Desorption of REEs from Halloysite and Illite: A Link to the Exploitation of Ion-Adsorption RE Ore Based on Clay Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of Halloysite and Illite
2.3. Batch Adsorption Experiments
2.3.1. Adsorption Kinetics Experiments
2.3.2. Influence of Initial pH on Adsorption
2.4. Batch Desorption Experiments
3. Results and Discussion
3.1. Characterization of Halloysite and Illite
3.1.1. XRD and SEM Analysis
3.1.2. Zeta Potential
3.1.3. Specific Surface Area
3.1.4. Buffer Performance
3.2. Adsorption Characteristics of Nd3+, Eu3+ and Lu3+ onto Halloysite and Illite
3.2.1. Adsorption Kinetics
3.2.2. Effect of pH on Adsorption Capacity
3.3. Desorption Characteristics of Nd3+, Eu3+ and Lu3+ from Halloysite and Illite
3.3.1. Influence of Adsorption pH on RE Ion Desorption
3.3.2. Influence of pH on RE Ion Desorption
3.3.3. Influence of Lixiviate Concentration on RE Ion Desorption
3.3.4. Influence of Contact Time on RE Ion Desorption
3.4. Comparison
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brown, B.; Ma, B.M.; Chen, Z.M. Developments in the processing and properties of NdFeb-type permanent magnets. J. Magn. Magn. Mater. 2002, 248, 432–440. [Google Scholar] [CrossRef]
- Qiao, J.; Zhao, J.; Liu, Q.; Xia, Z. Recent advances in solid-state LED phosphors with thermally stable luminescence. J. Rare Earth 2019, 37, 565–572. [Google Scholar] [CrossRef]
- Zhang, N.Q.; Yan, H.; Li, L.; Wu, R.; He, H. Use of rare earth elements in single-atom site catalysis: A critical review—Commemorating the 100th anniversary of the birth of Academician Guangxian Xu. J. Rare Earth 2021, 39, 233–242. [Google Scholar] [CrossRef]
- Bohlen, J.; Nürnberg, M.; Senn, J.W.; Letzig, D.; Agnew, S.R. The texture and anisotropy of magnesium–zinc–rare earth alloy sheets. Acta Mater. 2007, 55, 2101–2112. [Google Scholar] [CrossRef] [Green Version]
- Chi, R.A.; Tian, J.; Li, Z.J.; Peng, C.; Wu, Y.X.; Li, S.R.; Wang, C.W.; Zhou, Z.A. Existing State and Partitioning of Rare Earth on Weathered Ores. J. Rare Earth 2005, 23, 756. [Google Scholar]
- Braun, J.J.; Pagel, M.; Herbilln, A.; Rosin, C. Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: A mass balance study. Geochim. Cosmochim. Acta 1993, 57, 4419–4434. [Google Scholar] [CrossRef]
- Price, R.C.; Gray, C.M.; Wilson, R.E.; Frey, F.A.; Taylor, S.R. The effects of weathering on rare earth element, Y and Ba abundances in Tertiary basalts from southeastern Australia. Chem. Geol. 1991, 93, 245–265. [Google Scholar] [CrossRef]
- Nesbitt, H.W. Mobility and fractionation of rare earth elements during weathering of granodiorite. Nature 1979, 279, 206–210. [Google Scholar] [CrossRef]
- Duddy, L.R. Redistribution and fractionation of rare earth and other elements in a weathering profile. Chem. Geol. 1980, 30, 363–381. [Google Scholar] [CrossRef]
- Barnett, M.J.; Palumbo-Roe, B.; Gregory, S.P. Comparison of Heterotrophic Bioleaching and Ammonium Sulfate Ion Exchange Leaching of Rare Earth Elements from a Madagascan Ion-Adsorption Clay. Minerals 2018, 8, 236. [Google Scholar] [CrossRef] [Green Version]
- Chi, R.A.; Tian, J. Review of Weathered Crust Rare Earth Ore. J. Chin. Rare Earth Soc. 2007, 25, 641–650. [Google Scholar]
- Pebdani, M.H.; Miller, R.E. Molecular dynamics simulation of pull-out halloysite nanotube from polyurethane matrix. Adv. Mech. Eng. 2021, 13, 16878140211044663. [Google Scholar] [CrossRef]
