Petrogenesis and Tectonic Implication of the Hongtaiping High-Mg Diorite in the Wangqing Area, NE China: Constraints from Geochronology, Geochemistry and Hf Isotopes
Abstract
:1. Introduction
2. Geological Setting and Sample Descriptions
Order | Sample | Latitude | Longitude | Pluton | Lithology | Age (Ma) | Method | Reference |
---|---|---|---|---|---|---|---|---|
1 | JXNC-I-2 | Wugaogou | Gabbro | 270 ± 10 | SHRIMP | [31] | ||
2 | YH8-1 | Qianshan | Gabbro | 282 ± 2 | LA–ICP–MS | [34] | ||
3 | JXB-6A | Wudaogou | Gabbroic diorite | 263.5 ± 5.1 | LA–ICP–MS | [32] | ||
4 | 06HCH-55 | 42°58′08″ | 130°55′25″ | Qianshan | Gabbro | 273 ± 2 | SHRIMP | [33,35] |
5 | 09HC-18 | 43°01′11″ | 130°58′25″ | Shuguang | Diorite | 257 ± 2 | SHRIMP | [35] |
6 | 09HC-26 | 43°40′11″ | 129°55′30″ | Wangqing | Diorite | 263 ± 3 | LA–ICP–MS | [35] |
7 | 09HC-12 | 43°01′09″ | 130°19′25″ | Qinggoushan | Gabbro | 254 ± 3 | LA–ICP–MS | [38] |
8 | HC01 | 43.0148417° | 131.000115° | Gabbro | 266.9 ± 5.2 | LA–ICP–MS | [50] | |
9 | B4117 | 42°39′35″ | 129°29′57″ | Zhixin | Hornblende gabbro | 251 ± 1 | LA–ICP–MS | [51] |
10 | 17HTP-6 | 43°34′19″ | 129°33′21″ | Hongtaiping | High-Mg diorite | 267.0 ± 1 | LA–ICP–MS | This study |
3. Analytical Methods
3.1. Zircon U–Pb Geochronology
3.2. Whole-Rock Major and Trace Element Analysis
3.3. In Situ Zircon Hf Isotope Analysis
4. Results
4.1. Internal Structure and Texture of Zircon
4.2. Zircon U–Pb Dating
4.3. Major and Trace Element Compositions
4.4. In Situ Zircon Hf Isotopic Compositions
5. Discussion
5.1. Emplacement Age of the High-Mg Diorite and Middle Permian Magmatic Event in the Yanbian Area
5.2. Petrogenesis of the High-Mg Diorite
5.2.1. Alteration Effects
5.2.2. Fraction Crystallization
5.2.3. Crustal Contamination
5.2.4. Nature of the Mantle Source
5.3. Tectonic Implications
6. Conclusions
- (1)
- New LA–ICP–MS zircon U–Pb dating results show that the high-Mg diorite was ca. 267 Ma.
- (2)
- These rocks are calc-alkaline in nature, enriched in LREEs and LILEs, depleted in HREEs and HFSEs, and classified as sanukite.
- (3)
- The primary magma of the high-Mg diorite was derived from partial melting of the depleted mantle wedge that had been metasomatized by subduction-related fluids, with insignificant crystallization fractionation.
- (4)
- The magma was generated by moderate partial melting (20%–30%) of a garnet lherzolite source.
- (5)
- The high-Mg diorite was formed by the northward subduction of the Paleo-Asian oceanic plate during the Middle Permian.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Kamei, A.; Owada, M.; Nagao, T.; Shiraki, K. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc: Evidence from clinopyroxene and whole rock compositions. Lithos 2004, 75, 359–371. [Google Scholar] [CrossRef]
- Kay, R.W. Aleutian magnesian andesites: Melts from subducted Pacific Ocean crust. J. Volcanol. Geoth. Res. 1978, 4, 117–132. [Google Scholar] [CrossRef]
- Rogers, G.; Saunders, A.D. Magnesian andesites from Mexico, Chile and the Aleutian Islands: Implications for magmatism associated with ridge-trench collision. In Boninites and Related Rocks; Crawford, A.J., Ed.; Unwin Hyman: London, UK, 1989; pp. 416–445. [Google Scholar]
- Saunders, A.D.; Rogers, G.; Marriner, G.F.; Terrell, D.J.; Verma, S.P. Geochemistry of Cenezoic volcanic rocks, Baja California, Mexico: Implications for the petrogenesis of post-subduction magmas. J. Volcanol. Geoth. Res. 1987, 32, 223–245. [Google Scholar] [CrossRef]
- Stern, J.A.; Hanson, G.A.; Shirey, S.B. Petrogenesis of mantle-derived, LILE-enriched Archean monzodiorites and trachyandesites (sanukitoids) in southwestern Superior Province. Can. J. Earth Sci. 1989, 26, 1688–1712. [Google Scholar] [CrossRef]
- Tang, G.J.; Wang, Q. High-Mg andesites and their geodynamic implications. Acta Petrol. Sin. 2010, 26, 2495–2512, (In Chinese with English abstract). [Google Scholar]
- Tatsumi, Y. Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction: Generation of high-Mg andesites in the Setouchi volcanic belt, southwest Japan. Geology 2001, 29, 323–326. [Google Scholar] [CrossRef]
- Bloomer, S.H.; Hawkins, J.W. Petrology and geochemistry of boninite series volcanic rocks from the Mariana trench. Contrib. Mineral. Petrol. 1987, 97, 361–377. [Google Scholar] [CrossRef]
