker; D8 Advance; Karlsruhe; Germany) was
used to detect the sample, and the scanning speed was 5◦ min−1. All surface elements of
the sample were analyzed using XPS (Thermo Fischer; ESCALAB 250Xi; Carlsbad; USA)
with a passing energy of 20 eV and a step of 0.1 eV, and the charge correction was carried
out with C1s = 284.8 eV binding energy as the energy standard. The surface functional
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groups of the sample in the wave number range of 4000~400 cm−1 were determined by
FTIR (Shimadzu; Thermo Scientific Nicolet iS5; Kyoto; Japan), with a resolution of 4 cm−1.

3. Results
3.1. Effects of Adsorption Conditions on Tb(III) Adsorption

The increased addition of cells or spores had an important effect on the amounts of rare
earth ions that were adsorbed. When the amount of the cells and spores that were added
was increased, the percentage of Tb(III) removed by the cells and spores of the two tested
strains also increased (Figure 1a). The biomass concentration increases the adsorption sites,
meaning that the adsorption effect of rare earth ions is enhanced by cells and spores in a
certain range [23]. When the biomass concentration was 2 g·L−1, the trend in the increase
in the percentage of Tb(III) removed by the two strains tended to be flat. If more cells or
spores were added, the active sites of the biosorbents interfered with each other, and the
amount adsorbed per unit of biosorbent decreased [24]. Therefore, it was determined that
the optimum biomass concentration was 2 g·L−1.
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Figure 1. Tb(III)−removal by B. subtilis PS533/PS4150 cells and spores under different conditions:
(a) biomass concentration (0.5~3 g·L−1), (b) initial concentration of Tb(III) (25~600 µmol·L−1), (c) pH
(4.5~8.5), and (d) temperature (5~45 ◦C).

Figure 1b shows the influence of the initial concentration of Tb(III) on the adsorption
effect. The results illustrate that the increase in the initial concentration of Tb(III) was
accompanied by an increase in the removal percentage, which peaked at 100 µmol·L−1.
The PS4150 spores had the highest removal percentage, removing 94.7% of the Tb(III).
When the initial concentration of Tb(III) exceeded 100 µmol·L−1, the removal percentage
tended to decrease instead. This might be because the adsorption sites on the surface of the
bacteria are limited. As the concentration of rare earth ion increases, the adsorption sites are
fully utilized, and the adsorption gradually reaches saturation. When there are not enough
effective adsorption sites to bind the remaining rare earth ions, the removal percentage
decreases continuously. However, at the same time, rare earth ions can induce hormesis in
microorganisms [2]. At increased concentrations, rare earth ions become increasingly toxic
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to microorganism, reducing the biological activity of microorganisms, and resulting in a
decreased removal percentage. Accordingly, when the initial concentration of Tb(III) was
100 µmol·L−1, the bacterial adsorption and removal effect of Tb(III) was better.

From Figure 1c, it is clear that pH had a significant influence on the bacteria’s ad-
sorption of Tb(III). When the pH was acidic, the removal rate of Tb(III) by the bacteria
was low. This is consistent with the conclusions of other studies on Bacillus [5,14,25]. The
removal rate of Tb(III) by spores showed a more obvious change, increasing rapidly with
the increase in pH. It is likely that, with the increase in the pH value, functional groups
such as phosphates on the spore surface are deprotonated, cations are reduced, and neg-
ative charges are increased; meanwhile, rare earth ions still exist in the form of positive
electricity, enhancing the electrostatic interaction and complexation between spores and
rare earth ions, and increasing the removal rate of Tb(III) [26,27]. When the pH was 7.5, the
percentage of Tb(III) removed by the spores reached equilibrium. Thus, the two strains are
more suitable for adsorbing Tb(III) in neutral or weak alkaline environments.

Different microorganisms’ tolerances to temperature ranges widely, and the temper-
ature of the solution may affect the activity of microorganisms and the migration of rare
earth ions [28]. In this study, the adsorption temperature had no significant effect on the
adsorption of Tb(III) by PS533 and PS4150 cells or spores, and the removal percentage
changed little within the range of 5~45 ◦C (Figure 1d). This may be due to the adaptability
of B. subtilis to the environment and its wide range of temperature tolerance.

