Genesis of the Dongpuzi Gold Deposit in the Liaodong Peninsula, NE China: Constraints from Geology, Fluid Inclusion, and C–H–O–S–Pb Isotopes
Abstract
:1. Introduction
2. Geological Background
2.1. Regional Geology
2.2. Geology of the Dongpuzi Orefield
3. Ore Deposit Geology
4. Sampling and Analytical Methods
4.1. Fluid Inclusion Petrography and Microthermometry
4.2. Isotope Analysis
5. Results
5.1. Fluid Inclusions
5.2. C–H–O Isotopic Compositions
5.3. S Isotopic Compositions
5.4. Pb Isotopic Compositions
6. Discussion
6.1. Properties of Ore-Forming Fluids
6.2. Origin of Ore-Forming Fluids
6.3. Sources of Sulfur and Lead
6.4. Ore genesis and the Metallogenic Model
7. Conclusions
- (1)
- The Dongpuzi gold deposit was hosted within the Early Cretaceous trachyte porphyry and controlled by the NE–SW- to NNE–SSW-trending faults and fracture zones, with three mineralization stages, i.e., quartz–pyrite, quartz–sulfide, and quartz–calcite stages.
- (2)
- Fluid inclusion studies indicate that the Dongpuzi gold mineralization was precipitated from an epithermal fluid system with low temperatures (113 to 162 °C) and low salinity (average 7.2 wt% NaCl equiv.) and fluid cooling may be an important factor in the formation of this gold deposit.
- (3)
- The hydrogen, oxygen, and carbon isotopes indicate that the ore-forming fluids were sourced from meteoric water and the carbon in fluids is mainly derived from the magma. The sulfur and lead isotopic compositions suggest that the ore-forming materials were mainly derived from the host trachyte porphyry and volcanic rocks of the Xiaoling Formation, with some contributions of Paleoproterozoic metamorphic rocks of the Gaixian Formation.
- (4)
- The Dongpuzi deposit is a typical low-sulfidation epithermal gold deposit in the Liaodong area, which was formed under an extensional setting related to the Early Cretaceous lithospheric extension and thinning of the east of NCC, induced by subduction and retreat of the Paleo-Pacific Ocean Plate.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Zhang, L.J.; Wang, S.L.; Li, T.G.; Yang, Y.; Liu, F.X.; Li, S.H.; Duan, C. Formation of the Wulong gold deposit, Liaodong gold Province, NE China: Constraints from zircon U–Pb age, sericite Ar–Ar age and H–O–S–He isotopes. Ore Geol. Rev. 2019, 109, 130–143. [Google Scholar] [CrossRef]
- Chen, C.; Li, D.T.; Wu, T.T.; Zhao, Y.; Zhao, C.Q.; Yang, J.L.; Gu, Y.C. Genesis of gold deposits in the Wulong orefield, Liaodong Peninsula, North China Craton: Constraints from ore deposit geology, REE, and C–H–O–S–Pb isotopes. Geol. J. 2020, 55, 5914–5933. [Google Scholar] [CrossRef]
- Zhang, P.; Kou, L.L.; Zhao, Y.; Bi, Z.W.; Sha, D.M.; Han, R.P.; Li, Z.M. Genesis of the Wulong gold deposit, Liaoning Province, NE China: Constraints from noble gases, radiogenic and stable isotope studies. Geosci. Front. 2020, 11, 547–563. [Google Scholar] [CrossRef]
- Yu, G.; Zeng, Q.D.; Frimmel, H.E.; Wang, Y.B.; Guo, W.K.; Sun, G.T.; Zhou, T.C.; Li, J.P. Genesis of the Wulong gold deposit, northeastern North China Craton: Constraints from fluid inclusions, H-O-S-Pb isotopes, and pyrite trace element concentrations. Ore Geol. Rev. 2018, 102, 313–337. [Google Scholar] [CrossRef]