- Jin, J.; Assemi, S.; Asgar, H.; Gadikota, G.; Tran, T.; Nguyen, W.; McLennan, J.D.; Miller, J.D. Characterization of Natural Consolidated Halloysite Nanotube Structures. Minerals 2021, 11, 1308. [Google Scholar] [CrossRef]
- Srodon, J. X-ray powder diffraction identification of illitic materials. Clay Clay Min. 1984, 5, 337–349. [Google Scholar] [CrossRef]
- Tombácz, E. Adsorption from Electrolyte Solutions. In Adsorption: Theory, Modeling, and Analysis; Tóth, J., Ed.; Marcel Dekker: New York, NY, USA, 2002; pp. 711–742. [Google Scholar]
- Gładysz-Płaska, A.; Majdan, M.; Grabias, E. Adsorption of La, Eu and Lu on raw and modified red clay. J. Radioanal. Nucl. Chem. 2014, 301, 33–40. [Google Scholar] [CrossRef]
- Iannicelli-Zubiani, E.M.; Cristiani, C.; Dotelli, G.; Gallo Stampino, P.; Pelosato, R.; Mesto, E.; Schingaro, E.; Lacalamita, M. Use of natural clays as sorbent materials for rare earth ions: Materials characterization and set up of the operative parameters. Waste Manag. 2015, 46, 546–556. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Bhatnagar, A.; Lima, E.C. Adsorption of rare earth metals: A review of recent literature. J. Mol. Liq. 2016, 221, 954–962. [Google Scholar] [CrossRef]
- Gao, Y.H.; Fan, Z.C.; Xu, H.; Wang, L. An experimental study of the characteristics of REE adsorption of kaolinite and halloysite-7A. Acta Petrol. Et Miner. 2018, 37, 161–168. [Google Scholar]
- Yang, M.; Liang, X.; Ma, L.; Huang, J.; He, H.; Zhu, J. Adsorption of REEs on kaolinite and halloysite: A link to the REE distribution on clays in the weathering crust of granite. Chem. Geol. 2019, 525, 210–217. [Google Scholar] [CrossRef]
- Alshameri, A.; He, H.; Xin, C.; Zhu, J.; Xinghu, W.; Zhu, R.; Wang, H. Understanding the role of natural clay minerals as effective adsorbents and alternative source of rare earth elements: Adsorption operative parameters. Hydrometallurgy 2019, 185, 149–161. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, L.; Huang, K.J.; Lei, Z.Y.; Xie, S.Y. Quantitative Analysis of Kaolinite, Illite and Montmorillonite by X-ray Diffraction. Guizhou Geol. 2021, 38, 71–78. [Google Scholar]
- Chen, Y.; Zhu, C.; Sun, Y.; Duan, H.; Ye, W.; Wu, D. Adsorption of La(III) onto GMZ bentonite: Effect of contact time, bentonite content, pH value and ionic strength. J. Radioanal. Nucl. Chem. 2012, 292, 1339–1347. [Google Scholar] [CrossRef]
- Wu, D.B.; Zhu, C.; Chen, Y.; Zhu, B.; Yang, Y.; Wang, Q.; Ye, W. Preparation, characterization and adsorptive study of rare earth ions using magnetic GMZ bentonite. Appl.Clay Sci. 2012, 62, 87–93. [Google Scholar] [CrossRef]
- Alshameri, A.; He, H.; Zhu, J.; Xi, Y.; Zhu, R.; Ma, L.; Tao, Q. Adsorption of ammonium by different natural clay minerals: Characterization, kinetics and adsorption isotherms. Appl. Clay Sci. 2018, 159, 83–93. [Google Scholar] [CrossRef]
- Alshameri, A.; Ibrahim, A.; Assabri, A.M.; Lei, X.; Wang, H.; Yan, C. The investigation into the ammonium removal performance of Yemeni natural zeolite: Modification, ion exchange mechanism, and thermodynamics. Powder Technol. 2014, 258, 20–31. [Google Scholar] [CrossRef]
- Lagergren, S. Zur theorie der sogenannten adsorption geloster stoffe. K. Sven. Vetenskapsakad. Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; Mckay, G.J.P.B. Pseudo-second order model for sorption processes. J Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Zhou, F.; Huang, S.H.; Liu, X.; Feng, J.; Liu, Q.; Wang, Z.W.; Li, C.C.; Xu, Y.L. Adsorption kinetics and thermodynamics of rare earth on Montmorillonite modified by sulfuric acid. Colloid. Surf. A Physicochem. Eng. Asp. 2021, 627, 127063. [Google Scholar]
