Petrogenesis and Tectonic Implications of the Neoproterozoic Peraluminous Granitic Rocks from the Tianshui Area, Western Margin of the North Qinling Terrane, China: Evidence from Whole-Rock Geochemistry and Zircon U–Pb–Hf–O Isotopes
Abstract
:1. Introduction
2. Regional Geology and Petrography
3. Analytical Methods
3.1. Whole-Rock Major and Trace Element Analyses
3.2. Preparation and Imaging of Zircons
3.3. In Situ Zircon O Isotope Analyses
3.4. In Situ Zircon U–Pb Dating and Trace Element Analyses
3.5. In Situ Zircon Lu–Hf Isotopic Analyses
4. Results
4.1. Whole-Rock Major and Trace Element Contents
4.2. In Situ Zircon U–Pb Ages, Trace Element Contents, and Lu–Hf and O Isotope Compositions
4.2.1. Zircon U–Pb Ages
Wushan Granitic Mylonites
Yuanlong Granitic Gneisses
Xinyang Granitic Gneisses
4.2.2. Zircon Trace Elements
4.2.3. Zircon Lu–Hf Isotopes
Wushan Granitic Mylonite
Yuanlong Granitic Gneiss
Xinyang Granitic Gneiss
4.2.4. Zircon O Isotopes
5. Discussion
5.1. Age of Granitic Magmatism
5.2. Nature of the Magma Source
5.3. Petrogenesis
5.4. Tectonic Implications
6. Conclusions
- (1)
- The early Neoproterozoic peraluminous granitic rocks from the western margin of the NQT were formed at 936–921 Ma. The ages from the core domains of inherited zircons indicated that the protolith of the granitic rocks was derived from Paleo- to Mesoproterozoic basement;
- (2)
- The early Neoproterozoic peraluminous granitic rocks were derived from reworked Paleoproterozoic crust (2.2 to 1.6 Ga) and Mesoproterozoic juvenile crust (1.6 to 1.5 Ga). The early Neoproterozoic granitic magma is inferred to have been derived from two crustal sources: predominant supracrustal sedimentary rocks and subordinate igneous rocks;
- (3)
- The early Neoproterozoic peraluminous granitic rocks were formed by biotite dehydration melting at lower crustal depths, involving the anatexis of subducted crustal materials in a syn-collisional setting.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cawood, P.A.; Kröner, A.; Collins, W.J.; Kusky, T.M.; Mooney, W.D.; Windley, B.F. Accretionary orogens through Earth history. Geol. Soc. 2009, 318, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Kröner, A.; Kovach, V.; Belousova, E.; Hegner, E.; Armstrong, R.; Dolgopolova, A.; Seltmann, R.; Alexeiev, D.V.; Hoffmann, J.E.; Wong, J. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Res. 2007, 25, 103–125. [Google Scholar] [CrossRef]
- Moyen, J.F.; Laurent, O.; Chelle-Michou, C.; Couzinié, S.; Vanderhaeghe, O.; Zeh, A.; Villaros, A.; Gardien, V. Collision vs. subduction-related magmatism: Two contrasting ways of granite formation and implications for crustal growth. Lithos 2017, 277, 154–177. [Google Scholar] [CrossRef] [Green Version]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types. Pac. Geol. 1974, 8, 173–174. [Google Scholar]
- Chappell, B.W.; White, A.J.R. I- and S-type granites in the Lachlan Fold Belt. Earth Environ. Sci. Trans. R. Soc. Edinb. 1992, 83, 1–26. [Google Scholar]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types: 25 years later. Aust. J. Earth Sci. 2001, 48, 489–499. [Google Scholar] [CrossRef]
- Clemens, J.D. S-type granitic magmas-petrogenetic issues, models and evidence. Earth-Sci. Rev. 2003, 61, 1–18. [Google Scholar] [CrossRef]
- Chen, Y.X.; Song, S.G.; Niu, Y.L.; Wei, C.J. Melting of continental crust during subduction initiation: A case study from the Chaidanuo peraluminous granite in the North Qilian suture zone. Geochim. Cosmochim. Acta 2014, 132, 311–336. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Campbell, I.H.; Allen, C.M.; Burnham, A.D. S-type granites: Their origin and distribution through time as determined from detrital zircons. Earth Planet. Sci. Lett. 2020, 536, 116140. [Google Scholar] [CrossRef]
- Deng, Z.; Liu, S.; Zhang, W.; Hu, F.; Li, Q. Petrogenesis of the Guangtoushan granitoid suite, central China: Implications for Early Mesozoic geodynamic evolution of the Qinling Orogenic Belt. Gondwana Res. 2016, 30, 112–131. [Google Scholar] [CrossRef]
- Dong, Y.P.; Santosh, M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Res. 2016, 29, 1–40. [Google Scholar] [CrossRef]
- Dong, Y.P.; Liu, X.M.; Santosh, M.; Zhang, X.N.; Chen, Q.; Yang, C.; Yang, Z. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: Constrains from zircon U–Pb geochronology and geochemistry of mafic intrusions in the Hannan Massif. Precambrian Res. 2011, 189, 66–90. [Google Scholar] [CrossRef]
- Dong, Y.P.; Zhang, G.W.; Neubauer, F.; Liu, X.M.; Genser, J.; Hauzenberger, C. Tectonic evolution of the Qinling orogen, China: Review and synthesis. J. Asian Earth Sci. 2011, 41, 213–237. [Google Scholar] [CrossRef]
- Dong, Y.P.; Yang, Z.; Liu, X.; Zhang, X.; He, D.; Li, W.; Zhang, F.; Sun, S.; Zhang, H.; Zhang, G. Neoproterozoic amalgamation of the Northern Qinling terrain to the North China Craton: Constraints from geochronology and geochemistry of the Kuanping ophiolite. Precambrian Res. 2014, 255, 77–95. [Google Scholar] [CrossRef]
