Petrogenesis and Tectonic Implications of the Triassic Granitoids in the Ela Mountain Area of the East Kunlun Orogenic Belt
Abstract
:1. Introduction
2. Geology and Sample Descriptions
3. Analytical Methods
3.1. Zircon U-Pb Dating
3.2. Major and Trace Element Analyses
3.3. Zircon in Situ Lu-Hf Isotopic Analyses
4. Results
4.1. Zircon U-Pb Dating
4.2. Whole-Rock Geochemistry
4.3. Zircon Hf Isotopic Compositions
5. Discussion
5.1. Magmatic Process and Petrogenesis
5.1.1. ZRR Porphyritic Granites
5.1.2. DHB and HQG Granodiorites
5.1.3. DHB Porphyritic Diorites
5.2. Tectonic Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ren, H.D.; Wang, T.; Zhang, L.; Wang, X.X.; Huang, H.; Feng, C.Y.; Teschner, C.; Song, P. Ages, Sources and Tectonic Settings of the Triassic Igneous Rocks in the Easternmost Segment of the East Kunlun Orogen, central China. Acta Geol. Sin.-Engl. Ed. 2016, 90, 641–668. [Google Scholar]
- Xin, W.; Sun, F.Y.; Zhang, Y.T.; Fan, X.Z.; Wang, Y.C.; Li, L. Mafic–intermediate igneous rocks in the East Kunlun Orogenic Belt, northwestern China: Petrogenesis and implications for regional geodynamic evolution during the Triassic. Lithos 2019, 346, 105159. [Google Scholar] [CrossRef]
- Wu, D.Q.; Sun, F.Y.; Pan, Z.C.; Tian, N. Geochronology, geochemistry, and Hf isotopic compositions of Triassic igneous rocks in the easternmost segment of the East Kunlun Orogenic Belt, NW China: Implications for magmatism and tectonic evolution. Int. Geol. Rev. 2021, 63, 1011–1029. [Google Scholar] [CrossRef]
- Kong, J.J.; Niu, Y.L.; Hu, Y.; Zhang, Y.; Shao, F.L. Petrogenesis of the Triassic granitoids from the East Kunlun Orogenic Belt, NWChina: Implications for continental crust growth from syn-collisional to post-collisional setting. Lithos 2020, 364, 105513. [Google Scholar] [CrossRef]
- Tian, N.; Sun, F.Y.; Pan, Z.C.; Li, L.; Gu, Y.; Wu, D.Q.; Deng, J.F.; Liu, Z.D.; Wang, L.; Zhang, Y.J. Triassic igneous activities in the east flank of the East Kunlun orogenic belt: The Daheba complex example. Int. Geol. Rev. 2021, 1–28. [Google Scholar] [CrossRef]
- Tian, N.; Sun, F.Y.; Pan, Z.C.; Li, L.; Yan, J.M.; Wu, D.Q.; Gu, Y.; Zhang, Y. Petrogenesis and tectonic setting of Mid-Triassic volcanic rocks in the East Kunlun orogenic belt, NW China: Insights from geochemistry, zircon U–Pb dating, and Hf isotopes. Geol. J. 2021, 56, 3257–3274. [Google Scholar] [CrossRef]
- Pan, G.T.; Wang, L.Q.; Li, R.S.; Yuan, S.H.; Ji, W.H.; Yin, F.G.; Zhang, W.P.; Wang, B.D. Tectonic evolution of the Qinghai-Tibet Plateau. J. Asian Earth Sci. 2012, 53, 3–14. [Google Scholar] [CrossRef]
- Huang, H.; Niu, Y.L.; Nowell, G.; Zhao, Z.D.; Yu, X.H.; Zhu, D.C.; Mo, X.X.; Ding, S. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic magmatism. Chem. Geol. 2014, 370, 1–18. [Google Scholar] [CrossRef]
- Xiong, F.; Ma, C.Q.; Zhang, J.; Liu, B.; Jiang, H. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau. J. Geol. Soc. Lond. 2014, 171, 847–863. [Google Scholar] [CrossRef]
- Dong, Y.P.; He, D.F.; Sun, S.S.; Liu, X.M.; Zhou, X.H.; Zhang, F.F.; Yang, Z.; Cheng, B.; Zhao, G.C.; Li, J.H. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth Sci. Rev. 2018, 186, 231–261. [Google Scholar] [CrossRef]
- Liu, Y.J.; Genser, J.; Neubauer, F.; Jin, W.; Ge, X.H.; Handler, R.; Takasu, A. Ar-40/Ar-39 mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications. Tectonophysics 2005, 398, 199–224. [Google Scholar] [CrossRef]
- Yuan, C.; Sun, M.; Xiao, W.J.; Wilde, S.; Li, X.H.; Liu, X.H.; Long, X.P.; Xia, X.P.; Ye, K.; Li, J.L. Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: Implications for adakite and magmas from the MASH Zone. Int. J. Earth Sci. 2009, 98, 1489–1510. [Google Scholar] [CrossRef]
