The Impact of Detrital Minerals on Reservoir Flow Zones in the Northeastern Bredasdorp Basin, South Africa, Using Core Data
Abstract
:1. Introduction
2. Overview of Geological Setting
3. Materials and Methods
3.1. Facies Analysis
3.2. Flow Zone Identification Methods (Winland r35, FZI and SMLP)
3.3. Mineralogy Analyses
4. Results and Discussion
4.1. Facies
- Facies A: Moderately to well-sorted, medium-grained with conglomerate intervals developed;
- Facies B: Fine- to medium-grained sandstone, slightly glauconitic;
- Facies C: Fine- to medium-grained sandstone, poorly sorted, very glauconitic;
- Facies D: Siltstone, very fine-grained with claystone.
4.2. Flow Zone Modelling
4.2.1. Winland r35
- Megaoporous rock (≥10 µm) = PRT1;
- Macroporous rock, from 4.0 to 10 µm) = PRT2;
- Mesoporous rock, from 2.0 to 4 µm = PRT3;
- Microporous rock (from 1 to 2 µm) = PRT4;
- Nanoporous rock (≤1 µm) = PRT5.
4.2.2. Flow Zone Indicator
- HFU1 = ≥6 µm;
- HFU2 = 3–6 µm;
- HFU3 = 2–3 µm;
- HFU4 = 1–2 µm;
- HFU5 = ≤1 µm.
4.2.3. SMLP
4.2.4. Identification of Flow Zones
4.2.5. Impacts of Mineral on Flow Zones
5. Conclusions
- The lithofacies are interpreted as facies A, B, C and D based on the geological framework and five flow zones interpreted as high, moderate, low, very low and tight based on flow zone calculations.
- The High productive flow zone identified at the upper reservoir in well MO8 was laterally traceable in well MO9. It is absent in well MO7 and probably has been truncated due to erosion. The high flow zone showed a storage capacity of 16% in well MO8 and 14% in well MO9 and a flow capacity of 51% in well MO8 and 44% in well MO9.
- The very good petrophysical characteristics of the high flow zone indicate that significant quantities of gas can be produced from it, which is comparable to a high flow zone identified in well PA1 at the central Bredasdorp Basin.
- The diagenetic process that reduces the rock quality can be attributed to quartz overgrowth, accumulation of mica flakes in the pore spaces and high content of plagioclase and muscovite.
- Fracture observed in the high flow zone is interpreted as the reservoir quality enhancing process. The flow zones are generally controlled by a combination of facies and diagenetic factors.
- This study has opened a door for researchers to investigate the vertical and lateral extent of the flow zone that extends to all wells studied.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radwan, A.E.; Nabawy, B.S.; Kassem, A.A.; Hussein, W.S. Implementation of Rock Typing on Waterflooding Process during Secondary Recovery in Oil Reservoirs: A Case Study, El Morgan Oil Field, Gulf of Suez, Egypt. Nat. Resour. Res. 2021, 30, 1667–1696. [Google Scholar] [CrossRef]
- Kassab, M.A.; Hashish, M.F.A.; Nabawy, B.S.; Elnaggar, O.M. Effect of Kaolinite as a Key Factor Controlling the Petrophysical Properties of the Nubia Sandstone in Central Eastern Desert, Egypt. J. Afr. Earth Sci. 2017, 125, 103–117. [Google Scholar] [CrossRef]
- Magoba, M.; Opuwari, M. Petrophysical Interpretation and Fluid Substitution Modelling of the Upper Shallow Marine Sandstone Reservoirs in the Bredasdorp Basin, Offshore South Africa. J. Pet. Explor. Prod. Technol. 2020, 10, 783–803. [Google Scholar] [CrossRef]