- Dong, Y.P.; Sun, S.; Yang, Z.; Liu, X.; Zhang, F.; Li, W.; Cheng, B.; He, D.; Zhang, G. Neoproterozoic subduction-accretionary tectonics of the South Qinling Belt, China. Precambrian Res. 2017, 293, 73–90. [Google Scholar] [CrossRef]
- Zhang, G.W.; Zhang, Z.Q.; Dong, Y.P. Nature of main tectono-lithostratigraphic units of the Qinling orogen: Implications for the tectonic evolution. Acta Petrol. Sin. 1995, 11, 101–114, (In Chinese with English Abstract). [Google Scholar]
- Zhang, G.W.; Guo, A.L.; Yao, A.P. Western Qinling -Songpan continental tectonic node in China’s continental tectonics. Earth Sci. Front. 2004, 11, 23–32, (In Chinese with English Abstract). [Google Scholar]
- Bao, Z.W.; Wang, Q.; Bai, G.D.; Zhao, Z.H.; Song, Y.W.; Liu, X.M. Geochronology and geochemistry of the Fangcheng Neoproterozoic alkali-syenites in East Qinling orogen and its geodynamic implications. Sci. Bull. 2008, 53, 2050–2061. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.X.; Nie, H.; Qi, Y.; Yang, L.; Zhu, X.Y.; Chen, F.K. Genesis and geological significances of Neoproterozoic granitoids in the North Qinling terrain, SW Henan, China. Acta Petrol. Sin. 2013, 29, 2437–2455, (In Chinese with English Abstract). [Google Scholar]
- Wang, F.; Zhu, L.; Li, J.; Lee, B.; Gong, H.; Yang, T.; Wang, W.; Xu, A. Zircon U-Pb ages and Hf isotopic characteristics of the Dehe biotite monzonitic gneiss pluton in the North Qinling orogen and their geological significance. Chin. J. Geochem. 2011, 30, 204–216. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, B.R.; Wang, D.P.; Ouyang, J.P.; Xie, Q.L. Geochemical evidence for the Proterozoic tectonic evolution of the Qinling Orogenic Belt and its adjacent margins of the North China and Yangtze cratons. Precambrian Res. 1996, 80, 23–48. [Google Scholar] [CrossRef]
- Xu, J.F.; Castillo, P.R.; Li, X.H.; Yu, X.Y.; Zhang, B.R.; Han, Y.W. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China: Implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean. Earth Planet. Sci. Lett. 2002, 198, 323–337. [Google Scholar] [CrossRef]
- Li, S.Z.; Jahn, B.M.; Zhao, S.J.; Dai, L.M.; Li, X.Y.; Suo, Y.H.; Guo, L.L.; Wang, Y.L.; Liu, X.C.; Lan, H.Y.; et al. Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data. Earth-Sci. Rev. 2017, 166, 270–285. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Gou, Z.Y.; Liang, Z.L.; Zhang, J.L.; Zhu, R. Nature and origin of Triassic igneous activity in the Western Qinling Orogen: The Wenquan composite pluton example. Int. Geol. Rev. 2018, 60, 242–266. [Google Scholar] [CrossRef]
- Jin, X.Y.; Li, J.W.; Hofstra, A.H.; Sui, J.X. Magmatic-hydrothermal origin of the early triassic laodou lode gold deposit in the xiahe-hezuo district, west qinling orogen, china: Implications for gold metallogeny. Miner. Depos. 2017, 52, 883–902. [Google Scholar] [CrossRef]
- Li, W.Y. Geochronology and Geochemistry of the Ophiolites and Island-Arc-Type Igneous Rocks in the Western Qinling Orogen and the Eastern Kunlun Orogen: Implication for the Evolution of the Tethyan Ocean. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2008; pp. 1–154, (In Chinese with English Abstract). [Google Scholar]
- Liang, X.; Liu, X.M.; He, D.F.; Dong, Y.P.; Yang, Z. Fabrics and geochronology of the Wushan ductile shear zone: Tectonic implications for the Shangdan suture zone in the Qinling orogen, Central China. J. Asian Earth Sci. 2017, 139, 71–82. [Google Scholar] [CrossRef]
- Pei, X.Z.; Ding, S.P.; Zhang, G.; Liu, H.B.; Li, Z.C.; Li, W.Y.; Liu, Z.Q.; Meng, Y. Zircons LA-ICP-MS U-Pb Dating of Neoproterozoic Granitoid Gneisses in the North Margin of West Qinling and Geological Implication. Acta Geol. Sin. 2007, 81, 772–786, (In Chinese with English Abstract). [Google Scholar]
- Liu, H.B.; Pei, X.Z.; Ding, S.P.; Li, Z.C.; Sun, R.Q. LA- ICP- MS zircon U- Pb dating of the Neoproterozoic gr anitic gneisses in the Yuanlong area, Tianshui City, West Qinling, China, and their geological significance. Geol. Bull. China 2006, 25, 1315–1320, (In Chinese with English Abstract). [Google Scholar]
- Li, S.G.; Chen, Y.Z.; Zhang, G.W.; Zhang, Z.Q. A 1GA B.P. Alpine peridotite body emplaced into the Qinling Group: Evidence for the existence of the late proterozoic plate tectonics in the North Qinling area. Geol. Rev. 1991, 37, 235–242, (In Chinese with English Abstract). [Google Scholar]
- Chen, Z.H.; Lu, S.N.; Li, H.K.; Song, B.; Li, H.M.; Xiang, Z.Q. The age of Dehe biotite monzogranite gneiss in the North Qinling: TIMS and SHRIMP U-Pb zircon dating. Geol. Bull. China 2004, 23, 136–141, (In Chinese with English Abstract). [Google Scholar]
- Zhang, C.L.; Liu, L.; Zhang, G.W.; Wang, T.; Chen, D.L.; Yuan, H.L.; Liu, X.M.; Yan, Y.X. Determination of Neoproterozoic post-collisional granites in the north Qinling Mountains and its tectonic significance. Earth Sci. Front. 2004, 11, 33–42, (In Chinese with English Abstract). [Google Scholar]
- Zhang, H.F.; Zhang, B.R.; Luo, T.C. Geochemical study of genesis and tectonic setting for late proterozoic granitoids, North Qinling, China. Earth Sci. J. China Univ. Geosci. 1993, 18, 194–202, (In Chinese with English Abstract). [Google Scholar]