- Sun, F.Y.; Li, B.L.; Ding, Q.F.; Zhao, J.W.; Pan, T.; Yu, X.F.; Wang, L.; Chen, G.J.; Ding, Z.J. Research on the Key Problems of Ore Prospecting in the Eastern Kunlun Metallogenic Belt; Geological Survey Institute of Jilin University: Changchun, China, 2009. (In Chinese) [Google Scholar]
- Yuan, C.; Zhou, M.F.; Sun, M.; Zhao, Y.; Wilde, S.; Long, X.; Yan, D. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere. Earth Planet. Sci. Lett. 2010, 290, 481–492. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot 3.0: A geochronological toolkit for Microsoft Excel. Berkeley Geochronol. Cent. Spec. Publ. 2003, 4, 1–70. [Google Scholar]
- Andersen, T. Correction of common lead in U–Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, Y.H.; Xie, L.W.; Yang, J.H.; Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
- Pupin, J.P. Zircon and Granite Petrology. Contrib. Mineral. Petrol. 1980, 73, 207–220. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of Zircon Textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Turkina, O.M.; Berezhnaya, N.G.; Lepekhina, E.N.; Kapitonov, I.N. U-Pb (SHRIMP-II), Lu–Hf isotope and trace element geochemistry of zircons from high-grade metamorphic rocks of the Irkut terrane, Sharyzhalgay Uplift: Implications for the Neoarchaean evolution of the Siberian Craton. Gondwana Res. 2012, 21, 801–817. [Google Scholar] [CrossRef] [Green Version]
- Middlemost, E.A. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A Geochemical Classification for Granitic Rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Oxford, UK, 1985; pp. 91–92. [Google Scholar]
- McDonough, W.F.; Sun, S.-S. The Composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In The Crust; Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; 2003; Volume 3, pp. 1–64. [Google Scholar]
- Loiselle, M.C.; Wones, D.R. Characteristics and origin of anorogenic granites. Geol. Soc. Am. Abst. Prog. 1979, 11, 468. [Google Scholar]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types. Pac. Geol. 1974, 8, 173–174. [Google Scholar]
- Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and origin of A-type granites with particular reference to south- eastern Australia. Contrib. Miner. Pet. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Pitcher, W. Granite type and tectonic environment. In Proceedings of the Symposium on Mountain Building, Princeton, NJ, USA, 9–12 May 1983; pp. 19–40. [Google Scholar]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discriminatuon and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Wu, F.Y.; Jahn, B.M.; Wilde, S.A.; Lo, C.H.; Yui, T.F.; Lin, Q.; Ge, W.C.; Sun, D.Y. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis. Lithos 2003, 66, 241–273. [Google Scholar] [CrossRef]
- Wu, F.Y.; Jahn, B.M.; Wilde, S.A.; Lo, C.H.; Yui, T.F.; Lin, Q.; Ge, W.C.; Sun, D.Y. Highly fractionated I-type granites in NE China (II): Isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos 2003, 67, 191–204. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Yang, J.H.; Zheng, Y.F. Discussion on the petrogenesis of granites. Acta Petrol. Sin. 2007, 23, 1217–1238. [Google Scholar]
- White, A.J.R. Sources of granite magmas. Geol. Soc. Am. 1979, 11, 539. [Google Scholar]
- Whalen, J.B. Geochemistry of an island-arc plutonic suite: The Uasilau-Yau Yau intrusive complex, New Britain, P.N.G. J. Petrol. 1985, 26, 603–632. [Google Scholar] [CrossRef]
- Douce, A.E.P. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 1997, 25, 743–746. [Google Scholar] [CrossRef]
- King, P.L.; White, A.J.R.; Chappell, B.W.; Allen, C.M. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. J. Petrol. 1997, 38, 371–391. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 2, 295–304. [Google Scholar] [CrossRef]