- Opuwari, M.; Kaushalendra, B.T.; Momoh, A. Sandstone Reservoir Zonation Using Conventional Core Data: A Case Study of Lower Cretaceous Sandstones, Orange Basin, South Africa. J. Afr. Earth Sci. 2019, 153, 54–66. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.-Q.; Yang, J.-H.; Liu, J.-S.; Tong, W.-S. Determination of Shale Macroscale Modulus Based on Microscale Measurement: A Case Study Concerning Multiscale Mechanical Characteristics. Pet. Sci. 2022, 19, 1262–1275. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Elsworth, D.; Pan, Z.; Ma, X. Nanoscale Mechanical Property Variations Concerning Mineral Composition and Contact of Marine Shale. Geosci. Front. 2022, 13, 101405. [Google Scholar] [CrossRef]
- Ayodele, O.L.; Chatterjee, T.K.; Opuwari, M. Static Reservoir Modeling Using Stochastic Method: A Case Study of the Cretaceous Sequence of Gamtoos Basin, Offshore, South Africa. J. Pet. Explor. Prod. Technol. 2021, 11, 4185–4200. [Google Scholar] [CrossRef]
- Nabawy, B.S.; Elgendy, N.T.; Gazia, M.T. Mineralogic and Diagenetic Controls on Reservoir Quality of Paleozoic Sandstones, Gebel El-Zeit, North Eastern Desert, Egypt. Nat. Resour. Res. 2020, 29, 1215–1238. [Google Scholar] [CrossRef]
- Mode, A.W.; Anyiam, O.A.; Onwuchekwa, C.N. Flow Unit Characterization: Key to Delineating Reservoir Performance in “Aqua-Field”, Niger Delta, Nigeria. J. Geol. Soc. India 2014, 84, 701–708. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, Y.; Swennen, R.; Yuan, J.; Liu, J.; Zhang, S. Pore-Throat Characteristics of Tight Sandstone Reservoirs Composed of Gravity Flow Sediments: Yingcheng Formation, Longfengshan Sag, China. J. Pet. Sci. Eng. 2018, 171, 646–661. [Google Scholar] [CrossRef]
- Opuwari, M. An Integrated Approach of Fluid Contact Determination of the Albian Age Sandstone Reservoirs of the Orange Basin Offshore South Africa. Mar. Georesour. Geotechnol. 2021, 39, 876–888. [Google Scholar] [CrossRef]
- Mohammadian, E.; Kheirollahi, M.; Liu, B.; Ostadhassan, M.; Sabet, M. A Case Study of Petrophysical Rock Typing and Permeability Prediction Using Machine Learning in a Heterogenous Carbonate Reservoir in Iran. Sci. Rep. 2022, 12, 4505. [Google Scholar] [CrossRef] [PubMed]
- Opuwari, M.; Amponsah-Dacosta, M.; Mohammed, S.; Egesi, N. Delineation of Sandstone Reservoirs of Pletmos Basin Offshore South Africa into Flow Units Using Core Data. S. Afr. J. Geol. 2020, 123, 479–492. [Google Scholar] [CrossRef]
- Nabawy, B.S. An Improved Stratigraphic Modified Lorenz (ISML) Plot as a Tool for Describing Efficiency of the Hydraulic Flow Units (HFUs) in Clastic and Non-Clastic Reservoir Sequences. Geomech. Geophys. Geo-Energy Geo-Resour. 2021, 7, 67. [Google Scholar] [CrossRef]
- Dar, Q.U.; Pu, R.; Baiyegunhi, C.; Shabeer, G.; Ali, R.I.; Ashraf, U.; Sajid, Z.; Mehmood, M. The Impact of Diagenesis on the Reservoir Quality of the Early Cretaceous Lower Goru Sandstones in the Lower Indus Basin, Pakistan. J. Pet. Explor. Prod. Technol. 2022, 12, 1437–1452. [Google Scholar] [CrossRef]
- Leila, M.; Moscariello, A.; Šegvić, B. Depositional Facies Controls on the Diagenesis and Reservoir Quality of the Messinian Qawasim and Abu Madi Formations, Onshore Nile Delta, Egypt. Geol. J. 2019, 54, 1797–1813. [Google Scholar] [CrossRef]
