In Situ U-Pb Geochronology of Calcite from the World’s Largest Antimony Deposit at Xikuangshan, Southern China
Abstract
:1. Introduction
2. Geological Background
2.1. Regional Geology
2.2. Ore Deposit Geology
3. Sample Preparation and Calcite Occurrence
3.1. Samples
3.2. Calcite Occurrence
4. Analytical Methods
4.1. Cathodoluminescence (CL) Imaging
4.2. LA-MC-ICP-MS Calcite U-Pb Isotope Analyses
5. Results
6. Discussion
6.1. Reliability of Calcite U-Pb Age
6.2. Timing of Sb Mineralization in the Xikuangshan Sb Deposit
6.3. Implications for Sb Mineralization of the South China Antimony Metallogenic Belt
7. Conclusions
- (1)
- The syn-stibnite calcite U-Pb age of 58.1 ± 0.9 Ma represents the timing of Sb mineralization for the calcite-stibnite veins in the Paleocene; the other three syn-stibnite calcite U-Pb ages (50.4 ± 4.4 Ma, 50.4 ± 5.0 Ma, 51.9 ± 1.6 Ma) represent the timing of Sb mineralization for the quartz-stibnite veins in the Eocene.
- (2)
- The young in situ U-Pb ages of calcite challenge the timing of Sb mineralization in the giant Xikuangshan Sb deposit and the South China antimony metallogenic belt, which indicates the requirement for more high-precision dating studies of Sb mineralization and an emphasis on exploration of Cenozoic Sb deposits.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petty, T.R. Final List of Critical Minerals. Fed. Regist. 2018, 83, 23295–23296. [Google Scholar]
- Jiang, S.Y.; Wen, H.J.; Xu, C.; Wang, Y.; Su, H.M.; Sun, W.D. Earth sphere cycling and enrichment mechanism of critical metals: Major scientific for future research. Bull. Natl. Nat. Sci. Found. China 2019, 2, 112–118, (In Chinese with English Abstract). [Google Scholar]
- U.S.G.S. Mineral Commodity Summaries 2022; U.S. Geological Survey: Reston, VA, USA, 2022; pp. 1–202. [CrossRef]
- Peng, J.T.; Hu, R.Z.; Lin, Y.X.; Zhao, J.H. Sm-Nd isotope dating of hydrothermal calcites from the Xikuangshan antimony deposit, Central Hunan. Chin. Sci. Bull. 2002, 47, 1134–1137. [Google Scholar] [CrossRef]
- Peng, J.T.; Hu, R.Z.; Burnard, P.G. Samarium-neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China): The potential of calcite as a geochronometer. Chem. Geol. 2003, 200, 129–136. [Google Scholar] [CrossRef]
- Tang, Y.W.; Han, J.J.; Lan, T.G.; Gao, J.F.; Liu, L.; Xiao, C.H.; Yang, J.H. Two reliable calibration methods for accurate in situ U-Pb dating of scheelite. J. Anal. At. Spectrom. 2022, 37, 358–368. [Google Scholar] [CrossRef]
- Peng, J.T.; Hu, R.Z.; Zhao, J.H.; Fu, Y.Z.; Lin, Y.X. Scheelite Sm-Nd dating and quartz Ar-Ar dating for Woxi Au-Sb-W deposit, western Hunan. Chin. Sci. Bull. 2003, 48, 2640–2646. [Google Scholar] [CrossRef]
- Li, W.; Xie, G.Q.; Mao, J.W.; Wei, H.T.; Ji, Y.H.; Fu, B. Precise age constrains for the Woxi Au-Sb-W deposit, South China. Econ. Geol. 2022, in press.