3.2. Biosorption Effect of Spores on Actual Wastewater

Wastewater usually contains a mixture of different metal ions. The matter of whether
a biosorbent can selectively adsorb the rare earth ions in the mixed rare earth ion solution is
an important index for evaluating the performance of the biosorbent. The leaching solution
of soil in a rare earth mining area was taken as the research object. There were differing
amounts of each rare earth element in the leaching solution with more Y, Tb, and Pr, and
less La, Nd, Dy, Er, and Yb; meanwhile, the amount of other rare earth elements was less
than 0.1 ppb. After adsorption by the PS4150 spores, the contents of the other rare earth
elements, except Pr, were less than 0.1 ppb (Figure 2). This demonstrates that the spores of
B. subtilis, especially PS4150, have a practical significance for the separation and recovery
of rare earth ions from wastewater.
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Figure 2. The content of REEs in soil leaching solution of rare earth mining area before and after the
biosorption by PS4150 spores.

3.3. Kinetic Study of Tb(III) Adsorption

The effects of different contact times on the adsorption of Tb(III) by PS533 and PS4150
cells and spores were tested at room temperature, with a biomass concentration of 2 g·L−1,
and an initial concentration of Tb(III) of 100 µmol L−1. The results are shown in Figure 3a.
The processes by which rare earth ions are adsorbed by biosorbents can be divided into
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two general phases: rapid adsorption, and a slow increase that gradually reaches equilib-
rium [29,30]. Within the timeframe 0~30 min, the amount of Tb(III) adsorbed by the cells
and spores increased continuously over time, and reached a stable level at 30 min. Even if
the contact time was prolonged, there was little change in the amount adsorbed.
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The increase in the amount adsorbed may be explained by the rapid adsorption of
Tb(III) to the adsorption sites of the bacteria due to the coordination reaction between rare
earth ions and the coordination groups on the bacterial surface during the initial adsorption.
As the adsorption time increases, the adsorption sites have been fully utilized. Therefore, it
is necessary to determine the appropriate adsorption time needed to reach equilibrium, not
only to maintain a high level of adsorption, but also to save as much time as possible. The
results show that an adsorption time of 30 min would be sufficient.

In order to study the mechanisms by which B. subtilis absorbs Tb(III), pseudo−first−
order Equation (3) and pseudo−second−order Equation (4) adsorption kinetic models
were used to fit the experimental data:

ln(qe − qt) = ln qe − K1t (3)

t/qt = 1/K2q2
e + t/qe (4)

where qe and qt represent the amount (µmol·g−1) of Tb(III) adsorbed on the biosor-
bent at equilibrium and time t, respectively. K1 and K2 are pseudo−first−order and
pseudo−second−order adsorption rate constants, respectively.

The adsorption kinetics reflect the variation in the amount adsorbed over time. The
equilibrium time for Tb(III) adsorption by PS533 and PS4150 cells and spores was short,
ranging from 15 to 30 min, which demonstrates the significant economic benefits of
these biosorbents. The pseudo−first−order kinetic model assumes that adsorption is
controlled by diffusion steps, but the estimation is ambiguous due to the slow dynamics
of the process caused by a weak van der Waals force or intragranular diffusion [31]. The
pseudo−second−order kinetic model is mostly used to describe adsorption processes dom-
inated by chemical adsorption (i.e., ion exchange or complexation), and most biosorption
kinetics follow pseudo−second−order adsorption kinetics [32].

According to the parameters of the fitting results (Table 1), the correlation coefficients
(R2) of the pseudo−second−order kinetic model were >0.99, and the fitted adsorption
amount differed very little from the actual equilibrium amount in the experiment. The
adsorption kinetics of Tb(III) by cells and spores conformed to the pseudo−second−order
kinetics model (Figure 3c), indicating that it is an adsorption process dominated by
chemical adsorption.
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Table 1. Adsorption kinetic model parameters of Tb(III) by B. subtilis.

Different
Biosorbents

Amount
Adsorbed/

(µmol·g−1) †

Pseudo–First–Order Kinetic Pseudo–Second–Order Kinetic

K1 qe/(µmol·g−1) R2 K2 qe/(µmol·g−1) R2

PS533 cells 83.865 −0.149 5.956 0.510 0.081 84.962 0.999
PS533 spores 79.790 −0.015 2.930 −0.050 0.054 76.220 0.999
PS4150 cells 92.326 −0.015 1.171 −0.070 0.286 91.158 0.999

PS4150 spores 94.792 −0.162 7.162 0.422 0.041 96.246 0.999

† The data shown are average values.