- Li, Y.; Gao, X.; Meng, S.; Wu, P.; Niu, X.; Qiao, P.; Elsworth, D. Diagenetic Sequences of Continuously Deposited Tight Sandstones in Various Environments: A Case Study from Upper Paleozoic Sandstones in the Linxing Area, Eastern Ordos Basin, China. AAPG Bulletin 2019, 103, 2757–2783. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Pan, Z.; Niu, X.; Yu, Y.; Meng, S. Pore Structure and Its Fractal Dimensions of Transitional Shale: A Cross-Section from East Margin of the Ordos Basin, China. Fuel 2019, 241, 417–431. [Google Scholar] [CrossRef]
- Ayodele, O.L.; van Bever Donker, J.M.; Opuwari, M. Pore Pressure Prediction of Some Selected Wells from the Southern Pletmos Basin, Offshore South Africa. S. Afr. J. Geol. 2016, 119, 203–214. [Google Scholar] [CrossRef]
- Ramiah, K.; Trivedi, K.B.; Opuwari, M. A 2D Geomechanical Model of an Offshore Gas Field in the Bredasdorp Basin, South Africa. J. Pet. Explor. Prod. Technol. 2019, 9, 207–222. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Li, J.; Cai, Z. Permeability and Porosity Prediction Using Logging Data in a Heterogeneous Dolomite Reservoir: An Integrated Approach. J. Nat. Gas Sci. Eng. 2021, 86, 103743. [Google Scholar] [CrossRef]
- Ali, M.; Abdelhady, A.; Abdelmaksoud, A.; Darwish, M.; Essa, M.A. 3D Static Modeling and Petrographic Aspects of the Albian/Cenomanian Reservoir, Komombo Basin, Upper Egypt. Nat. Resour. Res. 2020, 29, 1259–1281. [Google Scholar] [CrossRef]
- Opuwari, M.; Dominick, N. Sandstone Reservoir Zonation of the North-Western Bredasdorp Basin South Africa Using Core Data. J. Appl. Geophys. 2021, 193, 104425. [Google Scholar] [CrossRef]
- Opuwari, M.; Mohammed, S.; Ile, C. Determination of Reservoir Flow Units from Core Data: A Case Study of the Lower Cretaceous Sandstone Reservoirs, Western Bredasdorp Basin Offshore in South Africa. Nat. Resour. Res. 2021, 30, 411–430. [Google Scholar] [CrossRef]
- Opuwari, M.; Afolayan, B.; Mohammed, S.; Amaechi, P.O.; Bareja, Y.; Chatterjee, T. Petrophysical Core-Based Zonation of OW Oilfield in the Bredasdorp Basin South Africa. Sci. Rep. 2022, 12, 510. [Google Scholar] [CrossRef]
- McMillan, I.K.; Brink, G.I.; Broad, D.S.; Maier, J.J. Late Mesozoic Sedimentary Basins off the South Coast of South Africa. In Sedimentary Basins of the World; Elsevier: Amsterdam, The Netherlands, 1997; Volume 3, pp. 319–376. [Google Scholar]
- Jungslager, E.H. Petroleum Habitats of the Atlantic Margin of South Africa. Geol. Soc. Lond. Spec. Publ. 1999, 153, 153–168. [Google Scholar] [CrossRef]
- Petroleum Agency of South Africa. Petroleum Agency of South Africa. Petroleum Exploration Information and Opportunities. In Petroleum Agency South Africa Report; Petroleum Agency of South Africa: Cape Town, South Africa, 2003. [Google Scholar]
- Saffou, E.; Raza, A.; Gholami, R.; Croukamp, L.; Elingou, W.R.; van Bever Donker, J.; Opuwari, M.; Manzi, M.S.; Durrheim, R.J. Geomechanical Characterization of CO2 Storage Sites: A Case Study from a Nearly Depleted Gas Field in the Bredasdorp Basin, South Africa. J. Nat. Gas Sci. Eng. 2020, 81, 103446. [Google Scholar] [CrossRef]
- Brown, L.F. Sequence Stratigraphy in Offshore South African Divergent Basins: An Atlas on Exploration for Cretaceous Lowstand Traps by Soekor (Pty) Ltd, AAPG Studies in Geology 41; AAPG: Tulsa, OK, USA, 1995. [Google Scholar]
- Broad, D.S.; Jungslager, E.H.A.; McLachlan, I.R.; Roux, J. Offshore Mesozoic Basins. Geol. S. Afr. Geol. Soc. S. Afr. Johannesbg./Counc. Geosci. Pretoria 2006, 553, 571. [Google Scholar]