- Jin, J.F.; Tao, Y.; Lai, W.C. Metallogenic Regularity, and Prospecting Direction of Xikuangshan-Type Sb Deposit in Central Hunan; Sichuan Science & Technology Press: Chengdu, China, 1999. (In Chinese) [Google Scholar]
- Luo, K.; Zhou, J.X.; Feng, Y.X.; Uysal, I.T.; Ai, N.; Zhao, J.X.; Zhang, J.W. In Situ U-Pb Dating of Calcite from the South China Antimony Metallogenic Belt. Iscience 2020, 23, 101575. [Google Scholar] [CrossRef]
- Coogan, L.A.; Parrish, R.R.; Roberts, N.M.W. Early hydrothermal carbon uptake by the upper oceanic crust: Insight from in situ U-Pb dating. Geology 2016, 44, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Methner, K.; Mulch, A.; Fiebig, J.; Wacker, U.; Gerdes, A.; Graham, S.A.; Chamberlain, C.P. Rapid Middle Eocene temperature change in western North America. Earth Planet. Sci. Lett. 2016, 450, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Roberts, N.M.W.; Walker, R.J. U-Pb geochronology of calcite-mineralized faults: Absolute timing of rift-related fault events on the northeast Atlantic margin. Geology 2016, 44, 531–534. [Google Scholar] [CrossRef]
- Roberts, N.M.W.; Rasbury, E.T.; Parrish, R.R.; Smith, C.J.; Horstwood, M.S.A.; Condon, D.J. A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochem. Geophys. Geosyst. 2017, 18, 2807–2814. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, B.W.; Viola, G.; Bingen, B.; Nuriel, P.; Kylander-Clark, A.R.C. Palaeocene faulting in SE Sweden from U-Pb dating of slickenfibre calcite. Terra Nova 2017, 29, 321–328. [Google Scholar] [CrossRef]
- Nuriel, P.; Weinberger, R.; Kylander-Clark, A.R.C.; Hacker, B.R.; Craddock, J.P. The onset of the Dead Sea transform based on calcite age-strain analyses. Geology 2017, 45, 587–590. [Google Scholar] [CrossRef] [Green Version]
- Muhammed, S.N.; Howri, M.; Kamal, K.; Axel, G.; Alain, P. U-Pb Direct Dating of Multiple Diagenetic Events in the Upper Cretaceous Carbonate Reservoir of Bekhme Formation, Kurdistan Region of Iraq, by the U-Pb Small Scale Isochron Method. In Proceedings of the GSA Annual Meeting in Seattle, Washington, DC, USA, 22–25 October 2017. [Google Scholar] [CrossRef]
- Hagen-Peter, G.; Wang, Y.; Hints, O.; Prave, A.R.; Lepland, A. Late diagenetic evolution of Ordovician limestones in the Baltoscandian basin revealed through trace-element mapping and in situ U-Pb dating of calcite. Chem. Geol. 2021, 585, 120563. [Google Scholar] [CrossRef]
- Xiong, S.F.; Jiang, S.Y.; Chen, Z.H.; Zhao, J.X.; Ma, Y.; Zhang, D.; Duan, Z.P.; Niu, P.P.; Xu, Y.M. A Mississippi Valley–type Zn-Pb mineralizing system in South China constrained by in situ U-Pb dating of carbonates and barite and in situ S-Sr-Pb isotopes. GSA Bull. 2022. [Google Scholar] [CrossRef]
- Kendrick, M.A.; Plümper, O.; Zhao, J.-X.; Feng, Y.; Defliese, W.F.; Müller, I.A.; Ziegler, M. Exhumation and carbonation of the Atlantis Bank core complex constrained by in situ U-Pb dating and Δ47 thermometry of calcite veins, SW Indian Ridge. Earth Planet. Sci. Lett. 2022, 584, 117474. [Google Scholar] [CrossRef]
- Zhai, D.G.; Mathur, R.; Liu, S.A.; Liu, J.J.; Godfrey, L.; Wang, K.; Xu, J.W.; Vervoort, J. Antimony isotope fractionation in hydrothermal systems. Geochim. Cosmochim. Acta 2021, 306, 84–97. [Google Scholar] [CrossRef]