3.4. Isotherm Study of Tb(III) Adsorption

The PS533 and PS4150 cells and spores were used to adsorb different concentrations
of Tb(III) at 25 ◦C for 30 min. The adsorbed amount increased rapidly with the increase
in the Tb(III) concentration, and then tended to stabilize. The experimental results were
fitted by two common adsorption isotherm models, the Langmuir isotherm Equation (5)
and Freundlich isotherm Equation (6), which are shown here:

qe = qmaxKLCe/(1 + KLCe) (5)

qe = KFC1/n
e (6)

where qe is the amount absorbed at equilibrium (µmol·g−1), Ce is the concentration of
the Tb(III) solution at equilibrium (µmol·L−1), qmax is the fitted single-layer maximum
adsorbed amount (µmol·g−1), KL is the Langmuir adsorption correlation constant, and KF
and n are the Freundlich adsorption correlation constants.

Table 2 shows the fitting parameters of the adsorption isotherm of Tb(III) adsorbed by
B. subtilis cells and spores. The adsorption processes were more in line with the Langmuir
adsorption isotherm model (Figure 4b). The theoretical maximum adsorbed amounts of the
four biosorbents were 857.1, 495.9, 1171.2, and 1557.2 µmol·g−1, respectively. Similar to the
higher removal percentage, the maximum adsorption capacity of PS4150 was the highest.
This shows that the adsorption of Tb(III) by B. subtilis should be a reversible adsorption
process, with uniform adsorption sites on the surface of the biosorbents [33,34]. It is also
evident that the parameter 1/n of the Freundlich isotherm model is between 0~1, indicating
that the adsorption is efficient over the entire range of concentrations studied, and that a
strong bond is formed between the biosorbent and rare earth ions [35,36].

Table 2. Adsorption isotherm model parameters of Tb(III) by B. subtilis.

Different
Biosorbents

Langmuir Isotherm Freundlich Isotherm

qmax
(µmol·g−1) KL R2 1/n KF R2

PS533 cells 857.140 0.001 0.995 0.460 19.145 0.939
PS533 spores 495.850 0.002 0.993 0.395 20.213 0.909
PS4150 cells 1 171.200 0.001 0.991 0.507 16.763 0.944

PS4150 spores 1 557.208 0.001 0.990 0.542 15.913 0.950

3.5. Characterization of Spores before and after Adsorption

Taking the spores of B. subtilis PS4150 as an example, the mechanisms whereby rare
earth ions are adsorbed by the spores were characterized.
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The morphological changes in spores before and after the adsorption of Tb(III) were
observed using a scanning electron microscope (SEM). The spores were oval shaped, and
there were some deposits on their surfaces after adsorption of Tb(III) (Figure 5b,e). This may
be due to the adsorption and precipitation of rare earth ions on the spore’s surface. After
adsorption, the spore structure was complete, indicating that Tb(III) was only adsorbed
on the surface of the spore and did not penetrate the internal structure. The elemental
composition of the spores before and after their adsorption of Tb(III) was analyzed by EDS,
and the results are shown in Figure 5c,f and Table 3. The surface elements of the spores
are mainly C and O, and small amounts of Mg, P, S, Ca, and Mn. These minor elements
are derived from the 2× SG medium. After adsorption, the elemental mass percentage
of Tb(III) on the surfaces of the PS533 and PS4150 spores increased from 0% to 0.81% and
1.38%, respectively, which confirmed both the biosorption of Tb(III) on the surface of the
spores, and that PS4150 had adsorbed more. These results reflect the fact that the spore
adsorption effects of PS533 and PS4150 are different. The results also show that the surfaces
of spores play an important role in the adsorption of rare earth ions [37]. After adsorption,
the mass percentages of Ca and Mn decreased, indicating that there is also ion exchange in
the process of spore adsorption of Tb(III).
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Figure 5. SEM micrographs of (a) PS533 spores, (b) PS4150 spores, (d) PS533 spores−Tb, and
(e) PS4150 spores−Tb. EDS spectrum of (c) PS533 spores−Tb and (f) PS4150 spores−Tb. Counts
results are calculated from the average of the energy intensities of the three regions of the spore
after adsorption.
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Table 3. Elemental mass percentage of B. subtilis spores before and after the adsorption of Tb(III).