- Taylor, R.N.; Nesbitt, R.W.; Vidal, P.; Harmon, R.S.; Auvray, B.; Croudace, I.W. Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin-Islands, Japan. J. Petrol. 1994, 35, 577–617. [Google Scholar] [CrossRef]
- Le bas, M.J. IUGS reclassification of the high-Mg and picritic volcanic rocks. J. Petrol. 2000, 41, 1467–1470. [Google Scholar] [CrossRef] [Green Version]
- Martin, N.; Smithies, R.H.; Rapp, R.; Moyen, J.F.; Champion, D. An overview of adakite, mtonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos 2005, 79, 1–24. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Hao, J.; Zhai, M.G. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 2003, 22, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.B.; Wu, F.Y.; Wilde, S.A.; Zhai, M.G.; Lu, X.P.; Sun, D.Y. Zircon U–Pb ages and tectonic implications of ‘Early Paleozoic’ granitoids at Yanbian, Jilin Province, Northeast China. Isl. Arc 2004, 13, 484–505. [Google Scholar] [CrossRef]
- Sun, D.Y.; Wu, F.Y.; Zhang, Y.B.; Gao, S. The final closing time of the west Lamulun River-Changchun-Yanji plate suture zone: Evidence from the Dayushan granitic pluton, Jilin Province. J. Jilin Univ. Earth Sci. 2004, 34, 174–181, (In Chinese with English abstract). [Google Scholar]
- Li, J.Y. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. J. Asian Earth Sci. 2006, 26, 207–224. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.H.; Xu, W.L.; Pei, F.P.; Guo, P.Y.; Wang, F. Permian tectonic evolution of the eastern section of the northern margin of the North China Plate: Constraints from zircon U–Pb geochronology and geochemistry of the volcanic rocks. Acta Petrol. Sin. 2012, 28, 2733–2750, (In Chinese with English abstract). [Google Scholar]
- Liu, Y.J.; Li, W.M.; Feng, Z.Q.; Wen, Q.B.; Neubauer, F.; Liang, C.Y. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Res. 2017, 43, 123–148. [Google Scholar] [CrossRef]
- Shao, J.A. Crustal Evolution in the Middle Part of the Northern Margin of the Sino-Korean Plate; Peking University Press: Beijing, China, 1991; pp. 1–136, (In Chinese with English abstract). [Google Scholar]
- Xu, B.; Charvet, J.; Chen, Y.; Zhao, P.; Shi, G.Z. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Res. 2013, 23, 1342–1364. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Zhao, P.; Wang, Y.Y.; Liao, W.; Luo, Z.W.; Bao, Q.Z.; Zhou, Y.H. The pre-Devonian tectonic framework of Xing’an-Mongolia orogenic belt (XMOB) in north China. J. Asian Earth Sci. 2015, 97, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.S.; Chen, C.; Zou, X.T.; Zhao, H.L.; Hao, Y.J.; Hou, H.N.; Hu, Z.C.; Jiang, G.H. The age, geological setting, and types of gold deposits in the Yanbian and adjacent areas, NE China. Ore Geol. Rev. 2016, 73, 284–297. [Google Scholar] [CrossRef]
- Lu, S.Y.; Ren, Y.S.; Hao, Y.J.; Hou, H.N.; Yang, Q. Two-phase mineralization of Hongtaiping Cu polymetallic deposit in Yanbian area (NE China): Evidence from sulfide Rb-Sr dating and in-situ trace element analysis. Ore Geol. Rev. 2021, 137, 104295. [Google Scholar] [CrossRef]
- Yu, J.J.; Men, L.J.; Chen, L.; Zhao, J.K.; Liang, S.N.; Chen, D.; Pang, W. SHRIMP U–Pb Ages of Zircon and Its Geological Implications from Metamorphic Dacite of the Wudaogou Group in Yanbian Area. J. Jilin Univ. Earth Sci. 2008, 38, 363–367, (In Chinese with English abstract). [Google Scholar]
- Fu, C.L.; Sun, D.Y.; Zhang, X.Z.; Wei, H.Y.; Gou, J. Discovery and geological significance of the Triassic high-Mg diorites in Hunchun area, Jilin Province. Acta Petrol. Sin. 2010, 26, 1089–1102, (In Chinese with English abstract). [Google Scholar]
- Liu, S.; Hu, R.Z.; Gao, S.; Feng, C.X.; Feng, G.Y.; Coulson, I.M.; Li, C.; Wang, T.; Qi, Y.Q. Zircon U–Pb age and Sr–Nd–Hf isotope geochemistry of Permian granodiorite and associated gabbro in the Songliao Block, NE China and implications for growth of juvenile crust. Lithos 2010, 114, 423–436. [Google Scholar] [CrossRef]
- Guan, Q.B.; Li, S.C.; Zhang, C.; Shi, Y.; Li, P.C. Zircon U–Pb dating, geochemistry and geological significance of the I-type granites in Helong area, the eastern section of the southern margin of Xing-Meng Orogenic Belt. Acta Petrol. Sin. 2016, 32, 2690–2706, (In Chinese with English abstract). [Google Scholar]