- Fu, S.L.; Hu, R.; Batt, G.E.; Danisik, M.; Evans, N.J.; Mi, X.F. Zircon (U-Th)/He thermochronometric constraints on the mineralization of the giant Xikuangshan Sb deposit in central Hunan, South China. Miner. Depos. 2020, 55, 901–912. [Google Scholar] [CrossRef]
- Schulz, K.J.; DeYoung, J.H., Jr.; Seal, R.R., II; Bradley, D.C. Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply; U.S. Geological Survey: Reston, VA, USA, 2017; pp. 1–797. [CrossRef]
- Liu, H.P.; Zhang, Y.L.; Hu, W.Q. A discussion on ore genesis of the Xikuangshan Sb deposit in Hunan. Hunan Geol. 1985, 1, 28–39, (In Chinese with English Abstract). [Google Scholar]
- Peng, J.T.; Hu, R.Z.; Deng, H.L.; Su, W.C. Strontium isotope geochemistry of the Xikuangshan antimony deposit, Central Hunan. Geochimica 2001, 30, 248–256, (In Chinese with English Abstract). [Google Scholar]
- Fu, S.L.; Hu, R.Z.; Yin, R.S.; Yan, J.; Mi, X.F.; Song, Z.C.; Sullivan, N.A. Mercury and in situ sulfur isotopes as constraints on the metal and sulfur sources for the world’s largest Sb deposit at Xikuangshan, southern China. Miner. Depos. 2020, 55, 1353–1364. [Google Scholar] [CrossRef]
- Second Team of Hunan Nonferrous Metals Geological Exploration Bureau (STHNMGEB). Inner Report of Deep Exploration of the Xikuangshan Sb Deposit in Huanan Province; Second Team of Hunan Nonferrous Metals Geological Exploration Bureau: Hengyang, China, 2019. (In Chinese) [Google Scholar]
- Hu, A.X.; Peng, J.T. Fluid inclusions and ore precipitation mechanism in the giant Xikuangshan mesothermal antimony deposit, South China: Conventional and infrared microthermometric constraints. Ore Geol. Rev. 2018, 95, 49–64. [Google Scholar] [CrossRef]
- Wu, L.S.; Hu, X.W. Xikuangshan mica-plagioclase lamprophyre and its granite inclusions, Hunan Province. Geol. Geochem. 2000, 28, 51–55, (In Chinese with English Abstract). [Google Scholar]
- Hu, A.X.; Peng, J.T. Mesozoic lamprophyre and its origin in the Xikuangshan mining district, central Hunan. Acta Petrol. Sin. 2016, 32, 2041–2056, (In Chinese with English abstract). [Google Scholar]
- Liu, G.M.; Jian, H.M. Geological characteristics of the Xikuangshan antimony ore field. Miner. Depos. 1983, 2, 43–49, (In Chinese with English Abstract). [Google Scholar]
- Second Team of Hunan Nonferrous Metals Geological Exploration Bureau (STHNMGEB). Report of Mineral Prospecting of the Daocaowan Sb Ore Block in Huanan Province; Second Team of Hunan Nonferrous Metals Geological Exploration Bureau: Hengyang, China, 2015. (In Chinese) [Google Scholar]
- Xikuangshan Mine. Chorography of Xikuangshan Mine; Xikuangshan Mining Administration: Lengshuijiang, China, 1983. (In Chinese)
- Wen, G.Z.; Wu, Q.; Liu, H.Y.; Xie, G.Z.; Lei, X.L. Preliminary study on ore controlling regularities and metallogenic mechanism of super large-sized Sb-deposits in Xikuangshan. Geol. Prospect. 1993, 29, 20–27, (In Chinese with English Abstract). [Google Scholar]
- Hu, X.W. The Geological Setting and Genesis of Xikuangshan Super-Giant Antimony Deposits, Hunan Province, China. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 1995. (In Chinese). [Google Scholar]
- Woodhead, J.D.; Hergt, J.M. Strontium, neodymium and lead isotope analyses of NIST glass certified reference materials: SRM 610, 612, 614. Geostand. Newsl. -J. Geostand. Geoanal. 2001, 25, 261–266. [Google Scholar] [CrossRef]
- Kylander-Clark, A.R.C. Expanding limits of laser-ablation U-Pb calcite geochronology. Geochronology 2020, 2, 343–354. [Google Scholar] [CrossRef]