Different
Biosorbents

Elemental Mass Percentage (%)

C O Mg P S Ca Mn Tb

PS533 spores 74.35 20.24 0.22 1.18 1.07 2.84 0.10 0.00
PS533 spores-Tb 74.93 23.25 0.26 0.09 0.18 0.48 0.00 0.81
PS4150 spores 73.27 21.00 0.41 0.93 1.05 3.13 0.21 0.00

PS4150 spores-Tb 72.01 24.94 0.59 0.09 0.19 0.80 0.00 1.38

The mass percentages shown are average values.

According to the survey scanning spectra of the spores (Figure 6a), the elemental
composition of the spore surface mainly comprised C, N, and O. After adsorption, the
binding energies of Tb 3d3 and Tb 3d5 appeared at 1240.84 eV and 1276.15 eV, respectively
(Figure 6b), indicating that Tb ions exist in a trivalent state on the surface of the spores,
and that no redox reaction occurs during the adsorption process [38]. After adsorption, the
peaks of the elements O, C, and N increased, indicating that the functional groups related
to these elements may play a role in adsorption.
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The FTIR spectra of the spores before and after adsorption of Tb(III) were measured
at wave numbers in the range of 400~4000 cm−1 (Figure 7). The strong broad spectrum
peak at 3300 cm−1 is the stretching vibration peak of O−H and C−H of fatty acids; this
range also encompasses the stretching vibration absorption of the N–H bond from protein
molecules [39]. The absorption peak at 2962~2854 cm−1 is the C−H stretching vibration
peak. The peaks at 2930 and 2962 cm−1 are the asymmetrical stretching vibration peaks of
the −CH2 and −CH3 groups of proteins and lipids, respectively. It is a typical stretching vi-
bration absorption band of C−H bonds of the lipid carbon chain. It reflects the information
of the fatty acids, various membranes, and other structural hydrophilic lipid molecules [40].
The peaks at 1656 cm−1 and 1543 cm−1 are from the C=O stretching vibration peak of
the protein amide I band, and the N−H in-plane bending vibration and C−N stretching
vibration of the protein amide II band. The absorption bands around 1442 cm−1 and
1383 cm−1 belong to the symmetrical deformation vibration peaks of the methyl groups in
the protein molecules. The absorption peak at 1280 cm−1 is the C−H stretching vibration
of the aliphatic carbon chain. The wavenumber range of 1200~900 cm−1 contains a wide
band of carbohydrates and phosphodiesters [39,41]. The peaks at 1239 cm−1 and 1080 cm−1

are the out-of-plane bending vibration peaks of phosphate groups in the carbohydrates.
The absorption of 1160 cm−1 comes from the stretching vibration of the C−O bond in the
polysaccharides. The absorption band at 900~700 cm−1 is the “fingerprint area”, because
it contains a weak but very unique absorbance, which is unique to specific bacteria [42].
The absorption band of 770~660 cm−1 is generally the range of the out−of−plane bending
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of the C−H bond in polysaccharides. However, several studies have suggested that the
absorption band here is due to the presence of DPA [41,43,44]. DPA in spores chelates with
Ca2+ and exists in the form of calcium salt. It constitutes as much as 20% of the dry weight
of the spore’s core [45]. Ca−DPA is also found in the outer layers of the spore (such as the
cortex and coat layer).
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The shape of the peak in the infrared spectrum after adsorption was basically consistent
with the shape detailed above, indicating that the main components and structure of
PS4150 spores remained intact after adsorption. However, the wave numbers of some
groups on the spores shifted, including amino and hydroxyl (3300→ 3302 cm−1), methyl
(1383→ 1386 cm−1), and phosphate (1239→ 1235 cm−1, 1080→ 1078 cm−1), indicating
that these groups participate in the adsorption of, and form complexes with, rare earth
ions. These results further indicate that the adsorption mainly occurs on the surface of
the spores.