- Chen, J. Geological characteristics and ore-forming control of the Dongpuzi gold deposit in Liaoning Province. Gold J. 2000, 2, 1–5. (In Chinese) [Google Scholar]
- Zhang, B.C.; Qin, G.J.; Wang, F.G. Fluid inclusions of Dongpuzi gold deposit in Xiuyan county, Liaoning Province. Geoscience 2002, 16, 26–31. (In Chinese) [Google Scholar]
- Jiang, Y.Z. Geochemical characteristics of the Dongpuzi gold deposit in Liaoning Province. Non-Ferr. Min. Metall. 2017, 33, 4–8. (In Chinese) [Google Scholar]
- Zhao, G.C.; Sun, M.; Wilde, S.A.; Li, S.Z. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res. 2005, 136, 177–202. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, H.; Sha, D.; Wang, H. The inner zone of the Liaoji Paleorift: Its early structural styles and structural evolution. J. Asian Earth Sci. 1997, 15, 19–31. [Google Scholar] [CrossRef]
- Li, S.Z.; Zhao, G.C. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton. Precambrian Res. 2007, 158, 1–16. [Google Scholar] [CrossRef]
- Shen, L.; Liu, J.L.; Hu, L.; Ji, M.; Guan, H.M. The Dayingzi detachment fault system in Liaodong Peninsula and its regional tectonic significance. Sci. China Earth Sci. 2011, 41, 437–451. (In Chinese) [Google Scholar] [CrossRef]
- Wu, F.Y.; Lin, J.Q.; Wilde, S.A.; Zhang, X.O.; Yang, J.H. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett. 2005, 233, 103–119. [Google Scholar] [CrossRef]
- Liu, J.L.; Ji, M.; Shen, L.; Guan, H.M. Early Cretaceous extensional structures in the Liaodong Peninsula: Structural associations, geochronological constraints and regional tectonic implications. Sci China Earth Sci 2011, 54, 823–842. (In Chinese) [Google Scholar] [CrossRef]
- Liaoning Nonferrous Shenyang Geological Exploration Institute. Geological Survey Report of the Dongpuzi gold deposit in Xiuyan County, Liaoning Province. 1998; (Unpublished). [Google Scholar]
- Zhang, B.C.; Li, L.; Tan, G.J. Study on gelogical feature and genesis of the Dongpuzi gold deposit, Liaoning, China. Gold Geol. 2002, 8, 29–36. (In Chinese) [Google Scholar]
- Ozard, J.M.; Russel, R.D. Discrimination in solid source lead isotope abundance measurement. Earth Planet. Sci. Lett. 1970, 8, 331–336. [Google Scholar] [CrossRef]
- Guo, L.N.; Goldfarb, R.J.; Wang, Z.L.; Li, R.H.; Chen, B.H.; Li, J.L. A comparison of Jiaojia- and Linglong-type gold deposit ore-forming fluids: Do they differ? Ore Geol. Rev. 2017, 88, 511–533. [Google Scholar] [CrossRef]
- Potter, R.W.; Clynne, M.A. Freezing point depression of aqueous sodium chloride solution. Econ. Geol. 1978, 73, 284–285. [Google Scholar] [CrossRef]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Taylor, H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposit. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal ore deposits. Nature 1994, 370, 519–527. [Google Scholar] [CrossRef]
- Simmons, S.F.; White, N.C.; John, D.A. Geological Characteristics of Epithermal Precious and Base Metal Deposits. In Economic Geology: One Hundredth Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 485–522. [Google Scholar]
- Li, L.; Li, S.R.; Santosh, M.; Zhu, J.; Suo, X.J. Early Jurassic decratonic gold melallogenesis in the eastern North China Craton: Constraints from S-Pb-C-D-O isotopic systematics and pyrite Rb-Sr geochronology of the Guilaizhuang Te-Au deposit. Ore Geol. Rev. 2018, 92, 558–568. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 130–135. [Google Scholar]