- Liu, E.T.; Zhao, J.X.; Pan, S.Q.; Yan, D.T.; Lu, J.; Hao, S.B.; Gong, Y.; Zou, K. A new technology of basin fluid geochronology: In-situ U-Pb dating of calcite. Earth Sci. 2019, 44, 698–712, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Shen, A.J.; Hu, A.P.; Cheng, T.; Liang, F.; Pan, W.Q.; Feng, Y.X.; Zhao, J.X. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs. Pet. Explor. Dev. 2019, 46, 1127–1140. [Google Scholar] [CrossRef]
- Cheng, T.; Zhao, J.X.; Feng, Y.X.; Pan, W.Q.; Liu, D.Y. In-situ LA-MC-ICPMS U-Pb dating method for low-uranium carbonate minerals. Chin. Sci. Bull. 2020, 65, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.W.; Pei, R.F.; Su, Z. Sm-Nd dating for antimony mineralization in the Xikuangshan deposit, Hunan, China. Resour. Geol. 1996, 46, 227–231. [Google Scholar]
- Xiao, X.G. Geochronlogy, Ore Geochemistry, and Genesis of the Banpo Antimony Deposit, Guizhou Province, China. Ph.D. Thesis, Kunming University of Science and Technology, Kunming, China, 2014. (In Chinese). [Google Scholar]
- Zhu, L.M. Elemental Association and Fractionation Mechanisms of Low Temperature Metallogenic Domain on the Southwest Margin of the Yangtze Block (Guizhou Province). Ph.D. Thesis, Institution of Chinese Academy of Sciences, Beijing, China, 1998. (In Chinese). [Google Scholar]
- Wang, Z.P. Genesis and Dynamic Mechanism of the Epithermal Ore Deposits, SW Guizhou, China—A Case Study of Gold and Antimony Deposits. Unpublished Ph.D. Thesis, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China, 2013. (In Chinese). [Google Scholar]
- Wang, J.S. Mineralization, Chronology and Dynamic Research of Low Temperature Metallogenic Domain, Southwest China. Ph.D. Thesis, Institute of Geochemistry, Chinese Academy of Science, Beijing, China, 2012. (In Chinese). [Google Scholar]
- Li, H.; Danisik, M.; Zhou, Z.K.; Jiang, W.C.; Wu, J.H. Integrated U-Pb, Lu-Hf and (U-Th)/He analysis of zircon from the Banxi Sb deposit and its implications for the low-temperature mineralization in South China. Geosci. Front. 2020, 11, 1323–1335. [Google Scholar] [CrossRef]
- Fu, S.L.; Hu, R.Z.; Yan, J.; Lan, Q.; Gao, W. The mineralization age of the Banxi Sb deposit in Xiangzhong metallogenic province in southern China. Ore Geol. Rev. 2019, 112, 103033. [Google Scholar] [CrossRef]
- Li, H.; Wu, Q.H.; Evans, N.J.; Zhou, Z.K.; Kong, H.; Xi, X.S.; Lin, Z.W. Geochemistry and geochronology of the Banxi Sb deposit: Implications for fluid origin and the evolution of Sb mineralization in central-western Hunan, South China. Gondwana Res. 2018, 55, 112–134. [Google Scholar] [CrossRef]
- Wang, X.K. Guizhou Dushan Antimony Deposit Geology; Yunnan Science and Technology Press: Kunming, China, 1994. (In Chinese) [Google Scholar]
- Wei, W.Z. Geological characteristics of the Maxiong antimony deposit. Southwest China Ore Depos. Geol. 1993, 7, 8–16, (In Chinese with English Abstract). [Google Scholar]
- Shi, M.K.; Fu, B.Q.; Jin, X.X.; Zhou, X.C. Antimony Metallogeny in the Central Part of Hunan Province; Hunan Science & Technology Press: Changsha, China, 1993. (In Chinese) [Google Scholar]