4. Discussion

Although microbial cells have attracted much attention from researchers investigating
methods for the removal of rare earth ions from water or wastewater, they require high
amounts of nutrition and a favorable environment to support their growth and bioadsorp-
tion functions. In this paper, the cells and spores of B. subtilis were used as biosorbents to
adsorb Tb(III) in a solution containing a certain concentration of Tb(III); this experiment
simulated the recovery and removal of rare earth ions in wastewaters. The adsorption
effects of the cells and spores of PS533 and PS4150 on rare earth ions were compared, and
the effects under different conditions were explored. The removal percentage of Tb(III)
by the PS4150 spores was the highest. This might be because of the lack of the spore coat
protein cotE in PS4150, a gene-deficient strain, which causes the spores to lose the inner coat
layer and most of the outer coat layer, meaning that more rare earth ions can be adsorbed
and accumulated on the surface. The adsorption capacity of Tb(III) by the spores was at
its the highest with a biomass concentration of 2 g·L−1, an initial concentration of Tb(III)
of 100 µmol·L−1, a pH of 7.5, and an adsorption duration of 30 min. The percentage of
Tb(III) removed by the PS4150 spores was about 94%, and the adsorbed amount was about
93 µmol·g−1.

The adsorption of rare earth ions by Bacillus cells usually occurs on the cell wall, and
the main adsorption sites are the carboxyl, hydroxyl, and phosphate groups [12,46,47].
The adsorption of light REEs and medium REEs is dominated by phosphoric acid groups,
while the adsorption of some medium and heavy REEs is mainly coordinated by carboxyl
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groups [48]. Some rare earth ions are also adsorbed to the cell membrane or periplasmic
space, or accumulate inside the cells [49]. However, there are few studies on the binding
sites of rare earth ions on the spores. One previous study shows that the adsorption of rare
earth ions occurs on the outer layer of the spores, but it might also be affected by the spores’
internal mechanisms [5]. The specific structures, components, and mechanisms by which
spores bind to rare earth ions are not clear and need to be further studied.

The pseudo-second-order kinetic model is generally used to predict the adsorption
behavior of solid biosorbents. It is assumed that the chemical adsorption mechanism is
the rate-limiting aspect of the whole adsorption process [50], and that the resistance of
mass transfer usually occurs in the outer layer of the biosorbent [51]. The adsorption
processes of biosorbents mostly conform to the pseudo-second-order chemical reaction
kinetic model, while the pseudo-order adsorption kinetic model is only in good agreement
with the experimental data in the initial stage of the first step reaction [32,52]. Our results
also align with this finding. The Langmuir and Freundlich adsorption isotherm models
are widely used to describe the adsorption of rare earth ions by biosorbents; of these,
Langmuir proves to be a better fit for most of the adsorption [52]. The Langmuir isotherm
assumes that the adsorption is a monolayer adsorption on the surface of a homogeneous
biosorbent [53]. However, the biosorbent surface is not ideally homogeneous. Regarding
the actual adsorption, the combination of the Langmuir and Freundlich models can better
explain the adsorption mechanism. The results of our fitting show that the R2 of the
Langmuir model is more than 0.99 and that the R2 of the Freundlich model is also between
0.90~0.95. The adsorption mechanism under consideration here may exhibit behaviors
somewhere between those of monolayer adsorption mechanisms and those of multilayer
adsorption mechanisms [6]. This is the result of chemical action and weak physical force;
the rare earth ions cover the biosorbent surface through ion complexation, electrostatic
action, precipitation, and other actions [31].

Spores of B. subtilis can quickly adsorb rare earth ions in tens of minutes; the process
is especially quick in a liquid state. Lipoteichoic acid and wall teichoic acid of the Bacillus
cells are the main cation adsorption sites [16,54]. Although teichoic acid is not present in
Bacillus spores, the outer layer may contain large amounts of excess phosphate [5]. In a
process similar to that of Bacillus cells, adsorption mainly occurs on the surface of spores.
Proteins and carbohydrates in the outer coat layer form a matrix around the spore coat
proteins [55]. Due to electrostatic attraction, rare earth ions gather on charged points on
the spore’s surface and replace the Ca and Mn ions that were originally fixed to these
charged points. The amino, hydroxyl, methyl, and phosphate groups on the spore coat
layer participate in the adsorption process, and in complex with Tb(III), form amorphous
compounds on the spore surface.

According to our findings, B. subtilis spores can adsorb a large amount of Tb(III) in
neutral environments, and the amount adsorbed can theoretically reach 1,557.2 µmol·g−1.
Moreover, spores of the Bacillus species are highly tolerant to extreme environments. There-
fore, B. subtilis spores could be used as potential biosorbents for the removal or recovery of
rare earth ions from wastewater.
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