A Comparison of the Fine-Grinding Performance between Cylpebs and Ceramic Balls in the Wet Tumbling Mill
Abstract
:1. Introduction
2. Theoretical Background
3. Materials and Methods
3.1. Materials
3.2. Grinding Media
3.3. Experimental Methods
3.3.1. Media Charge Conditions
3.3.2. Experimental Details
4. Results and Discussion
4.1. The Effect of the Media Size on the Fine Grinding of Tungsten Ores
4.2. The Effect of the Total Mass of Media on the Fine Grinding of Tungsten Ores
4.3. The Effect of the Total Number of Media on the Fine Grinding of Tungsten Ores
4.4. The Effect of the Total Surface Area of Media on the Fine Grinding of Tungsten Ores
4.5. The Overall Relationship between the Optimum Composition and Various Parameters
4.6. A New Approach to Using Ceramic Balls Instead of Cylpebs as Fine-Grinding Media
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jeswiet, J.; Szekeres, A. Energy Consumption in Mining Comminution. Procedia CIRP 2016, 48, 140–145. [Google Scholar] [CrossRef]
- Cuhadaroglu, D.; Samanli, S.; Kizgut, S. The Effect of Grinding Media Shape on the Specific Rate of Breakage. Part. Part. Syst. Charact. 2008, 25, 465–473. [Google Scholar] [CrossRef]
- Oner, M. Ball Size Rationing Affects Clinker Grinding. World Cem. Res. 1999, 30, 101–106. [Google Scholar]
- Li, C.; Gao, Z. Effect of grinding media on the surface property and flotation behavior of scheelite particles. Powder Technol. 2017, 322, 386–392. [Google Scholar] [CrossRef]
- Corin, K.; Song, Z.; Wiese, J.; O’Connor, C. Effect of using different grinding media on the flotation of a base metal sulphide ore. Miner. Eng. 2018, 126, 24–27. [Google Scholar] [CrossRef]
- Shi, F. Comparison of grinding media—Cylpebs versus balls. Miner. Eng. 2004, 17, 1259–1268. [Google Scholar] [CrossRef]
- Ipek, H. The effects of grinding media shape on breakage rate. Miner. Eng. 2006, 19, 91–93. [Google Scholar] [CrossRef]
- Qian, H.Y.; Kong, Q.G.; Zhang, B.L. The effects of grinding media shapes on the grinding kinetics of cement clinker in ball mill. Powder Technol. 2013, 235, 422–425. [Google Scholar] [CrossRef]
- Wu, C.; Liao, N.; Shi, G.; Zhu, L. Breakage Characterization of Grinding Media Based on Energy Consumption and Particle Size Distribution: Hexagons versus Cylpebs. Minerals 2018, 8, 527. [Google Scholar] [CrossRef]
- Nkwanyana, S.; Loveday, B. Addition of pebbles to a ball-mill to improve grinding efficiency. Miner. Eng. 2017, 103–104, 72–77. [Google Scholar] [CrossRef]
- Nkwanyana, S.; Loveday, B. Addition of pebbles to a ball-mill to improve grinding efficiency—Part 2. Miner. Eng. 2018, 128, 115–122. [Google Scholar] [CrossRef]
- Lameck, N.; Kiangi, K.; Moys, M. Effects of grinding media shapes on load behaviour and mill power in a dry ball mill. Miner. Eng. 2006, 19, 1357–1361. [Google Scholar] [CrossRef]
- Lameck, N.; Moys, M. Effects of media shape on milling kinetics. Miner. Eng. 2006, 19, 1377–1379. [Google Scholar] [CrossRef]
- Fang, X.; Wu, C.; Liao, N.; Yuan, C.; Xie, B.; Tong, J. The first attempt of applying ceramic balls in industrial tumbling mill: A case study. Miner. Eng. 2022, 180, 107504. [Google Scholar] [CrossRef]
- Dong, H.; Moys, M.H. Load behavior and mill power. Int. J. Miner. Process. 2003, 69, 11–28. [Google Scholar] [CrossRef]
- Austin, L.G.; Klimpel, R.R.; Luckie, P.T. Process Engineering of Size Reduction: Ball Milling; AIME-SME: New York, NY, USA, 1984. [Google Scholar]
- Simba, K.P.; Moys, M.H. Effects of mixtures of grinding media of different shapes on milling kinetics. Miner. Eng. 2014, 61, 40–46. [Google Scholar] [CrossRef]