- Liu, J.F.; Sun, Y.; Sun, W.D. LA-ICP-MS zircon dating from the Lajimiao mafic complex in the Qinling orogenic belt. Acta Petrol. Sin. 2009, 25, 320–330, (In Chinese with English Abstract). [Google Scholar]
- Chen, J.L.; Wang, Z.Q.; Xu, X.Y.; Zeng, Z.X.; Wang, H.L.; He, S.P.; Li, P. Geochemical characteristics and petrogenetic investigation of the Lianghekou granite pluton, northern Qinling Mountains. Acta Petrologica Sinica. 2007, 23, 1043–1054, (In Chinese with English Abstract). [Google Scholar]
- Wang, T.; Li, W.P.; Wang, X.X. Zircon U-Pb age of the niujiaoshan granitoid gneisses in the Qinling complex of the Qinling orogenic belt-with a discussion of its geological significance. Reg. Geol. China 1998, 17, 262–265, (In Chinese with English Abstract). [Google Scholar]
- Lu, S.N.; Chen, Z.H.; Li, H.K.; Hao, G.J.; Xiang, Z.Q. Two Magmatic Belts of the Neoproterozoic in the Qinling Orogenic Belt. Acta Petrol. Sin. 2005, 79, 165–173, (In Chinese with English Abstract). [Google Scholar]
- Wang, T.; Zhang, Z.Q.; Wang, X.X.; Wang, Y.B.; Zhang, C.L. Neoproterozoic Collisional Deformation in the Core of the Qinling Orogen and Its Age: Constrained by Zircon SHRIMP Dating of Strongly Deformed Syn-collisional Granites and Weakly Deformed Granitic Veins. Acta Petrol. Sin. 2005, 79, 220–231, (In Chinese with English Abstract). [Google Scholar]
- Chen, D.L.; Liu, L.; Sun, Y.; Zhang, A.D.; Zhang, C.L.; Liu, X.M.; Luo, J.H. Determination of the Neoproterozoic Shicaogou Syn-collisional Granite in the Eastern Qinling Mountains and Its Geological Implications. Acta Geol. Sin. 2004, 78, 73–82. [Google Scholar]
- Chen, Z.H.; Lu, S.N.; Li, H.K.; Li, H.M.; Xiang, Z.Q.; Zhou, H.Y.; Song, B. Constraining the role of the Qinling orogen in the assembly and break-up of Rodinia: Tectonic implications for Neoproterozoic granite occurrences. J. Asian Earth Sci. 2006, 28, 99–115. [Google Scholar] [CrossRef]
- Wu, P.; Wu, Y.B.; Zhou, G.Y.; Zhang, W.X.; He, Y. Geochronology, geochemistry, and isotope compositions of “Grenvillian” S-type granites in the North Qinling unit, central China: Petrogenesis and tectonic significance. Precambrian Res. 2021, 360, 106247. [Google Scholar] [CrossRef]
- Gong, X.K.; Chen, D.L.; Ren, Y.F.; Luo, F.H.; Tan, J.; Muredili, M.; Li, K. Geochronology and geochemistry of the Mashankou pluton in the eastern Qinling Group: Implications for the Early Neoproterozoic tectonic evolution of the North Qinling orogeny. Acta Geol. Sin. 2021, 3, 1–20, (In Chinese with English Abstract). [Google Scholar]
- Meng, Q.R.; Zhang, G.W. Timing of the North and South China blocks: Controversy reconciliation. Geol. Soc. Am. Bull. 1999, 27, 123. [Google Scholar] [CrossRef]
- Luo, B.; Zhang, H.; Lü, X. U–Pb zircon dating, geochemical and Sr–Nd–Hf isotopic compositions of Early Indosinian intrusive rocks in West Qinling, central China: Petrogenesis and tectonic implications. Contrib. Mineral. Petrol. 2012, 164, 551–569. [Google Scholar] [CrossRef]
- Hu, J.Q.; Li, X.W.; Xu, J.F.; Mo, X.X.; Wang, F.Y.; Yu, H.X.; Shan, W.; Xing, H.Q.; Huang, X.F.; Dong, G.C. Generation of coeval metaluminous and muscovite-bearing peraluminous granitoids in the same composite pluton in West Qinling, NE Tibetan Plateau. Lithos 2019, 344–345, 374–392. [Google Scholar] [CrossRef]
- Liu, H.N.; Li, X.W.; Mo, X.X.; Xu, J.F.; Liu, J.J.; Dong, G.C.; Shan, W.; Zhang, Y.; Wang, K.; Yu, H.X. Early Mesozoic crustal evolution in the NW segment of West Qinling, China: Evidence from diverse intermediate–felsic igneous rocks. Lithos 2021, 396–397, 106187. [Google Scholar] [CrossRef]
- Xing, H.Q.; Li, X.W.; Xu, J.F.; Mo, X.X.; Shan, W.; Yu, H.X.; Hu, J.Q.; Huang, X.F.; Dong, G.-C. The genesis of felsic magmatism during the closure of the Northeastern Paleo-Tethys Ocean: Evidence from the Heri batholith in West Qinling, China. Gondwana Res. 2020, 84, 38–51. [Google Scholar] [CrossRef]
- Wang, X.X.; Wang, T.; Zhang, C. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process. J. Asian Earth Sci. 2013, 72, 129–151. [Google Scholar] [CrossRef]
- Wang, X.X.; Wang, T.; Zhang, C. Granitoid magmatism in the Qinling orogen, central China and its bearing on orogenic evolution. Sci. China Earth Sci. 2015, 58, 1497–1512. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.F.; Li, L. Neoproterozoic tectonic transition in the South Qinling Belt: New constraints from geochemistry and zircon U–Pb–Hf isotopes of diorites from the Douling Complex. Precambrian Res. 2018, 306, 112–128. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Wang, L.X.; Ma, C.Q.; Wiedenbeck, M.; Wang, W. The Neoproterozoic alkaline rocks from Fangcheng area, East Qinling (China) and their implications for regional Nb mineralization and tectonic evolution. Precambrian Res. 2020, 350, 105852. [Google Scholar] [CrossRef]
- Liu, C.J.; Pei, X.Z.; Li, Z.C.; Li, R.B.; Pei, L.; Gao, J.M.; Wei, F.H.; Wang, Y.C.; Wu, S.K.; Chen, Y.X. Geochemical features and tec tonic setting of the Neoproterozoic granitic gneiss in Tianshui area on the northern margin of West Qinling. Geol. Bull. China 2012, 31, 1588–1601, (In Chinese with English Abstract). [Google Scholar]