- Hu, R.Z.; Peng, J.T.; Ma, D.S.; Su, W.C.; Shi, C.H.; Bi, X.W.; Tu, G.C. Epoch of large-scale low-temperature mineralizations in southwestern Yangtze massif. Mineral. Depos. 2007, 26, 583–596, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.L.; Chen, Y.C.; Wang, D.H.; Xu, Y.; Chen, Z.H. Scheelite Sm-Nd dating of the Zhazixi W-Sb deposit in Hunan and its geological significance. Geol. China 2012, 39, 1339–1344, (In Chinese with English Abstract). [Google Scholar]
- Shen, N.P. Geochemistry and Metallogenic Mechanism of the Xujiashan Antimony Deposit in Hubei Province, China. Ph.D. Thesis, Institution of Geochemistry, Chinese Academy of Sciences, Beijing, China, 2008. (In Chinese). [Google Scholar]
- Peng, J.T.; Dai, T.G. On the mineralization epoch of the Xuefeng gold metallogenic province. Geol. Prospect. 1998, 34, 37–41, (In Chinese with English Abstract). [Google Scholar]
- Dickin, A.P. Radiogenic Isotope Geology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005; pp. 1–509. [Google Scholar]
- Li, W.; Xie, G.Q.; Cook, N.J.; Mao, J.W.; Li, C.; Ciobanu, C.L.; Zhang, Z.Y. Tracking dynamic hydrothermal processes: Textures, in-situ Sr-Nd isotopes, and trace-element analysis of scheelite from the Yangjiashan vein-type W deposit, South China. Am. Mineral. 2021, 106, 1987–2002. [Google Scholar] [CrossRef]
- Dill, H.G.; Melcher, F.; Botz, R. Meso- to epithermal W-bearing Sb vein-type deposits in calcareous rocks in western Thailand; with special reference to their metallogenetic position in SE Asia. Ore Geol. Rev. 2008, 34, 242–262. [Google Scholar] [CrossRef]
- Pavlova, G.G.; Borisenko, A.S.; Goverdovskii, V.A.; Travin, A.V.; Zhukova, I.A.; Tret’yakova, I.G. Permian-Triassic magmatism and Ag-Sb mineralization in southeastern Altai and northwestern Mongolia. Russ. Geol. Geophys. 2008, 49, 545–555. [Google Scholar] [CrossRef]
- Pavlova, G.G.; Borisenko, A.S. The age of Ag-Sb deposits of Central Asia and their correlation with other types of ore systems and magmatism. Ore Geol. Rev. 2009, 35, 164–185. [Google Scholar] [CrossRef]
- Němec, M.; Zachariáš, J. The Krásná Hora, Milešov, and Příčovy Sb-Au ore deposits, Bohemian Massif: Mineralogy, fluid inclusions, and stable isotope constraints on the deposit formation. Miner. Depos. 2018, 53, 225–244. [Google Scholar] [CrossRef]
- Fu, S.; Zajacz, Z.; Tsay, A.; Hu, R. Can magma degassing at depth donate the metal budget of large hydrothermal Sb deposits? Geochim. Cosmochim. Acta 2020, 290, 1–15. [Google Scholar] [CrossRef]
- Deng, C.Z.; Zhang, J.W.; Hu, R.Z.; Luo, K.; Zhu, Y.N.; Yin, R.S. Mercury isotope constraints on the genesis of late Mesozoic Sb deposits in South China. Sci. China-Earth Sci. 2022, 65, 269–281. [Google Scholar] [CrossRef]
- Peng, B.; Frei, R. Nd-Sr-Pb isotopic constraints on metal and fluid sources in W-Sb-Au mineralization at Woxi and Liaojiaping (Western Hunan, China). Miner. Depos. 2004, 39, 313–327. [Google Scholar] [CrossRef]
- Sosnicka, M.; de Graaf, S.; Morteani, G.; Banks, D.A.; Niedermann, S.; Stoltnow, M.; Lueders, V. The Schlaining quartz-stibnite deposit, Eastern Alps, Austria: Constraints from conventional and infrared microthermometry and isotope and crush-leach analyses of fluid inclusions. Miner. Depos. 2022, 57, 725–741. [Google Scholar] [CrossRef]
- Ding, J.H.; Zhang, Y.; Ma, Y.B.; Wang, Y.; Zhang, J.B.; Zhang, T.T. Metallogenic characteristics and resource potential of antimony in China. J. Geochem. Explor. 2021, 230, 106834. [Google Scholar] [CrossRef]