- Chappell, B.W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I-and S-type granites in the Lachlan Fold Belt. Earth Environ. Sci. Trans. R. Soc. Edinb. 1992, 83, 1–26. [Google Scholar]
- Zorpi, M.J.; Coulon, C.; Orsini, J.B. Hybridization between felsic and mafic magmas in calc-alkaline granitoids—A case study in northern Sardinia, Italy. Chem. Geol. 1991, 92, 45–86. [Google Scholar] [CrossRef]
- Hoffmann, J.E.; Münker, C.; Polat, A.; Rosing, M.T.; Schulz, T. The origin of decoupled Hf-Nd isotope compositions in Eoarchean rocks from southern west Greenland. Geochim. Cosmochim. Acta. 2011, 75, 6610–6628. [Google Scholar] [CrossRef]
- Barbarin, B. Genesis of the two main types of peraluminous granitoids. Geology 1996, 24, 295–298. [Google Scholar] [CrossRef]
- Wu, T.; Zhou, J.X.; Wang, X.C.; Li, W.X.; Wilde, S.A.; Sun, H.R.; Wang, J.S.; Li, Z. Identification of Ca. 850 Ma High-Temperature Strongly Peraluminous Granitoids in Southeastern Guizhou Province, South China: A Result of Early Extension Along the Southern Margin of the Yangtze Block. Precambrian Res. 2018, 308, 18–34. [Google Scholar] [CrossRef]
- Sisson, T.W. Hornblende-Melt Trace-Element Partitioning Measured by Ion Microprobe. Chem. Geol. 1994, 117, 331–334. [Google Scholar] [CrossRef]
- Słaby, E.; Götze, J.; Wörner, G.; Simon, K.; Wrzalik, R.; Śmigielski, M. K-feldspar phenocrysts in microgranular magmatic enclaves: A cathodoluminescence and geochemical study of crystal growth as a marker of magma mingling dynamics. Lithos 2008, 105, 85–97. [Google Scholar] [CrossRef]
- Vernon, R.H. Granites really are magmatic: Using microstructural evidence to refute some obstinate hypotheses. J. Virtual Explor. 2010, 35, 1–36. [Google Scholar] [CrossRef]
- Barbarin, B. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: Nature, origin, and relations with the hosts. Lithos 2005, 80, 155–177. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Lu, S.N.; Li, H.K.; Wang, H.C.; Chen, Z.H.; Zheng, J.K.; Xiang, Z.Q. Detrital zircon population of Proterozoic meta-sedimentary strata in the Qinling-Qilian-Kunlun Orogen. Acta Petrol. Sin. 2009, 25, 2195–2208. [Google Scholar]
- Taniuchi, H.; Kuritani, T.; Nakagawa, M. Generation of Calc-Alkaline Andesite Magma through Crustal Melting Induced by Emplacement of Mantle-Derived Water-Rich Primary Magma: Evidence From Rishiri Volcano, Southern Kuril Arc. Lithos 2020, 354–355, 105362. [Google Scholar] [CrossRef]
- Hirose, K. Melting Experiments On Lherzolite KLB-1 Under Hydrous Conditions and Generation of High-Magnesian Andesitic Melts. Geology 1997, 25, 42–44. [Google Scholar] [CrossRef]
- Tamura, Y.; Sato, T.; Fujiwara, T.; Kodaira, S.; Nichols, A. Advent of Continents: A New Hypothesis. Sci. Rep. 2016, 6, 1–12. [Google Scholar]
- Bellieni, G.; Cavazzini, G.; Fioretti, A.M.; Peccerillo, A.; Poli, G. Geochemical and isotopic evidence for crystal fractionation, AFC and crustal anatexis in the genesis of the Rensen Plutonic Complex (Eastern Alps, Italy). Contrib. Miner. Petrol. 1991, 92, 21–43. [Google Scholar] [CrossRef]
- Sisson, T.W.; Grove, T.L. Experimental Investigations of the Role of H2O in Calc-Alkaline Differentiation and Subduction Zone Magmatism. Contrib. Mineral. Petrol. 1993, 113, 143–166. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Defant, M.J.; Drummond, M.S. Progressive Enrichment of Island Arc Mantle by Melt-Peridotite Interaction Inferred From Kamchatka Xenoliths. Geochim. et Cosmochim. Acta 1996, 60, 1217–1229. [Google Scholar] [CrossRef]
- Gao, S.; Rudnick, R.L.; Yuan, H.L.; Liu, X.M.; Liu, Y.S.; Xu, W.L.; Ling, W.L.; Ayers, J.; Wang, X.C.; Wang, Q.H. Recycling Lower Continental Crust in the North China Craton. Nature 2004, 432, 892–897. [Google Scholar] [CrossRef]
- Petford, N.; Atherton, M. Na-Rich Partial Melts From Newly Underplated Basaltic Crust; The Cordillera Blanca Batholith, Peru. J. Petrol. 1996, 37, 1491–1521. [Google Scholar] [CrossRef] [Green Version]