- Hou, H.N.; Ren, Y.S.; Lu, S.Y.; Hao, Y.J.; Yang, Q. Geodynamic setting of the south-east margin of Xing’an-Mongolian Orogenic Belt: Constraints from geochronology and geochemistry of the Permian volcanic rocks in Yanbian area, NE China. Geol. J. 2020, 56, 1258–1280. [Google Scholar] [CrossRef]
- Tang, J.; Li, A.P.; Xu, W.L.; Liu, Y. Geochronology and geochemistry of late Carboniferous–Middle Jurassic magmatism in the Helong area, NE China: Implications for the tectonic transition from the Paleo-Asian oceanic to circum-Pacific regime. Geol. J. 2020, 55, 1808–1825. [Google Scholar] [CrossRef]
- Zhao, Q.Y.; Li, C.F.; Li, D.C.; Chen, Y.J. Dating for zircons from gabbro dike of Wudaogou Group in Yanbian area and its geological significance. Global Geol. 2008, 27, 150–155, (In Chinese with English abstract). [Google Scholar]
- Chen, Y.J.; Sun, J.G.; Ren, L.; Zhang, Y.; Men, L.J. Petrogenesis of the Wudaogou intermediate-mafic complex, NW China: Zircon U–Pb dating, whole-rock and isotope geochemistry, and geological implications. Int. Geol. Rev. 2015, 55, 1959–1977. [Google Scholar] [CrossRef]
- Li, H.X.; Guo, F.; Li, C.W.; Zhao, L. Late Paleozoic subduction of the Paleo-Asian Ocean: Geochronological and geochemical records from Qianshan mafic intrusion in Hunchun area, NE China. Acta Petrol. Sin. 2010, 26, 1530–1540, (In Chinese with English abstract). [Google Scholar]
- Cao, H.H.; Xu, W.L.; Pei, F.P.; Zhang, X.Z. Permian Tectonic Evolution in Southwestern Khanka Massif: Evidence from Zircon U–Pb Chronology, Hf isotope and Geochemistry of Gabbro and Diorite. Acta Geol. Sin. Engl. 2011, 85, 1390–1402. [Google Scholar]
- Guo, F.; Li, H.X.; Fan, W.M.; Li, J.Y.; Zhao, L.; Huang, M.W. Variable sediment flux in generation of Permian subduction-related mafic intrusions from the Yanbian region, NE China. Lithos 2016, 261, 195–215. [Google Scholar] [CrossRef]
- Safonova, I.Y.; Santosh, M. Accretionary complexes in the Asia-Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Res. 2014, 25, 126–158. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.Y.; Chen, B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth Environ. Sci. Trans. R. Soc. Edinb. 2000, 91, 181–193. [Google Scholar]
- Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kroener, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.J.; Santosh, M. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth. Gondwana Res. 2014, 25, 1429–1444. [Google Scholar] [CrossRef]
- Sengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Xu, W.L.; Sun, C.Y.; Tang, J.; Luan, J.P.; Wang, F. Basement nature and tectonic evolution of the Xing’an-Mongolian orogenic belt. Earth Sci. 2019, 44, 1620–1646, (In Chinese with English abstract). [Google Scholar]
- Xu, W.L.; Wang, F.; Pei, F.P.; Meng, N.; Tang, J.; Xu, M.J.; Wang, W. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations. Acta Petrol. Sin. 2013, 29, 339–353, (In Chinese with English abstract). [Google Scholar]
- Wu, F.Y.; Zhao, G.C.; Sun, D.Y.; Wilde, S.A.; Yang, J.H. The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China. J. Asian Earth Sci. 2007, 30, 542–556. [Google Scholar] [CrossRef]
- Zhou, J.B.; Cao, J.L.; Wilde, S.A.; Zhao, G.C.; Zhang, J.J.; Wang, B. Paleo-Pacific Subduction–Accretion: Evidence from Geochemical and U–Pb Zircon Dating of the Nadanhada Accretionary Complex, NE China. Tectonics 2014, 33, 2444–2466. [Google Scholar] [CrossRef] [Green Version]
- Bi, J.H.; Ge, W.C.; Yang, H.; Wang, Z.H.; Tian, D.X.; Liu, X.W.; Xu, W.L.; Xing, D.H. Geochemistry of MORB and OIB in the Yuejinshan Complex, NE China: Implications for Petrogenesis and Tectonic Setting. J. Asian Earth Sci. 2017, 145, 475–493. [Google Scholar] [CrossRef]
- Jia, D.C.; Hu, R.Z.; Lu, Y.; Qiu, X.L. Collision belt between the Khanka block and the North China block in the Yanbian Region, Northeast China. J. Asian Earth Sci. 2004, 23, 211–219. [Google Scholar]
- JBGMR (Jilin Bureau of Geology and Mineral Resources). Regional Geology of Jilin Province; Geological Publishing House: Beijing, China, 1988; (In Chinese with English abstract). [Google Scholar]
- Wang, Z.G.; Wan, D.; Wang, K.Y.; Konare, Y.; Liang, Y.H. Isotope systematics and fluid inclusion studies of the Hongtaiping Cu–Pb–Zn deposit in Yanbian, NE China: Implications for ore genesis. Geol. J. 2020, 55, 6912–6935. [Google Scholar] [CrossRef]