- Chen, H.J.; Wu, C.L.; Lei, M.; Guo, W.F.; Zhang, X.; Zheng, K.; Gao, D.; Wu, D. Petrogenesis and implications for Neoproterozoic granites in Kekesayi Area, South Altyn continent. Earth Sci. 2018, 43, 1278–1292, (In Chinese with English Abstract). [Google Scholar]
- Gao, Y.L.; Zhao, J.; Long, X.P. Geochemistry of Neoproterozoic S-type granites from the Maxianshan group in the Qilian Orogenic Belt and its geological implications. J. Northwest Univ. 2021, 51, 969–984, (In Chinese with English Abstract). [Google Scholar]
- He, D.F.; Dong, Y.P.; Liu, X.M.; Zhou, X.H.; Zhang, F.F.; Sun, S.S. Zircon U–Pb geochronology and Hf isotope of granitoids in East Kunlun: Implications for the Neoproterozoic magmatism of Qaidam Block, Northern Tibetan Plateau. Precambrian Res. 2018, 314, 377–393. [Google Scholar] [CrossRef]
- Liu, D.L.; Jiang, S.Y.; Li, W.T.; Shi, M. Neoproterozoic and Paleozoic tectonic evolution in north Qaidam, northeastern Tibetan Plateau recorded by magmatism and metamorphism. Gondwana Res. 2022, 103, 84–104. [Google Scholar] [CrossRef]
- Peng, Y.B.; Yu, S.Y.; Li, S.Z.; Zhang, J.X.; Liu, Y.J.; Li, Y.S.; Santosh, M. Early Neoproterozoic magmatic imprints in the Altun-Qilian-Kunlun region of the Qinghai-Tibet Plateau: Response to the assembly and breakup of Rodinia supercontinent. Earth-Sci. Rev. 2019, 199, 102954. [Google Scholar] [CrossRef]
- Song, S.G.; Su, L.; Li, X.H.; Niu, Y.L.; Zhang, L.F. Grenville-age orogenesis in the Qaidam-Qilian block: The link between South China and Tarim. Precambrian Res. 2012, 220–221, 9–22. [Google Scholar] [CrossRef]
- Tung, K.A.; Yang, H.Y.; Liu, D.Y.; Zhang, J.X.; Yang, H.J.; Shau, Y.H.; Tseng, C.Y. The Neoproterozoic granitoids from the Qilian block, NW China: Evidence for a link between the Qilian and South China blocks. Precambrian Res. 2013, 235, 163–189. [Google Scholar] [CrossRef]
- Wu, D.Q.; Sun, F.Y.; Pan, Z.C.; Yu, L.; Li, L.; Gao, H.C.; Tian, N.; Xu, C.H. Neoproterozoic magmatic and metamorphic imprints in the East Kunlun Orogenic Belt, North Tibetan Plateau, NW China: Implications for the assembly and initial breakup of the Rodinia supercontinent. Precambrian Res. 2021, 354, 106076. [Google Scholar] [CrossRef]
- Yu, S.Y.; Zhang, J.X.; del Real, P.G.; Zhao, X.L.; Hou, K.J.; Gong, J.H.; Li, Y.S. The Grenvillian orogeny in the Altun–Qilian–North Qaidam mountain belts of northern Tibet Plateau: Constraints from geochemical and zircon U–Pb age and Hf isotopic study of magmatic rocks. J. Asian Earth Sci. 2013, 73, 372–395. [Google Scholar] [CrossRef]
- Dong, Y.P.; Zhou, M.F.; Zhang, G.W.; Zhou, D.W.; Liu, L.; Zhang, Q. The Grenvillian Songshugou ophiolite in the Qinling Mountains, Central China: Implications for the tectonic evolution of the Qinling orogenic belt. J. Asian Earth Sci. 2008, 32, 325–335. [Google Scholar] [CrossRef]
- Nie, H.; Yang, J.Z.; Zhou, G.Y.; Liu, C.Z.; Zheng, J.P.; Zhang, W.X.; Zhao, Y.J.; Wang, H.; Wu, Y.B. Geochemical and Re–Os isotope constraints on the origin and age of the Songshugou peridotite massif in the Qinling orogen, central China. Lithos 2017, 292–293, 307–319. [Google Scholar] [CrossRef]
- Sun, S.S.; Dong, Y.P.; Sun, Y.L.; Cheng, C.; Huang, X.X.; Liu, X.M. Re-Os geochronology, O isotopes and mineral geochemistry of the Neoproterozoic Songshugou ultramafic massif in the Qinling Orogenic Belt, China. Gondwana Res. 2019, 70, 71–87. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, H.F.; Santosh, M. Mylonitized peridotites of Songshugou in the Qinling orogen, central China: A fragment of fossil oceanic lithosphere mantle. Gondwana Res. 2017, 52, 1–17. [Google Scholar] [CrossRef]
- Zhang, H.F.; Yu, H. Petrological and Tectonic Evolution of Orogenic Peridotite Massif: A Case of Songshugou Peridotites. Earth Sci. 2019, 44, 1057–1066, (In Chinese with English Abstract). [Google Scholar]
- Cao, Y.; Song, S.G.; Su, L.; Jung, H.; Niu, Y.L. Highly refractory peridotites in Songshugou, Qinling orogen: Insights into partial melting and melt/fluid–rock reactions in forearc mantle. Lithos 2016, 252–253, 234–254. [Google Scholar] [CrossRef]
- Chen, D.L.; Liu, L. New data on the chronology of eclogite and associated rock from Guanpo Area, North Qinling orogeny and its constraint on nature of North Qinling HP-UHP eclogite terrane. Earth Sci. Front. 2011, 18, 158–169. [Google Scholar]
- Chen, D.L.; Ren, Y.F.; Gong, X.K.; Liu, L.; Gao, S. Identification and its geological significance of eclogite in Songshugou, the North Qinling. Acta Petrol. Sin. 2015, 31, 1841–1854, (In Chinese with English Abstract). [Google Scholar]