- Herbst, J.A.; Lo, Y.C. Grinding efficiency with balls or cones as media. Int. J. Miner. Process. 1989, 26, 141–151. [Google Scholar] [CrossRef]
- Shahbazi, B.; Jafari, M.; Parian, M.; Rosenkranz, J.; Chehreh Chelgani, S. Study on the impacts of media shapes on the performance of tumbling mills—A review. Miner. Eng. 2020, 157, 106490. [Google Scholar] [CrossRef]
- Genç, Ö. Analysis of grinding media effect on specific breakage rate function of particles in a full-scale open circuit three-compartment cement ball mill. Miner. Eng. 2015, 81, 10–17. [Google Scholar] [CrossRef]
- Ipek, H. Effect of Grinding Media Shapes on Breakage Parameters. Part. Part. Syst. Charact. 2007, 24, 229–235. [Google Scholar] [CrossRef]
- Shi, G.M.; Zhou, Y.C. The impact of SAG pebbles as media vs steel media on flotation performance of a copper sulphide ore. Can. Metall. Q. 2019, 58, 362–366. [Google Scholar] [CrossRef]
- Wu, C.; Lei, A.; Jiang, L.; Yuan, C.; Yin, Q.; Shen, T. Semi-autogenous grinding mill pebbles as a vertically stirred mill medium. Sep. Sci. Technol. 2020, 55, 2583–2592. [Google Scholar] [CrossRef]
- Orumwense, A.O. Effect of media type on regrinding with stirred mills. Min. Metall. Explor. 2006, 23, 40–44. [Google Scholar] [CrossRef]
- Deniz, V. A study on the specific rate of breakage of cement materials in a laboratory ball mill. Cem. Concr. Res. 2003, 33, 439–445. [Google Scholar] [CrossRef]
- Gupta, V.K.; Sharma, S. Analysis of ball mill grinding operation using mill power specific kinetic parameters. Adv. Powder Technol. 2014, 25, 625–634. [Google Scholar] [CrossRef]
- Man, Y.T. A Model-Based Procedure for Scale-Up of Wet, Overflow Ball Mills. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2000. [Google Scholar]
- Napier-Munn, T.J.; Morrell, S.; Morrison, R.D.; Kojovic, T. Mineral Comminution Circuits: Their Operation and Optimisation; Napier-Munn, T.J., Ed.; University of Queensland: Brisbane, Australia, 1996; p. 413. [Google Scholar]
- Erdem, A.S.; Ergün, Ş.L. The effect of ball size on breakage rate parameter in a pilot scale ball mill. Miner. Eng. 2009, 22, 660–664. [Google Scholar] [CrossRef]
- Kelsall, D.J.; Reid, K.J. The Derivation of a Mathematical Model for Breakage in a Small Continuous Wet Ball Mill; Institution of Chemical Engineers: London, UK, 1965; Volume 4, p. 14. [Google Scholar]
Constituents | WO3 | Mo | Bi | F | SO3 | Zn | K2O | TiO2 | CuO |
---|---|---|---|---|---|---|---|---|---|
Content (%) | 0.279 | 0.066 | 0.110 | 4.880 | 2.270 | 0.050 | 1.260 | 0.190 | 0.034 |
Constituents | Rb2O | Fe2O3 | SiO2 | Al2O3 | CaO | MgO | MnO | Na2O | Others |
Content (%) | 0.068 | 14.130 | 34.410 | 9.250 | 28.320 | 1.070 | 1.180 | 0.840 | 1.593 |
Grinding Media | Composition (%) | ||||||
---|---|---|---|---|---|---|---|
C | Mn | Si | Cr | P | S | Others | |
Cylpebs | 0.80 | 0.92 | 0.27 | 0.65 | 0.03 | 0.03 | 97.30 |
Grinding Media | Composition (%) | ||||||
Al2O3 | Fe2O3 | SiO2 | Others | ||||
Ceramic balls | 70.50 | 10.50 | 9.60 | 9.40 |
Grinding Media | Ceramic Balls | |||||
---|---|---|---|---|---|---|
Dimension (mm) | 25 | 21 | 17 | 15 | 14 | 10 |
Mass (g) | 30.00 | 17.50 | 9.50 | 6.50 | 5.50 | 2.05 |
Surface area (cm2) | 19.63 | 13.84 | 9.08 | 7.07 | 6.15 | 3.14 |
Specific surface (cm2/g) | 0.65 | 0.79 | 0.96 | 1.09 | 1.12 | 1.53 |
Specific density(g/cm3) | 3.70 | 3.70 | 3.70 | 3.70 | 3.70 | 3.70 |
Bulk density (g/cm3) | 2.20 | 2.20 | 2.20 | 2.20 | 2.20 | 2.20 |
Grinding Media | Cylpebs | |||||
Dimension (mm) | 14 × 16 | 12 × 12 | 10 × 10 | |||
Mass (g) | 17.6 | 9.5 | 5.4 | |||
Surface area (cm2) | 10.11 | 6.78 | 4.71 | |||
Specific surface (cm2/g) | 0.57 | 0.71 | 0.87 | |||