- Sakuyama, M. Petrological Study of the Myoko and Kurohime Volcanoes, Japan; Crystallization Sequence and Evidence for Magma Mixing. J. Petrol. 1981, 22, 553–583. [Google Scholar] [CrossRef]
- Kushiro, I. Partial melting of mantle wedge and evolution of island arc crust. J. Geophys. Res. 1990, 95, 15929–15939. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Geochemical Evolution of the Continental Crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Martin, H. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos 1999, 46, 411–429. [Google Scholar] [CrossRef]
- Xu, Z.H.; Xin, W.; Zhou, X.D.; Xu, Q.L.; Li, F.W.; Song, Z.J. Triassic granitoids in the East Kunlun Orogenic Belt, Northwestern China: Magmatic source and implications for geodynamic evolution. Int. Geol. Rev. 2020, 1–17. [Google Scholar] [CrossRef]
- Xia, R.; Wang, C.M.; Deng, J.; Carranza, E.J.M.; Li, W.; Qing, M. Crustal theckening prior to 220 Ma in the East Kunlun Orogenic Belt: Insights from Late Triassic granitoids in the Xiao-Nuomuhong pluton. J. Asian Earth Sci. 2014, 93, 193–210. [Google Scholar] [CrossRef]
- Zhang, Q.; Pan, G.Q.; Li, C.D.; Jin, W.J.; Jia, X.Q. Granitic magma mixing versus basaltic magma mixing: New viewpoints on granitic magma mixing process: Some crucial questions on granite study. Acta Petrol. Sin. 2007, 23, 1141–1152, (In Chinese with English abstract). [Google Scholar]
- Wang, Y.W.; Wang, J.B.; Long, L.L.; Zou, T.; Tang, P.Z.; Wang, L.J. Type, indicator, mechanism, model and relationship with mineralization of magma mixing: A case study in North Xinjiang. Acta Petrol. Sin. 2012, 28, 2317–2330, (In Chinese with English abstract). [Google Scholar]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Liu, Z.Q.; Chen, G.C.; Chen, Y.X.; Wei, F.H.; Gao, J.M.; Liu, C.J.; Pei, L. Geological characteristics of Late Paleozoic-Mesozoic unconformities and their response to some signifificant tectonic events in eastern part of Eastern Kunlun. Earth Sci. Front. 2012, 19, 244–254, (In Chinese with English abstract). [Google Scholar]
- Chen, S.J.; Li, R.S.; Ji, W.H.; Zhao, Z.M.; Liu, R.L.; Jia, B.H.; Zhang, Z.F.; Wang, G.C. The Permian lithofacies paleogeographic characteristics and basin-mountain conversion in the Kunlun orogenic belt. Geol. China 2010, 37, 374–393, (In Chinese with English abstract). [Google Scholar]
- Yang, J.S.; Shi, R.D.; Wu, C.L.; Wang, X.B.; Robinson, P. Dur’ngoi ophiolite in East Kunlun, Northeast Tibetan plateau: Evidence for paleo-Tethyan suture in Northwest China. J. Earth Sci. 2009, 20, 303–331. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Zhang, X.F.; Liu, Z.G.; Chen, G.C.; Chen, Y.X.; Ding, S.P.; Guo, J.F. LA-ICP-MS Zircon U-Pb Geochronology of the two Suites of Ophiolites at the Buqingshan Area of the A’nyemaqen Orogenic Belt in the Southern margin of East Kunlun and its Tectonic Implication. Acta Geol. Sin. 2011, 30, 185–194, (In Chinese with English abstract). [Google Scholar]
- Yang, Y.Q.; Li, B.L.; Xu, Q.L.; Zhang, B.S. Zircon U-Pb ages and its geological significance of the monzonitic granite in the Aikengdelesite, Eastern Kunlun. Northwestern Geol. 2013, 46, 56–62, (In Chinese with English abstract). [Google Scholar]
- Chen, B.X.; Xu, S.L.; Yang, Y.S.; Zhou, N.W.; Zhu, Z.X. Genesis and tectonic significance of Late Permian Qimulaike intrusiverocks in the west of East Kunlun Mountains, Xinjiang. Geol. Bull. China 2019, 38, 1040–1051, (In Chinese with English abstract). [Google Scholar]
- Xiong, F.H.; Ma, C.Q.; Zhang, J.Y.; Liu, B. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotope geochemistry of the Early Mesozoic mafic dike swarm in East Kunlun orogenic belt. Acta Petrol. 2011, 27, 3350–3364. [Google Scholar]