- Hou, H.N.; Ren, Y.S.; Lu, S.Y.; Hao, Y.J.; Yang, Q. Age and tectonic setting of vein-type mineralization of Hongtaiping copper polymetallic deposit in Yanbian area, Jilin Province, NE China. Acta Petrol. Sin. 2020, 36, 820–836, (In Chinese with English abstract). [Google Scholar]
- Ma, Y.F.; Liu, Y.J.; Wang, Y.; Tang, Z.; Qian, C.; Qin, T.; Feng, Z.Q.; Sun, W.; Zang, Y.Q. Geochronology and geochemistry of the Carboniferous felsic rocks in the central Great Xing’an Range, NE China: Implications for the amalgamation history of Xing’an and Songliao–Xilinhot blocks. Geol. J. 2019, 54, 487–513. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Neubauer, F.; Liu, Z.H.; Cui, F.H.; Guan, Q.B. Final-Stage Magmatic Record of Paleo-Asian Oceanic Subduction? Insights from Late Permian to Early Triassic Intrusive Rocks in the Yanbian Area, Easternmost Central Asian Orogenic Belt. Minerals 2020, 10, 799. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, M.; Griffin, W.L.; Meier, M.; Oberli, F.; Vonquadt, A.; Roddick, J.C.; Speigel, M. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Hao, Y.J.; Ren, Y.S.; Zhao, H.L.; Lai, K.; Zhao, X.; Ma, Y.P. Metallogenic Mechanism and Tectonic Setting of Tungsten Mineralization in the Yangbishan Deposit in Northeastern China. Acta Geol. Sin. Engl. 2018, 92, 241–267. [Google Scholar] [CrossRef]
- Qi, L.; Zhou, M.F. Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China. Chem. Geol. 2008, 248, 83–103. [Google Scholar] [CrossRef]
- Morel, M.L.A.; Nebel, O.; Nebel-Jacobsen, Y.J.; Miller, J.S.; Vroon, P.Z. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem. Geol. 2008, 255, 231–235. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Zheng, Y.F.; Gao, S. Lu–Hf isotopic systematics and their applications in petrology. Acta Petrol. Sin. 2007, 23, 185–220, (In Chinese with English abstract). [Google Scholar]
- Blichert-Toft, J.; Albarede, F. The Lu–Hf isotope geochemistry of chongrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
- Nowell, G.M.; Kempton, P.D.; Noble, S.R.; Fitton, J.G.; Saunders, A.D.; Mahoney, J.J.; Taylor, R.N. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: Insights into the depleted mantle. Chem. Geol. 1998, 149, 211–233. [Google Scholar] [CrossRef]
- Amelin, Y.; Lee, D.C.; Hallidat, A.N. Early-middle Archean crustal evolution deduced from Lu–Hf and U–Pb isotopic studies of single zircon grains. Geochim. Cosmochim. Acta 2000, 64, 4205–4225. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM–MC–ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Mahdy, N.M.; Ntaflos, T.; Pease, V.; Sami, M.; Slobodník, M.; Abu Steet, A.A.; Abdelfadil, K.M.; Fathy, D. Combined zircon U-Pb dating and chemical Th–U–total Pb chronology of monazite and thorite, Abu Diab A-type granite, Central Eastern Desert of Egypt: Constraints on the timing and magmatic-hydrothermal evolution of rare metal granitic magmatism in the Arabian Nubian Shield. Geochemistry 2020, 80, 125669. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.R.; Zhang, Q.; Chen, W.F.; Pan, Z.J.; Du, X.L.; Jiao, S.T.; Wang, S.H. Global IAB data excavation: The performance in basalt discrimination diagrams and preliminary interpretation. Geol. B China 2016, 35, 1937–1949, (In Chinese with English abstract). [Google Scholar]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Hastie, A.R.; Kerr, A.C.; Pearce, J.A.; Mitchell, S.F. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th–Co discrimination diagram. J. Petrol. 2007, 48, 2341–2357. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.H.; Wu, F.Y.; Shao, J.A.; Wilde, S.A.; Xie, L.W.; Liu, X.M. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth Planet. Sci. Lett. 2006, 246, 336–352. [Google Scholar] [CrossRef]
- Koschek, G. Origin and significance of the SEM cathodoluminescence from zircon. J. Microsc. 1993, 171, 223–232. [Google Scholar] [CrossRef]
- Belousova, E.; Griffin, W.; O’Reilly, S.Y.; Fisher, N. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Cao, H.H.; Xu, W.L.; Pei, F.P.; Wang, Z.W.; Wang, F.; Wang, Z.J. Zircon U–Pb geochronology and petrogenesis of the Late Paleozoic-Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block. Lithos 2013, 170, 191–207. [Google Scholar] [CrossRef]