Specific density(g/cm3) | 7.00 | 7.00 | 7.00 | |||
Bulk density (g/cm3) | 4.40 | 4.40 | 4.40 |
Grinding Media | Ceramic Balls | |||||
---|---|---|---|---|---|---|
Dimension (mm) | 25 | 21 | 17 | 15 | 14 | 10 |
Charge volume (%) | 22.50 | 22.50 | 22.50 | 22.50 | 22.50 | 22.50 |
Number of media | 33 | 57 | 104 | 152 | 180 | 483 |
Total mass (g) | 990 | 990 | 990 | 990 | 990 | 990 |
Total surface area (cm2) | 647.63 | 783.37 | 945.67 | 1076.05 | 1107.79 | 1516.39 |
Grinding Media | Cylpebs | |||||
Dimension (mm) | 14 × 16 | 12 × 12 | 10 × 10 | |||
Charge volume (%) | 22.50 | 22.50 | 22.50 | |||
Number of media | 113 | 208 | 367 | |||
Total mass (g) | 1980 | 1980 | 1980 | |||
Total surface area (cm2) | 1137.47 | 1413.59 | 1727.00 |
Grinding Media | Ceramic Balls | ||||
Dimension (mm) | 25 | 21 | 17 | 14 | 10 |
Charge volume (%) | 45.00 | 45.00 | 45.00 | 45.00 | 45.00 |
Number of media | 66 | 113 | 208 | 360 | 966 |
Total mass (g) | 1980 | 1980 | 1980 | 1980 | 1980 |
Total surface area (cm2) | 1295.25 | 1522.22 | 1891.34 | 2215.58 | 3032.78 |
Grinding Media | Ceramic Balls | ||
Dimension (mm) | 17 | 14 | 10 |
Charge volume (%) | 45.00 | 26.05 | 29.56 |
Number of media | 208 | 208 | 208 |
Total mass (g) | 1980 | 1146 | 427 |
Total surface area (cm2) | 1891.34 | 1282.71 | 654.44 |
Grinding Media | Ceramic Balls | ||||
Dimension (mm) | 21 | 17 | 15 | 14 | 10 |
Charge volume (%) | 40.60 | 33.63 | 29.56 | 28.73 | 20.99 |
Number of media | 102 | 156 | 200 | 230 | 451 |
Total mass (g) | 1786 | 1480 | 1301 | 1264 | 924 |
Total surface area (cm2) | 1413.59 | 1413.59 | 1413.59 | 1413.59 | 1413.59 |
Grinding Media | Ceramic Balls | ||||||
---|---|---|---|---|---|---|---|
Dimension (mm) | 17 | 17 | 17 | 17 | 17 | 17 | 17 |
Charge volume (%) | 20.00 | 25.00 | 30.00 | 35.00 | 40.00 | 45.00 | 50 |
Number of media | 93 | 116 | 139 | 162 | 185 | 208 | 232 |
Total mass (g) | 844.44 | 1053.28 | 1262.12 | 1470.96 | 1679.8 | 1888.64 | 2106.56 |
Total surface area (cm2) | 840.59 | 1050.74 | 1260.89 | 1471.04 | 1681.19 | 1891.34 | 2101.49 |
Grinding Media | Cylpebs | ||||||
Dimension (mm) | 12 × 12 | 12 × 12 | 12 × 12 | 12 × 12 | 12 × 12 | 12 × 12 | 12 × 12 |
Charge volume (%) | 20.00 | 25.00 | 30.00 | 35.00 | 40.00 | 45.00 | 50 |
Number of media | 185 | 232 | 278 | 324 | 371 | 417 | 463 |
Total mass (g) | 1760 | 2200 | 2640 | 3080 | 3520 | 3960 | 4400 |
Total surface area (cm2) | 1256.08 | 1570.11 | 1884.13 | 2198.15 | 2512.17 | 2826.19 | 3140.21 |
Grinding Media | Equation (2) | Equation (4) |
---|---|---|
Cylpebs | 0.115 | 0.147 |
Ceramic balls | 0.101 | 0.123 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, N.; Wu, C.; Li, J.; Fang, X.; Li, Y.; Zhang, Z.; Yin, W. A Comparison of the Fine-Grinding Performance between Cylpebs and Ceramic Balls in the Wet Tumbling Mill. Minerals 2022, 12, 1007. https://doi.org/10.3390/min12081007
Liao N, Wu C, Li J, Fang X, Li Y, Zhang Z, Yin W. A Comparison of the Fine-Grinding Performance between Cylpebs and Ceramic Balls in the Wet Tumbling Mill. Minerals. 2022; 12(8):1007. https://doi.org/10.3390/min12081007
Chicago/Turabian StyleLiao, Ningning, Caibin Wu, Jianjuan Li, Xin Fang, Yong Li, Zhongxiang Zhang, and Wenhang Yin. 2022. "A Comparison of the Fine-Grinding Performance between Cylpebs and Ceramic Balls in the Wet Tumbling Mill" Minerals 12, no. 8: 1007. https://doi.org/10.3390/min12081007
APA StyleLiao, N., Wu, C., Li, J., Fang, X., Li, Y., Zhang, Z., & Yin, W. (2022). A Comparison of the Fine-Grinding Performance between Cylpebs and Ceramic Balls in the Wet Tumbling Mill. Minerals, 12(8), 1007. https://doi.org/10.3390/min12081007