- Liao, X.Y.; Liu, L.; Wang, Y.W.; Cao, Y.T.; Chen, D.L.; Dong, Y.P. Multi-stage metamorphic evolution of retrograde eclogite with a granulite-facies overprint in the Zhaigen area of the North Qinling Belt, China. Gondwana Res. 2016, 30, 79–96. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, H.-F.; Li, X.-H.; Zhang, J.; Santosh, M.; Yang, Y.-H.; Zhou, D.-W. Tectonic evolution of the North Qinling Orogen from subduction to collision and exhumation: Evidence from zircons in metamorphic rocks of the Qinling Group. Gondwana Res. 2016, 30, 65–78. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.B.; Gao, S.; Liu, X.C.; Gong, H.J.; Li, Q.L.; Li, X.H.; Yuan, H.L. Eclogite origin and timings in the North Qinling terrane, and their bearing on the amalgamation of the South and North China Blocks. J. Metamorph. Geol. 2011, 29, 1019–1031. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.-B.; Gao, S.; Liu, X.-C.; Liu, Q.; Qin, Z.-W.; Xie, S.-W.; Zhou, L.; Yang, S.-H. Continental origin of eclogites in the North Qinling terrane and its tectonic implications. Precambrian Res. 2013, 230, 13–30. [Google Scholar] [CrossRef]
- Li, X.H.; Long, W.G.; Li, Q.L.; Liu, Y.; Zheng, Y.F.; Yang, Y.H.; Chamberlain, K.R.; Wan, D.F.; Guo, C.H.; Wang, X.C.; et al. Penglai Zircon Megacrysts: A Potential New Working Reference Material for Microbeam Determination of Hf-O Isotopes and U-Pb Age. Geostand. Geoanalytical Res. 2010, 34, 117–134. [Google Scholar] [CrossRef]
- Li, X.H.; Tang, G.Q.; Gong, B.; Yang, Y.H.; Hou, K.J.; Hu, Z.; Li, Q.; Liu, Y.; Li, W. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chin. Sci. Bull. 2013, 58, 4647–4654. [Google Scholar] [CrossRef]
- Yang, Q.; Xia, X.; Zhang, W.; Zhang, Y.; Xiong, B.; Xu, Y.; Wang, Q.; Wei, G. An evaluation of precision and accuracy of SIMS oxygen isotope analysis. Solid Earth Sci. 2018, 3, 81–86. [Google Scholar] [CrossRef]
- Yang, Q.; Xia, X.P.; Zhang, L.; Zhang, W.; Zhang, Y.; Chen, L.; Yang, Y.; He, M. Oxygen isotope homogeneity assessment for apatite U-Th-Pb geochronology reference materials. Surf. Interface Anal. 2019, 52, 197–213. [Google Scholar] [CrossRef]
- Yuan, H.L.; Gao, S.; Liu, X.M.; Li, H.M.; Günther, D.; Wu, F.Y. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostand. Geoanalytical Res. 2004, 28, 353–370. [Google Scholar] [CrossRef]
- Andersen, T. Correction of common lead in U–Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003. [Google Scholar]
- Chu, N.-C.; Taylor, R.N.; Chavagnac, V.r.; Nesbitt, R.W.; Boella, R.M.; Milton, J.A.; German, C.R.; Bayon, G.; Burton, K. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. J. Anal. At. Spectrom. 2002, 17, 1567–1574. [Google Scholar] [CrossRef] [Green Version]
- Blichert-Toft, J.; Albarède, F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, J.N.; Belousova, E.; Jackson, E.S. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Zheng, Y.F.; Gao, S.J.A.P.S. Lu-Hf isotopic systematics and thier applications in petrology. Acta Petrol. Sin. 2007, 23, 185–220, (In Chinese with English Abstract). [Google Scholar]
- Middlemost, E. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocksfrom the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of Zircon Textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Hoskin, P.W. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta 2005, 69, 637–648. [Google Scholar] [CrossRef]
- Schulz, B.; Klemd, R.; Brätz, H. Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement. Geochim. Cosmochim. Acta 2006, 70, 697–710. [Google Scholar] [CrossRef]
- Jung, S.; Hoernes, S.; Mezger, K. Geochronology and petrology of migmatites from the Proterozoic Damara Belt—importance of episodic fluid-present disequilibrium melting and consequences for granite petrology. Lithos 2000, 111, 220–235. [Google Scholar] [CrossRef]
- Patiño Douce, A.E.; Johnston, A.D. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites. Contrib. Mineral. Petrol. 1991, 107, 202–218. [Google Scholar] [CrossRef]
- Montel, J.M.; Vielzeuf, D. Partial melting of metagreywackes, Part II. Compositions of minerals and melts. Contrib. Mineral. Petrol. 1997, 128, 176–196. [Google Scholar] [CrossRef]
- Vielzeuf, D.; Montel, J.M. Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships. Contrib. Mineral. Petrol. 1994, 117, 375–393. [Google Scholar] [CrossRef]
- Clemens, J.D. Granitic magmas with I-type affinities, from mainly metasedimentary sources: The Harcourt batholith of southeastern Australia. Contrib. Mineral. Petrol. 2018, 173, 11. [Google Scholar] [CrossRef]
- Chappell, B.W.; Bryant, C.J.; Wyborn, D. Peraluminous I-type granites. Lithos 2012, 153, 142–153. [Google Scholar] [CrossRef]
- Valley, J.W.; Lackey, J.S.; Cavosie, A.J.; Clechenko, C.C.; Spicuzza, M.J.; Basei, M.A.S.; Bindeman, I.N.; Ferreira, V.P.; Sial, A.N.; King, E.M.; et al. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 2005, 150, 561–580. [Google Scholar] [CrossRef]
- Kemp, A.I.; Hawkesworth, C.J.; Foster, G.L.; Paterson, B.A.; Woodhead, J.D.; Hergt, J.M.; Gray, C.M.; Whitehouse, M.J. Magmatic and crustal differentiation history of granitic rocks from hf-o isotopes in zircon. Science 2007, 315, 980–983. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.B.; Li, W.; Dong, Y.P.; Zhang, L.; Zhao, J.X.; Sheir, F. Multi-stage metamorphism and deformation of the North Qinling Orogenic Belt: Constraints from petrology, geochronology, and structural analysis of the Qinling Complex. Gondwana Res. 2022, 105, 201–216. [Google Scholar] [CrossRef]