- Ray, J.S.; Ramesh, R.; Pande, K. Carbon isotopes in Kerguelen plume derived carbonatites: Evidence for recycled inorganic carbon. Earth Planet. Sci. Lett. 1999, 170, 205–214. [Google Scholar] [CrossRef]
- Zhao, H.Z.; Yang, S.S.; Li, H. Geologic features of Baiyun gold deposit and discussion of the genesis. Non-Ferous Min. Metall. 2009, 25, 4–8. (In Chinese) [Google Scholar]
- Ohmoto, H.; Rye, R.O. Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits, 2nd ed.; Barnes, H.L., Ed.; John Wiley & Sons Inc.: New York, NY, USA, 1979; pp. 509–567. [Google Scholar]
- Zhou, H.; Pei, F.P.; Xu, W.L.; Wei, J.Y.; Wang, Y.P. Petrogenesis of the Early Cretaceous volcanic rocks from the northeastern part of the North China Craton: Elemental and Sr-Nd-Pb isotopic constraints. Lithos 2021, 392, 393106149. [Google Scholar]
- Lindgren, W. Mineral Deposits; McGraw-Hill Book Company, Inc.: New York, NY, USA; London, UK, 1933. [Google Scholar]
- Fournier, R.O. Hydrothermal process related to movement of fluid from plastic into brittle rock in the magmatic–epithermal environment. Econ. Geol. 1999, 94, 1193–1211. [Google Scholar] [CrossRef]
- Gu, F.H.; Zhang, Y.M.; Peng, Y.W.; Wang, J.L.; Liu, R.P. Geology, fluid inclusions and S-Pb-C-O isotopes of the Kuokuqueke Fe-Cu skarn deposit in Western Tianshan, China. Ore Geol. Rev. 2022, 145, 104896. [Google Scholar] [CrossRef]
- Chen, Y.J.; Ni, P.; Fan, H.R.; Pirajno, F.; Lai, Y.; Su, W.C.; Zhang, H. Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrol. Sin. 2007, 23, 2085–2108. (In Chinese) [Google Scholar]
- Hedenquist, J.W.; Arribas, A., Jr.; Gonzalez-Urien, E. Exploration for epithermal gold deposits. Rev. Econ. Geol. 2000, 13, 245–277. [Google Scholar]
- Ma, Y.; Jiang, S.Y.; Frimmel, H.E. Metallogeny of the Late Jurassic Qicun epithermal gold deposit in sourthern China: Constraints from geochronology, fluid inclusions, and H-O-S-Pb isotopes. Ore Geol. Rev. 2022, 142, 104688. [Google Scholar] [CrossRef]
- Najaran, M.; Mehrabi, B.; Siani, M.G. Mineralogy, hydrothermal alteration, fluid inclusion, and O-H stable isotopes of the SiahJangal-Sar Kahno epithermal gold deposit, SE Iran. Ore Geol. Rev. 2020, 125, 103689. [Google Scholar] [CrossRef]
- Li, S.N.; Ni, P.; Bao, T.; Wang, G.G.; Chi, Z.; Li, W.S.; Zhu, R.Z.; Dai, B.Z.; Xiang, H.L. Geological, fluid inclusion, and H–O–S–Pb isotopic studies of the Xiaban epithermal gold deposit, Fujian Province, southeast China: Implications for ore genesis and mineral exploration. Ore Geol. Rev. 2020, 117, 103280. [Google Scholar] [CrossRef]
- Zhu, R.X.; Fan, H.R.; Li, J.W.; Meng, Q.R.; Li, S.R.; Zeng, Q.D. Decratonic gold deposits. Sci. China Earth Sci. 2015, 58, 1523–1537. [Google Scholar] [CrossRef]
- Zheng, J.P.; Dai, H.K. Subduction and retreating of the western Pacific plate resulted in lithospheric mantle replacement and coupled basin-mountain respond in the North China Craton. Sci. China Earth Sci. 2018, 61, 406–424. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Xu, Z.; Zhao, Z.F.; Dai, L.Q. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Sci. China Earth Sci. 2018, 61, 353–385. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, J.H.; Xu, Y.G.; Wilde, S.A.; Walker, R.J. Destruction of the North China Craton in the Mesozoic. Annu. Rev. Earth Planet. Sci. 2019, 47, 173–195. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Chung, S.L.; Wilde, S.A.; Davis, G.A. Rapid exhumation and cooling of the Liaonan metamorphic core complex: Inferences from 40Ar/39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton. Geol. Soc. Am. Bull. 2007, 119, 1405–1414. [Google Scholar] [CrossRef]