- Xiong, F.H.; Ma, C.Q.; Jiang, H.A.; Liu, B.; Zhang, J.Y.; Zhou, Q. Petrogenetic and tectonic significance of Permian calc-alkaline lamprophyres, East Kunlun OrogenicBelt, northern Qinghai-Tibet plateau. Int. Geol. Rev. 2013, 55, 1817–1834. [Google Scholar] [CrossRef]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Pei, L.; Chen, G.C.; Chen, Y.X.; Liu, C.J.; Wang, S.M. Paleo-Tethys Ocean subduction in eastern section of East Kunlun Orogen: Evidence from the geochronology and geochemistry of the Wutuo pluton. Acta Petrol. Sin. 2018, 34, 3399–3421. [Google Scholar]
- Hoek, J.D.; Seitz, H.M. Continental mafic dike swarm as tectonic indicators: An example from the Vestfold Hills, East Antarctica. Precambrian Res. 1995, 75, 121–139. [Google Scholar] [CrossRef]
- Garfunkel, Z.; Anderson, C.A.; Schubert, G. Mantle circulation and the lateral migration of subducted slabs. J. Geophys. Res. Solid Earth 1986, 91, 7205–7223. [Google Scholar] [CrossRef] [Green Version]
- Gill, J.B. Andesite Genesis. (Book Reviews: Orogenic Andesitesand Plate Tectonics). Science 1982, 218, 1111–1112. [Google Scholar]
- Wilson, M. Igneous Petrogenesis; Unwin Hyman: London, UK, 1989; pp. 1–25. [Google Scholar]
- Salters, V.J.M.; Hart, S.R. The mantle sources of ocean ridges, islands and arcs; the Hf-isotope connection. Earth Planet. Sci. Lett. 1991, 104, 364–380. [Google Scholar] [CrossRef]
- Li, S.M.; Zhu, D.C.; Wang, Q.; Zhao, Z.D.; Sui, Q.L.; Liu, S.A.; Liu, D.; Mo, X.X. Northward subduction of Bangong–Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet. Lithos 2014, 205, 284–297. [Google Scholar] [CrossRef]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Liu, C.J.; Chen, Y.X.; Pei, L.; Zang, Y.M.; Wang, M.; Li, X.B.; et al. Age and petrogenesis of Jialuhe basic—Intermediate pluton in Xiangjia’nanshan granite batholith in the eastern part of East Kunlun Orogenic Belt, and its geological significance. Geotecton Metallog. 2017, 41, 1097–1115, (In Chinese with English abstract). [Google Scholar]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Pei, L.; Liu, C.J.; Chen, Y.X.; Li, X.B. Triassic magma mixing and mingling at the the eastern section of Eastern Kunlun: A case study from Xiangjiananshan granitic batholith. Acta Petrol. Sin. 2018, 34, 2441–2480, (In Chinese with English abstract). [Google Scholar]
- Fan, X.Z.; Sun, F.Y.; Xu, C.H.; Wu, D.Q.; Yu, L.; Wang, L.; Yan, C.; Baknt, S. Volcanic rocks of the Elashan Formation in the Dulan-Xiangride Basin, East Kunlun Orogenic Belt, NW China: Petrogenesis and implications for Late Triassic geodynamic evolution. Int. Geol. Rev. 2021, 64, 1270–1293. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Z.; Sun, F.; Cong, Z.; Tian, N.; Xin, W.; Wang, L.; Zhang, Y.; Wu, D. Petrogenesis and Tectonic Implications of the Triassic Granitoids in the Ela Mountain Area of the East Kunlun Orogenic Belt. Minerals 2022, 12, 880. https://doi.org/10.3390/min12070880
Pan Z, Sun F, Cong Z, Tian N, Xin W, Wang L, Zhang Y, Wu D. Petrogenesis and Tectonic Implications of the Triassic Granitoids in the Ela Mountain Area of the East Kunlun Orogenic Belt. Minerals. 2022; 12(7):880. https://doi.org/10.3390/min12070880
Chicago/Turabian StylePan, Zhongcui, Fengyue Sun, Zhichao Cong, Nan Tian, Wei Xin, Li Wang, Yajing Zhang, and Dongqian Wu. 2022. "Petrogenesis and Tectonic Implications of the Triassic Granitoids in the Ela Mountain Area of the East Kunlun Orogenic Belt" Minerals 12, no. 7: 880. https://doi.org/10.3390/min12070880
APA StylePan, Z., Sun, F., Cong, Z., Tian, N., Xin, W., Wang, L., Zhang, Y., & Wu, D. (2022). Petrogenesis and Tectonic Implications of the Triassic Granitoids in the Ela Mountain Area of the East Kunlun Orogenic Belt. Minerals, 12(7), 880. https://doi.org/10.3390/min12070880