- Men, L.J. An Ore-Forming Fluid Study on Late Mesozoic Epithermal Au-Cu Deposits in Yanbian-Dongning Area: Implication for the Metallogenic Mechanism. Ph.D. Thesis, Jilin University, Changchun, China, 2011. (In Chinese with English abstract). [Google Scholar]
- Ju, N. Ore Genesis and Tectonic Settings of Lishan Polymetallic Deposit in Tianbaoshan Metallogenic Region, Yanbian Area. Master’s Thesis, Jilin University, Changchun, China, 2013. (In Chinese with English abstract). [Google Scholar]
- Sun, Z.M.; Ren, Y.S.; Ju, N.; Zhao, H.L.; Chen, C.; Sun, Y.C. Superimposed mineralization of the Tianbaoshan metallogenic region in Yanbian area (eastern Jilin Province), northeastern China: Indicated by the isotopic dating. Acta Petrol. Sin. 2014, 30, 2081–2091, (In Chinese with English abstract). [Google Scholar]
- Yang, Q.; Ren, Y.S.; Ju, N.; Zhang, B.; Chen, C.; Sun, Z.M. Geochronology and geochemistry of the metallogenic intrusion in the Xinxing lead-zinc (silver) deposit in the Tianbaoshan ore concentration area, Yanbian Prefecture. Acta Petrol. Mineral. 2015, 34, 295–308, (In Chinese with English abstract). [Google Scholar]
- Yang, Q.; Ren, Y.S.; Sun, Z.M.; Hao, Y.J.; Zhang, B.; Sun, X.H.; Lu, S.Y. Geochronologic evidence of Late Paleozoic magmatic-hydrothermal mineralization in Tianbaoshan metallogenic region, Yanbian area: A case study of the Xinxing lead-zinc (silver) deposit. Acta Petrol. Sin. 2018, 34, 3153–3166, (In Chinese with English abstract). [Google Scholar]
- Zhang, Y.; Xing, S.W.; Zhang, Z.J.; Ma, Y.B.; Wang, Y.; Ding, J.H.; Yu, Z.T.; Li, C.; Zhang, B. Genesis of the Tianbaoshan Polymetallic Ore District, Yanbian, NE China: Constraints from Geochronology and Isotopic Analysis. Resour. Geol. 2017, 67, 300–315. [Google Scholar] [CrossRef]
- Polat, A.; Hofmann, A.W.; Rosing, M.T. Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: Geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem. Geol. 2002, 184, 231–254. [Google Scholar] [CrossRef]
- Liu, S.; Hu, R.Z.; Gao, S.; Feng, C.X.; Qi, L.; Zhong, H.; Xiao, T.F.; Qi, Y.Q.; Wang, T.; Coulson, I.M. Zircon U–Pb geochronology and major, trace elemental and Sr–Nd–Pb isotopic geochemistry of mafic dykes in western Shandong Province, east China: Constrains on their petrogenesis and geodynamic significance. Chem. Geol. 2008, 255, 329–345. [Google Scholar] [CrossRef]
- Spera, F.J.; Bohrson, W.A. Energy-Constrained Open-System Magmatic Processes I: General Model and Energy-Constrained Assimilation and Fractional Crystallization (EC-AFC) Formulation. J. Petrol. 2001, 42, 999–1018. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks; Blackwell Scientific: Oxford, UK, 1985. [Google Scholar]
- Fitton, J.G.; James, D.; Kempton, P.D.; Ormerod, D.S.; Leeman, W.P. The role of lithospheric mantle in the generation of late Cenozoic basic magmas in the western United States. J. Petrol. 1988, 1, 331–349. [Google Scholar] [CrossRef]
- Thompson, R.N.; Morrison, M.A. Asthenospheric andlower-lithospheric mantle contributions to continental extensional magmatism: An example from the British Tertiary Province. Chem. Geol. 1988, 68, 1–15. [Google Scholar] [CrossRef]
- McCulloch, M.T.; Gamble, J.A. Geochemical and geodynamicai constraints on subduction zone magmatism. Earth Planet. Sci. Lett. 1991, 102, 358–374. [Google Scholar] [CrossRef]
- Ridolfi, F.; Renzulli, A.; Puerini, M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib. Mineral. Petrol. 2010, 160, 45–66. [Google Scholar] [CrossRef]
- Botcharnikov, R.E.; Almeev, R.R.; Koepke, J.; Holtz, F. Phase Relations and Liquid Lines of Descent in Hydrous Ferrobasalt—Implications for the Skaergaard Intrusion and Columbia River Flood Basalts. J. Petrol. 2008, 49, 1687–1727. [Google Scholar] [CrossRef]
- Feng, G.Y.; Liu, S.; Feng, C.X.; Jia, D.C.; Zhong, H.; Yu, X.F.; Qi, Y.Q.; Wang, T. Zircon U–Pb age, Sr–Nd–Hf isotope geochemistry and the petrogenesis of the ultramafic pluton in Hongqiling, Jilin Province. Acta Petrol. Sin. 2011, 27, 1594–1606, (In Chinese with English abstract). [Google Scholar]
- Johnson, K.T.M. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib. Mineral. Petr. 1998, 133, 60–68. [Google Scholar] [CrossRef]
- McKenzie, D.P.; O’Nions, R.K. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. J. Petrol. 1991, 32, 1021–1091. [Google Scholar] [CrossRef]