- Hu, R.Z.; Fu, S.L.; Huang, Y.; Zhou, M.F.; Fu, S.H.; Zhao, C.H.; Wang, Y.J.; Bi, X.W.; Xiao, J.F. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model. J. Asian Earth Sci. 2017, 137, 9–34. [Google Scholar] [CrossRef]
- Mao, J.W.; Ouyang, H.G.; Song, S.W.; Santosh, M.; Yuan, S.D.; Zhou, Z.H.; Zheng, W.; Liu, H.; Liu, P.; Cheng, Y.B.; et al. Geology and metallogeny of tungsten and tin deposits in China. Soc. Econ. Geol. Spec. Publ. 2019, 22, 411–482. [Google Scholar]
- Xu, J.W.; Lai, J.Q.; Li, B.; Lu, A.H.; Rocholl, A.; Dick, J.M.; Peng, J.T.; Wang, K.L. Tungsten mineralization during slab subduction: A case study from the Huxingshan deposit in northeastern Hunan Province, South China. Ore Geol. Rev. 2020, 124, 103657. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, X.H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 2007, 35, 179–182. [Google Scholar] [CrossRef]
- Huang, H.Q.; Li, X.H.; Li, W.X.; Li, Z.X. Formation of high delta O-18 fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China. Geology 2011, 39, 903–906. [Google Scholar] [CrossRef]
- Mao, J.W.; Zheng, W.; Xie, G.Q.; Lehmann, B.; Goldfarb, R. Recognition of a Middle-Late Jurassic arc-related porphyry copper belt along the southeast China coast: Geological characteristics and metallogenic implications. Geology 2021, 49, 592–596. [Google Scholar] [CrossRef]
- Yang, R.Y.; Ma, D.S.; Pan, J.Y. Research on thermal field of ore-forming fluid of Xikuangshan Sn deposit in Central Hunan. Geochimica 2003, 6, 509–519, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.Q.; Groves, D.I.; Sun, S.C.; Liu, Y.; Wang, J.Y.; Li, R.H.; Wu, S.G.; Gao, L.; Guo, J.L.; et al. An overview of timing and structural geometry of gold, gold-antimony and antimony mineralization in the Jiangnan Orogen, southern China. Ore Geol. Rev. 2019, 115, 103173. [Google Scholar] [CrossRef]
- Wang, Y.M.; Zhang, J.; Zhang, B.H.; Zhao, H. Cenozoic exhumation history of South China: A case study from the Xuefeng Mt. Range. J. Asian Earth Sci. 2018, 151, 173–189. [Google Scholar] [CrossRef]
- Li, X.M.; Wang, Y.J.; Tan, K.X.; Peng, T.P. Meso-Cenozoic uplifting and exhumation on Yunkaidashan: Evidence from fission track thermochronology. Chin. Sci. Bull. 2005, 9, 903–909. [Google Scholar] [CrossRef]
- Tang, S.L.; Yan, D.P.; Qiu, L.; Gao, J.F.; Wang, C.L. Partitioning of the Cretaceous Pan-Yangtze Basin in the central South China Block by exhumation of the Xuefeng Mountains during a transition from extensional to compressional tectonics? Gondwana Res. 2014, 25, 1644–1659. [Google Scholar] [CrossRef]
- An, W.; Hu, X.M.; Garzanti, E.; Wang, J.G.; Liu, Q. New Precise Dating of the India-Asia Collision in the Tibetan Himalaya at 61 Ma. Geophys. Res. Lett. 2021, 48, e2020GL090641. [Google Scholar] [CrossRef]
- Wang, D.; Zheng, Y.Y.; Mathur, R.; Jiang, J.S.; Zhang, S.K.; Zhang, J.F.; Yu, M. Multiple mineralization events in the Zhaxikang Sb-Pb-Zn-Ag deposit and their relationship with the geodynamic evolution in the North Himalayan Metallogenic Belt, South Tibet. Ore Geol. Rev. 2019, 105, 201–215. [Google Scholar] [CrossRef]
- Wang, D.; Mathur, R.; Zheng, Y.Y.; Qiu, K.F.; Wu, H.J. Redox-controlled antimony isotope fractionation in the epithermal system: New insights from a multiple metal stable isotopic combination study of the Zhaxikang Sb-Pb-Zn-Ag deposit in Southern Tibet. Chem. Geol. 2021, 584, 120541. [Google Scholar] [CrossRef]