- Liu, J.L.; Guan, H.M.; Ji, M.; Hu, L. Late Mesozoic metamorphic core complexes: New constraints on lithosphere thinning in North China. Prog. Nat. Sci. 2006, 16, 633–638. [Google Scholar]
- Qian, Y.; Sun, J.L.; Li, Y.J.; Yu, N.; Liu, J.L.; Li, B.L.; Sun, F.Y. Geochronology, geochemistry and metallogenic dynamics of gold-polymetallic deposits in Xicha region, the northeastern margin of the North-China Platform. Acta Petrol. Sin. 2020, 36, 1127–1150. (In Chinese) [Google Scholar]
- Pei, F.P.; Xu, W.L.; Yang, D.B.; Yu, Y.; Wang, W.; Zhao, Q.G. Geochronology and geochemistry of Mesozoic mafic-ultramafic complexes in the southern Liaoning and southern Jilin Provinces, NE China: Constraints on the spatial extent of destruction of the North China Craton. J. Asian Earth Sci. 2011, 40, 636–650. [Google Scholar] [CrossRef]
- Ma, Q.; Xu, Y.G.; Zheng, J.P.; Griffin, W.L.; Hong, L.B.; Ma, L. Coexisting Early Cretaceous High-Mg andesites and adakitic rocks in the North China Craton: The role of water in intraplate magmatism and cratonic destruction. J. Petrol. 2016, 7, 1279–1308. [Google Scholar] [CrossRef]
Sample Number | Mineral/Sample | Mineralization Stage | Sample Location and Characteristics | Analysis |
---|---|---|---|---|
21dpl-1 | Quartz | Quartz–sulfide | Quartz from intensely silicified trachyte porphyry | Fluid inclusion |
21dpl-2 | Quartz | Quartz–sulfide | Quartz veins within the trachyte porphyry, where sericitization and silicification occur | |
21dpl-3 | Quartz | Quartz–sulfide | ||
21dpl-5 | Quartz | Quartz–calcite | Quartz–calcite veins cutting the trachyte porphyry, where sericitization and silicification occur | |
21DP-1 | Quartz | Quartz–calcite | Quartz–calcite vein cutting the trachyte porphyry, where sericitization and silicification occur | H–O isotopes |
21DP-2 | Quartz | Quartz–sulfide | Quartz from intensely silicified trachyte porphyry | |
21DP-3 | Quartz | Quartz–sulfide | Quartz veins within the trachyte porphyry, where sericitization and silicification occur | |
21DP-4 | Quartz | Quartz–sulfide | ||
21DP-5 | Quartz | Quartz–sulfide | ||
21DP-6 | Calcite | Quartz–calcite | Quartz–calcite vein cutting the trachyte porphyry, where sericitization and silicification occur | C–O isotopes |
21DP-7 | Calcite | Quartz–calcite | ||
21DP-8 | Calcite | Quartz–calcite | ||
DP-2 | Pyrite | Quartz–sulfide | Pyrite within intensely silicified trachyte porphyry | S–Pb isotopes |
DP-3 | Pyrite | Quartz–sulfide | ||
DP-4 | Pyrite | Quartz–sulfide | ||
21DP-9 | Pyrite | Quartz–sulfide | ||
21DP-10 | Pyrite | Quartz–sulfide | Pyrite within the quartz veins | |
DPX-1 | Trachyte porphyry | - | Trachyte porphyry with little or no alteration and mineralization | Pb isotope |
DPX-2 | Trachyte porphyry | - | ||
DPX-3 | Trachyte porphyry | - | ||
DPX-4 | Trachyte porphyry | - | ||