- Yang, Q.; Ren, Y.S.; Hao, Y.J.; Wang, B.; Sun, Z.M.; Li, J.M. Ore fluid, geochronology and tectonic setting of mesothermal gold metallogeny in southeastern Jilin Province, Northeast China: A case study of the Shajingou gold deposit. Ore Geol. Rev. 2019, 109, 229–252. [Google Scholar] [CrossRef]
- Hanyu, T.; Tatsumi, Y.; Nakai, S.; Chang, Q.; Miyazaki, T.; Sato, K.; Tani, K.; Shibata, T.; Yoshida, T. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25Myr: Constraints from geochemistry. Geochem. Geophys. Geosyst. 2006, 7, 1–29. [Google Scholar] [CrossRef]
- Pearce, J.A.; Peate, D.W. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annu. Rev. Earth Plant. Sci. 1995, 23, 251–285. [Google Scholar] [CrossRef]
- Wu, F.Y.; Zhang, X.Z.; Ma, Z.H.; Sun, D.Y. Piemontite-bearing chert in central Jilin: Characterization and implication. Geol. B China 2003, 22, 391–396, (In Chinese with English abstract). [Google Scholar]
- Li, C.D.; Zhang, F.Q.; Miao, L.C.; Xie, H.Q.; Xu, Y.W. Zircon SHRIMP geochronology and geochemistry of Late Permian high-Mg andesites in Seluohe area, Jilin Province, China. Acta Petrol. Sin. 2007, 23, 767–776, (In Chinese with English abstract). [Google Scholar]
- Yu, Q.; Ge, W.C.; Yang, H.; Zhao, G.C.; Zhang, Y.L.; Su, L. Petrogenesis of late Paleozoic volcanic rocks from the Daheshen Formation in Central Jilin Province, NE China, and its tectonic implications: Constraints from geochronology, geochemistry and Sr–Nd–Hf Isotopes. Lithos 2014, 192–195, 116–131. [Google Scholar] [CrossRef]
- Song, Z.G.; Han, Z.Z.; Gao, L.H.; Geng, H.Y.; Li, X.P.; Meng, F.X.; Han, M.; Zhong, W.J.; Li, J.J.; Du, Q.X.; et al. Permo-Triassic evolution of the southern margin of the Central Asian Orogenic Belt revisited: Insights from Late Permian igneous suite in the Daheishan Horst, NE China. Gondwana Res. 2018, 56, 23–50. [Google Scholar] [CrossRef]
- Bailey, J.C. Geochemical criteria for a refined tectonic discrimination of orogenic andesites. Chem. Geol. 1981, 32, 139–154. [Google Scholar] [CrossRef]
- Pearce, J.A. Role of the sub-continental lithosphere in magma genesis at active continental margins. In Continental Basalts and Mantle Xenoliths; Hawkesworth, C.J., Norry, M.J., Eds.; Shiva Publications: Nantwich, UK, 1983; pp. 230–249. [Google Scholar]
- Shen, Y.J.; Chen, B.; Li, J.Y.; Sun, J.L.; Zhao, C.J.; Zheng, T.; Liu, J.L. Geochemical characteristics, petrogenesis and geological significance of early Triassic high magnesium diorite in central Jilin province. J. Heilongjiang Univ. Sci. Tech. 2020, 30, 481–489, (In Chinese with English abstract). [Google Scholar]
- Yuan, L.L.; Zhang, X.H.; Xue, F.H.; Lu, Y.H.; Zong, K.Q. Late Permian high-Mg andesite and basalt association from northern Liaoning, North China: Insights into the final closure of the Paleo-Asian ocean and the orogen–craton boundary. Lithos 2016, 258, 58–76. [Google Scholar] [CrossRef]
- Jing, Y.; Ge, W.C.; Dong, Y.; Yang, H.; Ji, Z.; Bi, J.H.; Zhou, H.Y.; Xing, D.H. Early–Middle Permian southward subduction of the eastern Paleo-Asian Ocean: Constraints from geochronology and geochemistry of intermediate-acidic volcanic rocks in the northern margin of the North China Craton. Lithos 2020, 364–365, 105491. [Google Scholar] [CrossRef]
Sample No. | Th (ppm) | U (ppm) | Th/U | Isotopic Ratios | Ages (Ma) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
207Pb/206Pb | 207Pb/235U | 206Pb/238U | Rho | 207Pb/206Pb | 207Pb/235U | 206Pb/238U | D% | ||||||||||
Ratio | 1σ | Ratio | 1σ | Ratio | 1σ | Ages | 1σ | Ages | 1σ | Ages | 1σ | ||||||
91500 | 25.43 | 73.44 | 0.35 | 0.07298 | 0.00203 | 1.80552 | 0.0503 | 0.17949 | 0.00247 | 1013.5 | 55.32 | 1047.5 | 18.21 | 1064.2 | 13.51 | ||
17HTP-6-1 | 731.41 | 490.78 | 1.49 | 0.05321 | 0.00146 | 0.30323 | 0.00838 | 0.04134 | 0.00054 | 0.30 | 338 | 39 | 269 | 7 | 261 | 3 | −23.2 |
17HTP-6-2 | 247.62 | 339.2 | 0.73 | 0.05261 | 0.00184 | 0.30577 | 0.01061 | 0.04216 | 0.00059 | 0.31 | 312 | 53 | 271 | 8 | 266 | 4 | −15 |
17HTP-6-3 | 588.6 | 433.1 | 1.36 | 0.0536 | 0.0016 | 0.30664 | 0.00915 | 0.0415 | 0.00055 | 0.31 | 354 | 43 | 272 | 7 | 262 | 3 | −26.6 |
17HTP-6-4 | 963.01 | 1048.82 | 0.92 | 0.05241 | 0.00112 | 0.30445 | 0.00668 | 0.04214 | 0.00053 | 0.30 | 303 | 28 | 270 | 5 | 266 | 3 | −12.6 |
17HTP-6-5 | 121.86 | 166.11 | 0.73 | 0.05225 | 0.00261 | 0.30856 | 0.0152 | 0.04284 | 0.00068 | 0.31 | 296 | 83 | 273 | 12 | 270 | 4 | −9 |