Ore Deposit | Host Strata | Host Rock | Ore-Type | Dating Method | Results (Ma) | References |
---|---|---|---|---|---|---|
Xikuangshan | Devonian | Carbonates, clastic rocks | Sb | Calcite in situ U-Pb | 50.4 ± 4.4 | This study |
50.4 ± 5.0 | ||||||
51.9 ± 1.6 | ||||||
58.1 ± 0.9 | ||||||
Quartz ESR | 66.4 | [9] | ||||
58.1 | ||||||
51.6 | ||||||
Zircon (U-Th)/He | 86–97 | [22] | ||||
117–156 | ||||||
Calcite Sm-Nd | 124.1 ± 3.7 | [5] | ||||
155.5 ± 1.1 | ||||||
156.3 ± 12 | [41] | |||||
Qinglong | Permian | Marine volcanic rocks | Sb-Au | Quartz Fls Rb-Sr | 101.0 ± 2.9 | [42] |
Fluorite ESR | 104 | [43] | ||||
Quartz ESR | 125.2 | |||||
Fluorite Sm-Nd | 141 ± 20 | [44] | ||||
142 ± 16 | [5] | |||||
148 ± 8 | ||||||
Fluorite Sm-Nd | 142.3 ± 7.9 | [45] | ||||
Calcite Sm-Nd | 148 ± 13 | |||||
Weizhai | Devonian-Silurian | Limestone, siltstone | Sb | Calcite in situ U-Pb | 115.3 ± 1.5 | [10] |
Banxi | Neoproterozoic Banxi Group | Low-grade metamorphic rocks | Sb | Zircon (U-Th)/He | 123.8 ± 3.8 | [46] |
121 ± 12 | [47] | |||||
125 ± 10 | ||||||
129 ± 3 | ||||||
Stibnite Rb-Sr | 129.4 ± 2.4 | [48] | ||||
Stibnite Sm-Nd | 130.4 ± 1.9 | |||||
Banpo | Devonian | Sandstones | Sb | Calcite Sm-Nd | 126.4 ± 2.7 | [45] |
128.2 ± 3.2 | ||||||
130.5 ± 3.0 | [42] | |||||
Quartz Fls K-Ar | 145 | [49] | ||||
Maxiong | Cambrian, Devonian | Dolostones, sandstones | Sb | Quartz Fls Ar-Ar | 141 | [50] |
Woxi | Neoproterozoic Banxi Group | Low-grade metamorphic rocks | Sb-Au-W | Scheelite in situ U-Pb | 132.1 ± 4.3 | [6] |
142.7 ± 2.4 | ||||||
144.3 ± 2.2 | ||||||
Apatite in situ U-Pb | 144.8 ± 1.5 | [8] | ||||
Wolframite in situ U-Pb | 145.6 ± 2.1 | |||||
Quartz Fls Rb-Sr | 141.8 ± 5.3 | [51] | ||||
144.8 ± 11.7 | ||||||
Scheelite Sm-Nd | 402 ± 6 | [7] | ||||
Quartz Fls Ar-Ar | 416.2 ± 0.8 | |||||
423.2 ± 1.2 | ||||||
Muli | Devonian | Carbonates | Sb | Quartz Fls Ar-Ar | 165 | [52] |
Zhazixi | Neoproterozoic Banxi Group | Low-grade metamorphic rocks | Sb-W | Scheelite Sm-Nd | 227.3 ± 6.2 | [53] |
Xujiashan | Upper Ediacaran | Carbonates, clastic rocks | Sb | Calcite Sm-Nd | 402 | [54] |
Pingcha | Lower Ediacaran | Carbonates, clastic rocks | Sb | Quartz Fls Rb-Sr | 435 ± 9 | [55] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Liu, X.; Lai, J.; He, H.; Song, X.; Zhai, D.; Li, B.; Wang, Y.; Shi, J.; Zhou, X. In Situ U-Pb Geochronology of Calcite from the World’s Largest Antimony Deposit at Xikuangshan, Southern China. Minerals 2022, 12, 899. https://doi.org/10.3390/min12070899
Xu J, Liu X, Lai J, He H, Song X, Zhai D, Li B, Wang Y, Shi J, Zhou X. In Situ U-Pb Geochronology of Calcite from the World’s Largest Antimony Deposit at Xikuangshan, Southern China. Minerals. 2022; 12(7):899. https://doi.org/10.3390/min12070899
Chicago/Turabian StyleXu, Junwei, Xianghua Liu, Jianqing Lai, Hongsheng He, Xiangfa Song, Degao Zhai, Bin Li, Yuhua Wang, Jian Shi, and Xi Zhou. 2022. "In Situ U-Pb Geochronology of Calcite from the World’s Largest Antimony Deposit at Xikuangshan, Southern China" Minerals 12, no. 7: 899. https://doi.org/10.3390/min12070899
APA StyleXu, J., Liu, X., Lai, J., He, H., Song, X., Zhai, D., Li, B., Wang, Y., Shi, J., & Zhou, X. (2022). In Situ U-Pb Geochronology of Calcite from the World’s Largest Antimony Deposit at Xikuangshan, Southern China. Minerals, 12(7), 899. https://doi.org/10.3390/min12070899