- Li, C.; Ren, L.; Zong, S.; Wang, Y.; Li, M. Confirmation of the Major Grenville Event in the Qinling Complex of the Qinling Orogenic Belt, Central China. J. Earth Sci. 2019, 30, 494–509. [Google Scholar] [CrossRef]
- Grimes, C.B.; Ushikubo, T.; Kozdon, R.; Valley, J.W. Perspectives on the origin of plagiogranite in ophiolites from oxygen isotopes in zircon. Lithos 2013, 179, 48–66. [Google Scholar] [CrossRef]
- Wei, C.S.; Zhao, Z.F.; Spicuzza, M.J. Zircon oxygen isotopic constraint on the sources of late Mesozoic A-type granites in eastern China. Chem. Geol. 2008, 250, 1–15. [Google Scholar] [CrossRef]
- Appleby, S.K.; Gillespie, M.R.; Graham, C.M.; Hinton, R.W.; Oliver, G.; Kelly, N.M.; Mineralogy, E.J.C.t. Do S-type granites commonly sample infracrustal sources? New results from an integrated O, U-Pb and Hf isotope study of zircon. Contrib. Mineral. Petrol. 2010, 160, 115–132. [Google Scholar] [CrossRef]
- Bindeman, I.N.; Fu, B.; Kita, N.T.; Valley, J.W. Origin and Evolution of Silicic Magmatism at Yellowstone Based on Ion Microprobe Analysis of Isotopically Zoned Zircons. J. Petrol. 2008, 49, 163–193. [Google Scholar] [CrossRef] [Green Version]
- Sylvester, P.J. Post-collisional strongly peraluminous granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Bader, T.; Ratschbacher, L.; Franz, L.; Yang, Z.; Hofmann, M.; Linnemann, U.; Yuan, H.J.T. The heart of China revisited, I. Proterozoic tectonics of the Qin mountains in the core of supercontinent Rodinia. Tectonics 2013, 32, 661–687. [Google Scholar] [CrossRef]
- Cao, H.H.; Li, S.; Zhao, S.Z.; Wang, P.C.; Somerville, I.; Wang, Q.; Yu, S. Precambrian tectonic affinity of the North Qinling Microcontinent: Constraints from the discovery of Mesoproterozoic magmatic zircons in the Qinling Group. Geol. J. 2017, 52, 142–154. [Google Scholar] [CrossRef]
- Shi, Y.; Qiu, J.S.; Yu, J.H.; Xu, X.S.; Chen, L.H.J.A.P.S. Geochronology and geochemistry of the Qinling Group in the eastern Qinling Orogen. Acta Petrol. Sin. 2009, 25, 2651–2670, in Chinese with English abstract. [Google Scholar]
- Shi, Y.; Huang, Q.; Liu, X.; Krapež, B.; Yu, J.; Bai, Z. Provenance and tectonic setting of the supra-crustal succession of the Qinling Complex: Implications for the tectonic affinity of the North Qinling Belt, Central China. J. Asian Earth Sci. 2018, 158, 112–139. [Google Scholar] [CrossRef]
- Becker, H.; Jochum, K.P.; Carlson, R.W. Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones. Chem. Geol. 2000, 163, 65–99. [Google Scholar] [CrossRef]
- Dostal, J.; Strong, D.F.; Jamieson, R.A. Trace element mobility in the mylonite zone within the ophiolite aureole, St. Anthony Complex, Newfoundland. Earth Planet. Sci. Lett. 1980, 49, 188–192. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical Fingerprinting of the Earth’s Oldest Rocks. Geology 2014, 42, 175–176. [Google Scholar] [CrossRef] [Green Version]
- Polat, A.; Hofmann, A.W. Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Res. 2003, 126, 197–218. [Google Scholar] [CrossRef]
- Clemens, J.D.; Stevens, G.J.L. What controls chemical variation in granitic magmas? Lithos 2012, 134–135, 317–329. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Gao, P. The production of granitic magmas through crustal anatexis at convergent plate boundaries. Lithos 2021, 402–403, 106232. [Google Scholar] [CrossRef]
- Castro, A.; Douce, A.; Corretgé, L.; Rosa, J.; El-Biad, M.; El-Hmidi, H.J.C.t.M. Origin of peraluminous granites and granodiorites, Iberian massif, Spain: An experimental test of granite petrogenesis. Contrib. Mineral. Petrol. 1999, 135, 255–276. [Google Scholar] [CrossRef]
- Gray, C.M.; Letters, P.S. An isotopic mixing model for the origin of granitic rocks in southeastern Australia. Earth Planet. Sci. Lett. 1984, 70, 47–60. [Google Scholar] [CrossRef]
- Patiño Douce, A.E. Experimental generation of hybrid silicic melts by reaction of high-Al basalt with metamorphic rocks. J. Geophys. Res. Solid Earth 1995, 100, 15623–15639. [Google Scholar] [CrossRef]
- Patiño Douce, A.E.; Harris, N. Experimental Constraints on Himalayan Anatexis. J. Petrol. 1998, 39, 689–710. [Google Scholar] [CrossRef]
- Thompson, A.B. Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. Am. J. Sci. 1982, 282, 1567–1595. [Google Scholar] [CrossRef]
- Brown, M. Crustal melting and melt extraction, ascent and emplacement in orogens: Mechanisms and consequences. J. Geol. Soc. 2007, 164, 709–730. [Google Scholar] [CrossRef]
- Stevens, G.; Clemens, J.D. Comment on ‘Water-fluxed melting of the continental crust: A review’ by RF Weinberg and P. Hasalova. Lithos 2015, 212–215, 158–188. [Google Scholar]
- Weinberg, R.F.; Hasalová, P. Water-fluxed melting of the continental crust: A review. Lithos 2015, 212–215, 158–188. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Ferry, J.M.; Watson, E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. Science 2005, 308, 841–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 2006, 151, 413–433. [Google Scholar] [CrossRef]