- Wang, Y.Q.; Zhang, Z.B.; Li, Q.; Liu, Y.H. Adsorption of uranium from aqueous solution using HDTMA+-pillared bentonite: Isotherm, kinetic and thermodynamic aspects. J. Radioanal. Nucl. Chem. 2012, 293, 231–239. [Google Scholar] [CrossRef]
- Peng, C.; Zhong, Y.; Wang, G.; Min, F.; Qin, L. Atomic-level insights into the adsorption of rare earth Y(OH)3−nn+ (n = 1–3) ions on kaolinite surface. Appl. Surf. Sci. 2019, 469, 357–367. [Google Scholar] [CrossRef]
- Wang, G.S.; Lai, Y.M.; Peng, C.L. Adsorption of rare earth yttrium and ammonium ions on kaolinite surfaces: A DFT study. Theor. Chem. Acc. 2018, 137, 53. [Google Scholar] [CrossRef]
- Qiu, S.; Qiu, T.S.; Yan, H.S.; Long, Q.B.; Wu, H.; Li, X.B.; Zhu, D.M. Investigation of protonation and deprotonation processes of kaolinite and its effect on the adsorption stability of rare earth elements. Colloid. Surf. A. 2022, 642, 128596. [Google Scholar] [CrossRef]
- Qiu, S.; Wu, H.; Yan, H.S.; Li, X.B.; Zhou, X.W.; Qiu, T.S. Theoretical investigation of hydrated [Lu(OH)2]+ adsorption on kaolinite(0 0 1) surface with DFT calculations. Appl. Surf. Sci. 2021, 565, 150473. [Google Scholar] [CrossRef]
- Moldoveanu, G.A.; Papangelakis, V.G. Recovery of rare earth elements adsorbed on clay minerals: II. Leaching with ammonium sulfate. Hydrometallurgy 2013, 131, 158–166. [Google Scholar] [CrossRef]
Clays | SBET (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
Halloysite | 24.87 | 0.1854 | 29.81 |
Illite | 6.78 | 0.0423 | 24.94 |
Species | Pseudo-First Order | Pseudo-Second Order | ||||
---|---|---|---|---|---|---|
qe (mg/g) | k1 (min−1) | R2 | qe (mg/g) | k2 (mg/g/min) | R2 | |
Halloysite | ||||||
Nd | 0.018 | 0.0133 | 0.903 | 0.501 | 5.19 | 0.999 |
Eu | 0.011 | 0.0129 | 0.545 | 0.488 | 11.37 | 0.999 |
Lu | 0.018 | 0.0156 | 0.919 | 0.542 | 5.38 | 0.999 |
Illite | ||||||
Nd | 0.075 | 0.019 | 0.963 | 0.456 | 1.42 | 0.999 |
Eu | 0.069 | 0.02 | 0.922 | 0.473 | 1.66 | 0.999 |
Lu | 0.081 | 0.017 | 0.942 | 0.625 | 1.40 | 0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, S.; Yan, H.; Hong, B.; Long, Q.; Xiao, J.; Li, F.; Tong, L.; Zhou, X.; Qiu, T. Desorption of REEs from Halloysite and Illite: A Link to the Exploitation of Ion-Adsorption RE Ore Based on Clay Species. Minerals 2022, 12, 1003. https://doi.org/10.3390/min12081003
Qiu S, Yan H, Hong B, Long Q, Xiao J, Li F, Tong L, Zhou X, Qiu T. Desorption of REEs from Halloysite and Illite: A Link to the Exploitation of Ion-Adsorption RE Ore Based on Clay Species. Minerals. 2022; 12(8):1003. https://doi.org/10.3390/min12081003
Chicago/Turabian StyleQiu, Sen, Huashan Yan, Bengen Hong, Qibang Long, Jie Xiao, Fujian Li, Lichao Tong, Xiaowen Zhou, and Tingsheng Qiu. 2022. "Desorption of REEs from Halloysite and Illite: A Link to the Exploitation of Ion-Adsorption RE Ore Based on Clay Species" Minerals 12, no. 8: 1003. https://doi.org/10.3390/min12081003
APA StyleQiu, S., Yan, H., Hong, B., Long, Q., Xiao, J., Li, F., Tong, L., Zhou, X., & Qiu, T. (2022). Desorption of REEs from Halloysite and Illite: A Link to the Exploitation of Ion-Adsorption RE Ore Based on Clay Species. Minerals, 12(8), 1003. https://doi.org/10.3390/min12081003