DPX-5 | Trachyte porphyry | - |
Sample Number | Host Mineral | Fluid Inclusion Types | Homogeneous Temperatures (Th/°C) | Ice-Melting Temperatures (Tice/°C) | Salinity (wt% NaCl) |
---|---|---|---|---|---|
21dpl-1 | Quartz | L-dominated | 113~151 (17) | 6.3~4 (8) | 6.4~9.6 (8) |
21dpl-2 | Quartz | L-dominated | 109~162 (27) | 5.3~1.9 (13) | 3.2~8.3 (13) |
21dpl-3 | Quartz | L-dominated | 110~161 (24) | 6~5.9 (5) | 9~9.2 (5) |
21dpl-5 | Quartz | L-dominated | 106~143 (25) | 4.3~1.6 (6) | 2.7~6.9 (6) |
Sample Number | Mineral | T (°C) | δDV-SMOW (‰) | δ13CV-PDB (‰) | δ18OV-SMOW (‰) | δ18OH2O-SMOW (‰) |
---|---|---|---|---|---|---|
21DP-1 | Quartz | 129 | −103.9 | - | 4.4 | −13.62 |
21DP-2 | 133 | −94.2 | - | 4.3 | −13.31 | |
21DP-3 | −94.9 | - | 4.2 | −13.41 | ||
21DP-4 | −103.3 | - | 3.7 | −13.91 | ||
21DP-5 | −96.1 | - | 2.9 | −14.71 | ||
21DP-6 | Calcite | 129 | - | −4.2 | 7.4 | - |
21DP-7 | - | −4.5 | 7.2 | - | ||
21DP-8 | - | −4.3 | 7 | - |
Sample Number | δ34SV-CDT/‰ | 208Pb/204Pb | Std Err | 207Pb/204Pb | Std Err | 206Pb/204Pb | Std Err |
---|---|---|---|---|---|---|---|
DP-2 | 6.5 | 38.798 | 0.003 | 15.636 | 0.001 | 18.069 | 0.001 |
DP-3 | 5.5 | 38.827 | 0.004 | 15.638 | 0.002 | 18.039 | 0.002 |
DP-4 | 6.6 | 38.798 | 0.006 | 15.641 | 0.001 | 18.07 | 0.001 |
21DP-9 | 6 | 38.557 | 0.007 | 15.595 | 0.002 | 17.918 | 0.002 |
21DP-10 | 4.1 | 38.819 | 0.007 | 15.64 | 0.003 | 18.046 | 0.003 |
Sample Number | Sample | Age/Ma | 208Pb/204Pb | Std Err | 207Pb/204Pb | Std Err | 206Pb/204Pb | Std Err | (208Pb/204Pb)i | (207Pb/204Pb)i | (206Pb/204Pb)i |
---|---|---|---|---|---|---|---|---|---|---|---|
DPX-1 | Trachyte porphyry | 130 | 39.375 | 0.004 | 15.625 | 0.002 | 18.035 | 0.002 | 39.116 | 15.621 | 17.955 |
DPX-2 | 39.353 | 0.005 | 15.6 | 0.002 | 17.921 | 0.002 | 39.011 | 15.595 | 17.819 | ||
DPX-3 | 39.299 | 0.006 | 15.611 | 0.003 | 17.94 | 0.003 | 39.039 | 15.607 | 17.865 | ||
DPX-4 | 39.282 | 0.009 | 15.604 | 0.004 | 17.926 | 0.004 | 38.963 | 15.599 | 17.82 | ||
DPX-5 | 39.393 | 0.006 | 15.614 | 0.002 | 17.962 | 0.002 | 39.023 | 15.608 | 17.848 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Wu, T.; Sha, D.; Li, D.; Yang, Z.; Zhang, J.; Shang, Q. Genesis of the Dongpuzi Gold Deposit in the Liaodong Peninsula, NE China: Constraints from Geology, Fluid Inclusion, and C–H–O–S–Pb Isotopes. Minerals 2022, 12, 1008. https://doi.org/10.3390/min12081008
Chen C, Wu T, Sha D, Li D, Yang Z, Zhang J, Shang Q. Genesis of the Dongpuzi Gold Deposit in the Liaodong Peninsula, NE China: Constraints from Geology, Fluid Inclusion, and C–H–O–S–Pb Isotopes. Minerals. 2022; 12(8):1008. https://doi.org/10.3390/min12081008
Chicago/Turabian StyleChen, Cong, Taotao Wu, Deming Sha, Dongtao Li, Zhongzhu Yang, Jing Zhang, and Qingqing Shang. 2022. "Genesis of the Dongpuzi Gold Deposit in the Liaodong Peninsula, NE China: Constraints from Geology, Fluid Inclusion, and C–H–O–S–Pb Isotopes" Minerals 12, no. 8: 1008. https://doi.org/10.3390/min12081008
APA StyleChen, C., Wu, T., Sha, D., Li, D., Yang, Z., Zhang, J., & Shang, Q. (2022). Genesis of the Dongpuzi Gold Deposit in the Liaodong Peninsula, NE China: Constraints from Geology, Fluid Inclusion, and C–H–O–S–Pb Isotopes. Minerals, 12(8), 1008. https://doi.org/10.3390/min12081008