- Schiller, D.; Finger, F. Application of Ti-in-zircon thermometry to granite studies: Problems and possible solutions. Contrib. Mineral. Petrol. 2019, 174, 51. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529. [Google Scholar] [CrossRef]
- Green, T.H. Anatexis of mafic crust and high-pressure crystallization of andesite. Am. Soc. Mech. Eng. 1982, 465–487. [Google Scholar]
- Moyen, J.F.; Stevens, G. Experimental Constraints on TTG Petrogenesis: Implications for Archean Geodynamics. Geophys. Monogr. Ser. 2006, 164, 149–175. [Google Scholar]
- Wu, F.Y.; Li, X.H.; Yang, J.H.; Zheng, Y.F. Discussions on the petrogenesis of granites. Acta Petrol. Sin. 2007, 23, 1217–1238, (In Chinese with English Abstract). [Google Scholar]
- Stevens, G.; Clemens, J.D.; Droop, G.T.R. Melt production during granulite-facies anatexis: Experimental data from “primitive” metasedimentary protoliths. Contrib. Mineral. Petrol. 1997, 128, 352–370. [Google Scholar] [CrossRef]
- Veronique, G.; Bruce, T.A.; Peter, U. Melting of Biotite + Plagioclase + Quartz Gneisses: The Role of H2O in the Stability of Amphibole. J. Petrol. 2000, 5, 651–666. [Google Scholar]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Liao, X.; Zhang, C.; Chen, D.; Gong, X.; Kang, L. Multi-metamorphic timings of HP-UHP rocks in the North Qinling and their geological implications. Acta Petrol. Sin. 2013, 29, 1634–1656, (In Chinese with English Abstract). [Google Scholar]
- Harris, N.B.; Pearce, J.A.; Tindle, A.G. Geochemical characteristics of collision-zone magmatism. Geol. Soc. Lond. Spec. Publ. 1986, 19, 67–81. [Google Scholar] [CrossRef]
- Pitcher, W.S. Granite type and tectonic environment. In Symposium on Mountain Building; Academic Press: London, UK, 1983; pp. 19–40. [Google Scholar]
- Diwu, C.R.; Long, X.P. Tectonic evolution of the North Qinling Orogenic Belt, Central China: Insights from metamafic rocks of the Songshugou Complex. Geol. J. 2018, 54, 2382–2399. [Google Scholar] [CrossRef]
Location | Rock Type | Protolith Age (Ma) | Analytical Method | Reference |
---|---|---|---|---|
West Qinling | ||||
Wushan | Granitic mylonite | 927 ± 10–933 ± 7 | LA-ICPMS | This study |
Xinyang | Granitic gneiss | 921 ± 9–936 ± 16 | LA-ICPMS | This study |
Yuanlong | Granitic gneiss | 924 ± 9–937 ± 8 | LA-ICPMS | This study |
Wushan | Granitic mylonite | 951 ± 18 | SHRIMP | [26] |
Wushan | Granitic mylonite | 910 ± 5 | LA-ICPMS | [27] |
Yuanlong | Biotite monzonite granitic gneiss | 915 ± 8 | LA-ICPMS | [28] |
Xinyang | Biotite monzonite granitic gneiss | 936 ± 4–979 ± 5 | LA-ICPMS | [28] |
Yuanlong | Granitic gneiss | 924 ± 3 | LA-ICPMS | [29] |
East Qinling | ||||
Songshugou | Garnet plagioamphibolite | 983 ± 140 | Sm-Nd | [30] |
Dehe | Biotite adamellite | 964 ± 5–943 ± 18 | TIMS/SHRIMP | [31] |
Caiao | Granodiorite | 889 ± 10 | LA-ICPMS | [32] |
Huangbaiyu | Granodiorite | 670 ± 40 | Rb-Sr | [33] |
Lajimiao | Diorite | 973 ± 60 | LA-ICPMS | [34] |
Lianghekou | Monzonite granite gneiss | 852 ± 2 | U-Pb isochron | [35] |
Niujiaoshan | Granitic gneiss | 959 ± 4 | TIMS | [36] |
Xilaoyu | Biotite granite gneiss | 956 ± 8 | TIMS | [37] |
Niujiaoshan | Dimica monzonite granite gneiss | 955 ± 5 | TIMS | [37] |
Guojiaping | Quartz monzonite gneiss | 953 ± 14 | SHRIMP | [37] |
Dehe | Biotite monzonite granite gneiss | 943 ± 18–971 ± 10 | SHRIMP/TIMS | [37] |
Zhaigen | Biotite granite | 914 ± 10 | SHRIMP | [37] |
Taibaigong | Tonaldiorite gneiss | 863 ± 17–911 ± 18 | TIMS/SHRIMP | [37] |
Huangtuniu | Biotite granite gneiss | 844 ± 4 | TIMS | [37] |
Niujiaoshan | Gneissic granite | 955 ± 13 | SHRIMP | [38] |
Dehe | Biotite monzonite granite gneiss | 948 ± 9 | LA-ICPMS | [19] |
Fangzhuang | Granitic mylonite | 933 ± 9 | SIMS | [19] |
Shicaogou | Biotite adamellite | 925 ± 11 | LA-ICPMS | [39] |
Xilaoyu | Granodioritic gneiss | 956 ± 8 | ID-TIMS | [40] |
Niujiaoshan | Two-mica granitic gneiss | 955 ± 5 | ID-TIMS | [40] |
Dehe | Biotite granitic gneiss | 943 ± 18 | SHRIMP | [40] |
Guanshan | Biotite granitic gneiss | 929 ± 16 | SHRIMP | [40] |
Zhaigen | Biotite granitic gneiss | 914 ± 10 | SHRIMP | [40] |
Dehe | Biotite monzonitic gneiss | 925 ± 23 | LA-ICPMS | [20] |
Zhaigen | Granite | 902 ± 7 | LA-ICPMS | [41] |
Fangzhuang | Granite | 934 ± 9 | LA-ICPMS | [41] |
Dehe | Granite | 942 ± 7 | SHRIMP | [41] |
Mashankou | Granitic gneiss | 929 ± 7 | LA-ICPMS | [42] |
Sample | WS20-01 | WS20-02 | WS20-03 | YL20-01 | YL20-02 | YL20-03 | XY20-02 | XY20-05 | XY20-07 |
---|---|---|---|---|---|---|---|---|---|
Rock Type | Granitic Mylonite | Granitic Gneiss | |||||||
Major Oxides (%) | |||||||||
SiO2 | 70.42 | 68.03 | 69.47 | 70.53 | 70.66 | 71.70 | 75.68 | 71.59 | 75.29 |
TiO2 | 0.49 | 0.49 | 0.56 | 0.50 | 0.58 | 0.49 | 0.13 | 0.40 | 0.08 |
Al2O3 | 14.09 | 15.64 | 14.16 | 14.19 | 14.00 | 13.93 | 12.67 | 14.09 | 13.30 |
TFe2O3 | 3.83 | 3.75 | 4.30 | 3.44 | 4.41 | 3.68 | 1.33 | 3.36 | 1.11 |
MnO | 0.07 | 0.06 | 0.07 | 0.07 | 0.07 | 0.06 | 0.03 | 0.06 | 0.02 |
MgO | 1.14 | 0.96 | 1.16 | 0.95 | 1.14 | 0.92 | 0.22 | 0.73 | 0.11 |