91500 | 25.04 | 72.54 | 0.35 | 0.07711 | 0.00185 | 1.90225 | 0.04605 | 0.17895 | 0.00238 | 1124.1 | 46.98 | 1081.9 | 16.11 | 1061.2 | 13.02 | ||
17HTP-6-7 | 584.77 | 466.38 | 1.25 | 0.05146 | 0.00323 | 0.29709 | 0.01832 | 0.04188 | 0.00076 | 0.30 | 261 | 108 | 264 | 14 | 264 | 5 | 1.1 |
17HTP-6-8 | 376.44 | 438.1 | 0.86 | 0.053 | 0.00166 | 0.31493 | 0.00983 | 0.0431 | 0.00058 | 0.31 | 329 | 46 | 278 | 8 | 272 | 4 | −17.6 |
17HTP-6-9 | 709.47 | 978.6 | 0.72 | 0.05459 | 0.00087 | 0.48771 | 0.00823 | 0.0648 | 0.00078 | 0.49 | 395 | 18 | 403 | 6 | 405 | 5 | 2.4 |
17HTP-6-10 | 216.3 | 460.32 | 0.47 | 0.05283 | 0.00217 | 0.30047 | 0.01223 | 0.04126 | 0.00061 | 0.30 | 322 | 65 | 267 | 10 | 261 | 4 | −19.3 |
91500 | 25.28 | 73.51 | 0.34 | 0.07409 | 0.00178 | 1.83155 | 0.04457 | 0.17932 | 0.00238 | 1043.8 | 47.74 | 1056.8 | 15.98 | 1063.2 | 13.03 | ||
17HTP-6-12 | 155.87 | 278.2 | 0.56 | 0.05127 | 0.00212 | 0.30959 | 0.01266 | 0.04379 | 0.00065 | 0.31 | 253 | 67 | 274 | 10 | 276 | 4 | 9.4 |
17HTP-6-14 | 255.06 | 234.78 | 1.09 | 0.05276 | 0.00218 | 0.30596 | 0.01253 | 0.04206 | 0.00062 | 0.31 | 318 | 66 | 271 | 10 | 266 | 4 | −17 |
17HTP-6-15 | 223.78 | 234.2 | 0.96 | 0.05216 | 0.00182 | 0.3109 | 0.01079 | 0.04323 | 0.0006 | 0.31 | 292 | 54 | 275 | 8 | 273 | 4 | −6.8 |
91500 | 26.50 | 76.28 | 0.35 | 0.07477 | 0.00212 | 1.84462 | 0.05233 | 0.17891 | 0.00251 | 1062.4 | 55.92 | 1061.5 | 18.68 | 1061 | 13.72 | ||
17HTP-6-16 | 155.47 | 314.83 | 0.49 | 0.05257 | 0.00177 | 0.30928 | 0.0104 | 0.04266 | 0.00059 | 0.31 | 310 | 51 | 274 | 8 | 269 | 4 | −13.5 |
17HTP-6-17 | 812.69 | 1143.95 | 0.71 | 0.05409 | 0.00195 | 0.37363 | 0.0134 | 0.05009 | 0.00071 | 0.37 | 375 | 55 | 322 | 10 | 315 | 4 | −16.3 |
17HTP-6-18 | 256.49 | 316.65 | 0.81 | 0.05226 | 0.00149 | 0.30454 | 0.00874 | 0.04226 | 0.00056 | 0.30 | 297 | 41 | 270 | 7 | 267 | 3 | −10.3 |
17HTP-6-20 | 314.09 | 291.06 | 1.08 | 0.05211 | 0.0015 | 0.31206 | 0.009 | 0.04343 | 0.00058 | 0.31 | 290 | 42 | 276 | 7 | 274 | 4 | −5.7 |
91500 | 24.56 | 71.58 | 0.34 | 0.07477 | 0.00187 | 1.84903 | 0.0468 | 0.17932 | 0.00242 | 1062.3 | 49.56 | 1063.1 | 16.68 | 1063.3 | 13.24 |
Sample | 17HTP-6-1 | 17HTP-6-2 | 17HTP-6-3 | 17HTP-6-4 | 17HTP-6-5 | OU-6 | GBPG-1 |
---|---|---|---|---|---|---|---|
Major elements (wt.%) | |||||||
SiO2 | 43.96 | 45.19 | 46.57 | 45.13 | 45.62 | ||
Al2O3 | 13.34 | 13.57 | 14.72 | 13.42 | 13.78 | ||
Fe2O3t | 11.37 | 11.02 | 10.05 | 11.07 | 10.65 | ||
MgO | 16.58 | 16.03 | 13.30 | 15.68 | 15.08 | ||
CaO | 6.29 | 6.09 | 6.47 | 6.28 | 6.12 | ||
Na2O | 1.37 | 1.53 | 2.31 | 1.71 | 1.80 | ||
K2O | 0.43 | 0.48 | 0.91 | 0.50 | 0.61 | ||
MnO | 0.25 | 0.22 | 0.19 | 0.17 | 0.22 | ||
P2O5 | 0.23 | 0.22 | 0.25 | 0.22 | 0.23 | ||
TiO2 | 0.95 | 0.90 | 1.04 | 0.96 | 0.95 | ||
LOI | 5.14 | 4.93 | 4.04 | 4.78 | 4.76 | ||
Total | 99.90 | 100.19 | 99.84 | 99.92 | 99.81 | ||
Trace elements (ppm) | |||||||
Li | 99.7 | 91.2 | 77.2 | 80.9 | 86.9 | 95.2 | 20.1 |
Be | 0.85 | 0.83 | 1.03 | 0.84 | 0.87 | 2.72 | 0.82 |
Sc | 18.7 | 17.8 | 20.7 | 18.7 | 18.5 | 22.2 | 15.4 |
V | 189 | 183 | 211 | 199 | 193 | 127 | 98.1 |
Cr | 1326 | 1186 | 916 | 1226 | 1095 | 71.8 | 179 |
Co | 63.4 | 59.5 | 53.3 | 61.8 | 56.2 | 29.4 | 21.0 |
Ni | 562 | 506 | 351 | 486 | 464 | 38.0 | 57.0 |
Cu | 10.5 | 11.7 | 13.3 | 15.8 | 11.3 | 45.0 | 27.4 |
Zn | 138 | 115 | 105 | 102 | 110 | 107 | 83.7 |
Ga | 17.8 | 16.7 | 18.4 | 17.1 | 17.1 | 23.8 | 19.4 |
As | 335 | 219 | 166 | 82.1 | 210 | 13.0 | 1.26 |
Rb | 18.7 | 17.7 | 44.8 | 21.5 | 23.9 | 124 | 60.9 |
Sr | 366 | 402 | 542 | 391 | 459 | 139 | 360 |
Y | 11.9 | 11.7 | 13.7 | 12.7 | 12.3 | 28.5 | 19.1 |
Zr | 70.9 | 71.3 | 79.8 | 71.1 | 73.8 | 174 | 235 |
Nb | 2.29 | 2.29 | 2.64 | 2.32 | 2.41 | 14.7 | 10.1 |
Mo | 0.48 | 0.40 | 1.20 | 1.03 | 0.48 | 0.53 | 1.75 |
Ag | 0.06 | 0.09 | 0.14 | 0.10 | 0.06 | 0.22 | 0.19 |
Cd | 0.07 | 0.07 | 0.10 | 0.09 | 0.06 | 0.1 | 0.09 |
Sn | 0.80 | 0.60 | 0.75 | 0.69 | 0.74 | 2.57 | 0.58 |
Sb | 4.26 | 3.73 | 2.88 | 2.92 | 3.63 | 0.53 | 0.06 |
Cs | 2.78 | 2.19 | 5.03 | 3.14 | 2.66 | 7.68 | 0.31 |
Ba | 66.1 | 77.8 | 182 | 88.3 | 106 | 495 | 894 |
La | 9.83 | 9.52 | 11.6 | 9.57 | 10.3 | 32.0 | 48.6 |
Ce | 22.7 | 22.0 | 26.1 | 22.3 | 23.2 | 70.5 | 91.2 |
Pr | 2.66 | 2.59 | 3.03 | 2.67 | 2.72 | 7.91 | 11.1 |
Nd | 12.1 | 11.9 | 13.9 | 12.3 | 12.5 | 30.5 | 41.1 |