CaO | 2.19 | 2.45 | 2.50 | 1.97 | 1.24 | 1.34 | 0.64 | 1.51 | 0.54 |
Na2O | 2.83 | 3.27 | 2.65 | 2.61 | 2.10 | 2.08 | 2.57 | 2.68 | 2.87 |
K2O | 3.01 | 3.82 | 2.99 | 3.93 | 4.36 | 4.58 | 5.41 | 4.19 | 5.22 |
P2O5 | 0.11 | 0.12 | 0.11 | 0.11 | 0.12 | 0.09 | 0.09 | 0.13 | 0.19 |
LOI | 1.52 | 1.27 | 1.55 | 1.38 | 1.25 | 1.11 | 1.13 | 1.26 | 1.11 |
TOTAL | 99.70 | 99.86 | 99.52 | 99.68 | 99.93 | 99.98 | 99.90 | 100.00 | 99.84 |
A/CNK a | 1.18 | 1.12 | 1.16 | 1.17 | 1.34 | 1.29 | 1.12 | 1.20 | 1.17 |
A/NK a | 1.78 | 1.64 | 1.86 | 1.66 | 1.71 | 1.66 | 1.25 | 1.57 | 1.28 |
Na2O/K2O | 0.94 | 0.86 | 0.89 | 0.66 | 0.48 | 0.45 | 0.48 | 0.64 | 0.55 |
Na2O + K2O | 5.84 | 7.09 | 5.64 | 6.54 | 6.46 | 6.66 | 7.98 | 6.87 | 8.09 |
Mg# | 37 | 34 | 35 | 35 | 34 | 33 | 25 | 30 | 16 |
TZr (°C) | 828 | 836 | 829 | 844 | 867 | 864 | 765 | 828 | 749 |
Trace Elements (ppm) | |||||||||
Li | 47.6 | 34.7 | 40.0 | 32.7 | 32.7 | 42.9 | 18.9 | 55.2 | 71.9 |
Be | 2.83 | 3.39 | 3.19 | 2.58 | 2.58 | 2.45 | 3.28 | 2.62 | 2.58 |
Sc | 9.79 | 10.1 | 11.0 | 9.51 | 9.51 | 9.58 | 2.84 | 6.79 | 2.78 |
V | 35.7 | 37.9 | 41.3 | 43.2 | 43.2 | 43.2 | 4.33 | 25.4 | 1.45 |
Cr | 18.4 | 19.2 | 21.8 | 21.8 | 21.8 | 24.4 | 2.28 | 12.2 | 0.88 |
Co | 6.13 | 5.85 | 6.87 | 6.94 | 6.94 | 7.46 | 1.24 | 5.31 | 0.32 |
Ni | 7.18 | 7.30 | 9.15 | 10.2 | 10.2 | 99.9 | 1.31 | 5.51 | 0.59 |
Cu | 5.73 | 5.09 | 8.77 | 8.30 | 8.30 | 16.78 | 4.99 | 6.67 | 1.06 |
Zn | 45.5 | 54.2 | 70.2 | 22.8 | 22.8 | 49.5 | 27.5 | 84.4 | 27.7 |
Ga | 18.4 | 19.2 | 18.4 | 18.6 | 18.6 | 22.0 | 13.8 | 18.3 | 20.0 |
Ge | 1.52 | 1.62 | 1.63 | 1.67 | 1.67 | 1.78 | 1.62 | 1.71 | 2.19 |
Rb | 121 | 159 | 155 | 146 | 146 | 196 | 259 | 233 | 430 |
Sr | 126 | 145 | 121 | 156 | 156 | 99.4 | 33.1 | 106 | 18.9 |
Zr | 196 | 198 | 208 | 217 | 217 | 209 | 75 | 163 | 59.9 |
Nb | 10.9 | 10.9 | 11.9 | 12.7 | 12.7 | 11.5 | 6.69 | 10.9 | 10.5 |
Cs | 4.99 | 12.0 | 17.9 | 5.16 | 5.16 | 11.9 | 7.50 | 18.6 | 13.4 |
Ba | 593 | 668 | 529 | 799 | 799 | 858 | 299 | 533 | 36.9 |
Hf | 5.43 | 5.50 | 5.66 | 5.86 | 5.86 | 5.61 | 2.72 | 4.64 | 2.70 |
Ta | 1.01 | 0.93 | 0.95 | 1.03 | 1.03 | 0.93 | 0.94 | 0.97 | 1.92 |
Pb | 27.2 | 36.9 | 21.1 | 34.6 | 34.6 | 35.6 | 32.7 | 14.3 | 25.3 |
U | 3.71 | 4.72 | 5.04 | 2.94 | 2.94 | 3.03 | 2.16 | 1.66 | 3.97 |
Th | 15.7 | 16.3 | 17.3 | 20.4 | 20.4 | 20.0 | 12.3 | 14.3 | 11.9 |
REE (ppm) | |||||||||
La | 31.6 | 29.5 | 33.1 | 43.0 | 43.0 | 40.9 | 13.9 | 31.4 | 7.87 |
Ce | 66.5 | 62.6 | 70.0 | 90.7 | 90.7 | 83.7 | 32.9 | 65.1 | 17.1 |
Pr | 7.70 | 7.32 | 8.16 | 10.4 | 10.4 | 9.83 | 3.59 | 7.57 | 2.08 |
Nd | 28.3 | 26.6 | 30.0 | 39.6 | 39.6 | 35.9 | 13.7 | 27.7 | 7.41 |
Sm | 5.85 | 5.41 | 6.22 | 7.76 | 7.76 | 7.04 | 3.97 | 5.77 | 2.54 |
Eu | 0.95 | 0.90 | 0.99 | 1.34 | 1.34 | 1.30 | 0.30 | 0.90 | 0.08 |
Gd | 5.33 | 4.78 | 5.72 | 6.85 | 6.85 | 6.09 | 4.37 | 5.20 | 2.77 |
Tb | 0.83 | 0.77 | 0.91 | 1.00 | 1.00 | 0.90 | 0.90 | 0.82 | 0.66 |
Dy | 5.02 | 4.80 | 5.52 | 5.84 | 5.84 | 5.27 | 6.06 | 4.83 | 4.11 |
Ho | 0.97 | 0.97 | 1.06 | 1.11 | 1.11 | 1.04 | 1.23 | 0.91 | 0.63 |
Er | 2.81 | 2.98 | 3.09 | 3.24 | 3.24 | 3.07 | 3.65 | 2.62 | 1.48 |
Tm | 0.41 | 0.45 | 0.44 | 0.46 | 0.46 | 0.45 | 0.55 | 0.38 | 0.19 |
Yb | 2.73 | 3.08 | 2.86 | 2.94 | 2.94 | 2.89 | 3.55 | 2.39 | 1.10 |
Lu | 0.40 | 0.46 | 0.42 | 0.44 | 0.44 | 0.44 | 0.52 | 0.35 | 0.14 |
Y | 27.9 | 27.2 | 30.7 | 33.0 | 33.0 | 30.9 | 38.5 | 28.2 | 22.7 |
Rb/Sr | 0.96 | 1.10 | 1.27 | 0.93 | 0.93 | 1.97 | 7.85 | 2.20 | 22.7 |
(La/Yb) N a | 8 | 7 | 8 | 10 | 10 | 10 | 3 | 9 | 5 |
Eu/Eu* a | 0.51 | 0.53 | 0.50 | 0.55 | 0.43 | 0.59 | 0.22 | 0.49 | 0.09 |
ΣREE | 187 | 178 | 199 | 248 | 248 | 230 | 128 | 184 | 71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Zhang, J.; Zhang, H.; Bao, Z.; Lin, A. Petrogenesis and Tectonic Implications of the Neoproterozoic Peraluminous Granitic Rocks from the Tianshui Area, Western Margin of the North Qinling Terrane, China: Evidence from Whole-Rock Geochemistry and Zircon U–Pb–Hf–O Isotopes. Minerals 2022, 12, 910. https://doi.org/10.3390/min12070910
Yang G, Zhang J, Zhang H, Bao Z, Lin A. Petrogenesis and Tectonic Implications of the Neoproterozoic Peraluminous Granitic Rocks from the Tianshui Area, Western Margin of the North Qinling Terrane, China: Evidence from Whole-Rock Geochemistry and Zircon U–Pb–Hf–O Isotopes. Minerals. 2022; 12(7):910. https://doi.org/10.3390/min12070910
Chicago/Turabian StyleYang, Gang, Juan Zhang, Hongfu Zhang, Zhian Bao, and Abing Lin. 2022. "Petrogenesis and Tectonic Implications of the Neoproterozoic Peraluminous Granitic Rocks from the Tianshui Area, Western Margin of the North Qinling Terrane, China: Evidence from Whole-Rock Geochemistry and Zircon U–Pb–Hf–O Isotopes" Minerals 12, no. 7: 910. https://doi.org/10.3390/min12070910
APA StyleYang, G., Zhang, J., Zhang, H., Bao, Z., & Lin, A. (2022). Petrogenesis and Tectonic Implications of the Neoproterozoic Peraluminous Granitic Rocks from the Tianshui Area, Western Margin of the North Qinling Terrane, China: Evidence from Whole-Rock Geochemistry and Zircon U–Pb–Hf–O Isotopes. Minerals, 12(7), 910. https://doi.org/10.3390/min12070910