Sm | 2.66 | 2.57 | 2.99 | 2.70 | 2.67 | 5.97 | 6.39 |
Eu | 0.92 | 0.91 | 1.11 | 0.93 | 0.94 | 1.41 | 1.85 |
Gd | 2.44 | 2.38 | 2.81 | 2.55 | 2.52 | 5.27 | 4.69 |
Tb | 0.34 | 0.33 | 0.39 | 0.36 | 0.35 | 0.81 | 0.59 |
Dy | 1.98 | 1.93 | 2.26 | 2.10 | 2.02 | 4.93 | 3.08 |
Ho | 0.39 | 0.38 | 0.44 | 0.41 | 0.40 | 1.01 | 0.65 |
Er | 1.04 | 1.01 | 1.18 | 1.07 | 1.06 | 2.86 | 1.95 |
Tm | 0.14 | 0.14 | 0.16 | 0.15 | 0.14 | 0.43 | 0.29 |
Yb | 0.91 | 0.89 | 1.03 | 0.95 | 0.93 | 2.89 | 1.96 |
Lu | 0.14 | 0.13 | 0.15 | 0.14 | 0.14 | 0.44 | 0.30 |
Hf | 1.71 | 1.64 | 1.92 | 1.71 | 1.75 | 4.73 | 5.80 |
Ta | 0.13 | 0.13 | 0.15 | 0.13 | 0.14 | 1.04 | 0.40 |
W | 0.23 | 0.95 | 0.33 | 0.15 | 0.21 | 1.11 | 0.16 |
Tl | 0.16 | 0.13 | 0.32 | 0.17 | 0.17 | 0.52 | 0.28 |
Pb | 2.53 | 2.45 | 4.18 | 3.02 | 2.05 | 29.3 | 13.9 |
Bi | 0.09 | 0.06 | 0.06 | 0.06 | 0.05 | 0.27 | 0.01 |
Th | 0.58 | 0.58 | 0.68 | 0.57 | 0.64 | 11.5 | 11.5 |
U | 0.58 | 0.41 | 0.35 | 0.39 | 0.42 | 1.97 | 0.89 |
Sample | 176Yb/177Hf | 2σ | 176Lu/177Hf | 2σ | 176Hf/177Hf | 2σ | Hfi | εHf(0) | εHf(t) | TDM (Ma) | T2DM (Ma) | fLu/Hf | t(Ma) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17HTP-6-1 | 0.037124 | 0.000478 | 0.001574 | 0.000022 | 0.282907 | 0.000017 | 0.282900 | 4.8 | 10.3 | 496 | 630 | −0.95 | 261 |
17HTP-6-2 | 0.041057 | 0.000420 | 0.001714 | 0.000015 | 0.282893 | 0.000035 | 0.282884 | 4.3 | 9.8 | 519 | 663 | −0.95 | 266 |
17HTP-6-3 | 0.090221 | 0.000406 | 0.003196 | 0.000024 | 0.282813 | 0.000023 | 0.282798 | 1.5 | 6.7 | 660 | 860 | −0.90 | 262 |
17HTP-6-4 | 0.124537 | 0.001427 | 0.004711 | 0.000026 | 0.282851 | 0.000023 | 0.282827 | 2.8 | 7.9 | 631 | 788 | −0.86 | 270 |
17HTP-6-5 | 0.027130 | 0.000650 | 0.000996 | 0.000023 | 0.282875 | 0.000014 | 0.282870 | 3.6 | 9.3 | 535 | 696 | −0.97 | 264 |
17HTP-6-6 | 0.024001 | 0.000850 | 0.000855 | 0.000031 | 0.282844 | 0.000017 | 0.282840 | 2.5 | 8.4 | 576 | 759 | −0.97 | 272 |
17HTP-6-7 | 0.110644 | 0.001535 | 0.004020 | 0.000040 | 0.282878 | 0.000020 | 0.282858 | 3.7 | 8.8 | 577 | 724 | −0.88 | 261 |
17HTP-6-8 | 0.028720 | 0.000445 | 0.001058 | 0.000019 | 0.282866 | 0.000017 | 0.282861 | 3.3 | 9.2 | 547 | 708 | −0.97 | 276 |
17HTP-6-9 | 0.144028 | 0.000886 | 0.004936 | 0.000015 | 0.282869 | 0.000022 | 0.282845 | 3.4 | 8.4 | 606 | 751 | −0.85 | 266 |
17HTP-6-10 | 0.071030 | 0.000655 | 0.002667 | 0.000033 | 0.282912 | 0.000022 | 0.282898 | 4.9 | 10.5 | 505 | 627 | −0.92 | 273 |
17HTP-6-11 | 0.035574 | 0.000840 | 0.001289 | 0.000033 | 0.282957 | 0.000016 | 0.282950 | 6.5 | 12.2 | 422 | 511 | −0.96 | 269 |
17HTP-6-12 | 0.083950 | 0.001669 | 0.003028 | 0.000054 | 0.282873 | 0.000018 | 0.282858 | 3.6 | 8.9 | 568 | 722 | −0.91 | 267 |
17HTP-6-13 | 0.049584 | 0.000355 | 0.001858 | 0.000015 | 0.282773 | 0.000018 | 0.282764 | 0.0 | 5.7 | 695 | 929 | −0.94 | 274 |
GJ-1-1 | 0.006831 | 0.000010 | 0.000295 | 0.000000 | 0.282015 | 0.000021 | |||||||
GJ-1-2 | 0.006855 | 0.000013 | 0.000296 | 0.000000 | 0.281971 | 0.000019 | |||||||
GJ-1-3 | 0.006849 | 0.000008 | 0.000296 | 0.000000 | 0.282006 | 0.000020 | |||||||
GJ-1-4 | 0.006785 | 0.000013 | 0.000296 | 0.000000 | 0.282015 | 0.000022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.; Ren, Y.; Yang, Q.; Hao, Y.; Zhao, X. Petrogenesis and Tectonic Implication of the Hongtaiping High-Mg Diorite in the Wangqing Area, NE China: Constraints from Geochronology, Geochemistry and Hf Isotopes. Minerals 2022, 12, 1002. https://doi.org/10.3390/min12081002
Lu S, Ren Y, Yang Q, Hao Y, Zhao X. Petrogenesis and Tectonic Implication of the Hongtaiping High-Mg Diorite in the Wangqing Area, NE China: Constraints from Geochronology, Geochemistry and Hf Isotopes. Minerals. 2022; 12(8):1002. https://doi.org/10.3390/min12081002
Chicago/Turabian StyleLu, Siyu, Yunsheng Ren, Qun Yang, Yujie Hao, and Xuan Zhao. 2022. "Petrogenesis and Tectonic Implication of the Hongtaiping High-Mg Diorite in the Wangqing Area, NE China: Constraints from Geochronology, Geochemistry and Hf Isotopes" Minerals 12, no. 8: 1002. https://doi.org/10.3390/min12081002
APA StyleLu, S., Ren, Y., Yang, Q., Hao, Y., & Zhao, X. (2022). Petrogenesis and Tectonic Implication of the Hongtaiping High-Mg Diorite in the Wangqing Area, NE China: Constraints from Geochronology, Geochemistry and Hf Isotopes. Minerals, 12(8), 1002. https://doi.org/10.3390/min12081002