- Paton, D.A.; Di Primio, R.; Kuhlmann, G.; Van Der Spuy, D.; Horsfield, B. Insights into the Petroleum System Evolution of the Southern Orange Basin, South Africa. S. Afr. J. Geol. 2007, 110, 261–274. [Google Scholar] [CrossRef]
- Masindi, R.; Trivedi, K.B.; Opuwari, M. An Integrated Approach of Reservoir Characterization of Y Gas Field in Central Bredasdorp Basin, South Africa. J. Pet. Explor. Prod. Technol. 2022, 1–19. [Google Scholar] [CrossRef]
- Burden, P.L.; Davies, C.P. South Africa Offshore EXP. II: Oribi Field Is South Africa’s First Offshore Crude Oil Production. Oil Gas J. 1997, 95, 63–65. [Google Scholar]
- Winland, H.D. Amoco Production Research Report No. F72-G25 1972. In Oil Accumulation in Response to Pore Size Changes, Weyburn Field, Saskatchewan; Amoco: London, UK, 1972. [Google Scholar]
- Amaefule, J.O.; Altunbay, M.; Tiab, D.; Kersey, D.G.; Keelan, D.K. Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 3–6 October 1993. [Google Scholar]
- Porras, J.C.; Barbato, R.; Khazen, L. Reservoir Flow Units: A Comparison between Three Different Models in the Santa Barbara and Pirital Fields, North Monagas Area, Eastern Venezuela Basin. In Proceedings of the Latin American and Caribbean Petroleum Engineering Conference, Caracas, Venezuela, 21 April 1999. [Google Scholar]
- Fea, I.; Abioui, M.; Nabawy, B.S.; Jain, S.; Bruno, D.Z.; Kassem, A.A.; Benssaou, M. Reservoir Quality Discrimination of the Albian-Cenomanian Reservoir Sequences in the Ivorian Basin: A Lithological and Petrophysical Study. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 1. [Google Scholar] [CrossRef]
- El Sharawy, M.S.; Nabawy, B.S. Integration of Electrofacies and Hydraulic Flow Units to Delineate Reservoir Quality in Uncored Reservoirs: A Case Study, Nubia Sandstone Reservoir, Gulf of Suez, Egypt. Nat. Resour. Res. 2019, 28, 1587–1608. [Google Scholar] [CrossRef]
- Adegbite, J.O.; Belhaj, H.; Bera, A. Investigations on the Relationship among the Porosity, Permeability and Pore Throat Size of Transition Zone Samples in Carbonate Reservoirs Using Multiple Regression Analysis, Artificial Neural Network and Adaptive Neuro-Fuzzy Interface System. Pet. Res. 2021, 6, 321–332. [Google Scholar] [CrossRef]
- Khalid, M.; Desouky, S.E.-D.; Rashed, M.; Shazly, T.; Sediek, K. Application of Hydraulic Flow Units’ Approach for Improving Reservoir Characterization and Predicting Permeability. J. Pet. Explor. Prod. Technol. 2020, 10, 467–479. [Google Scholar] [CrossRef]
- Kolodzie, S. Analysis of Pore Throat Size and Use of the Waxman-Smits Equation to Determine OOIP in Spindle Field, Colorado. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 21 September 1980. [Google Scholar]
- Gunter, G.W.; Finneran, J.M.; Hartmann, D.J.; Miller, J.D. Early Determination of Reservoir Flow Units Using an Integrated Petrophysical Method. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 5–8 October 1997. [Google Scholar]
- Ebanks, W.J., Jr.; AAPG. Flow Unit Concept-Integrated Approach to Reservoir Description for Engineering Projects; AAPG: Tulsa, OK, USA, 1987; Volume 71. [Google Scholar]
- Hearn, C.L.; Ebanks, W.J.; Tye, R.S.; Ranganathan, V. Geological Factors Influencing Reservoir Performance of the Hartzog Draw Field, Wyoming. J. Pet. Technol. 1984, 36, 1335–1344. [Google Scholar] [CrossRef]
- Slatt, R.M.; Hopkins, G.L. Scaling Geologic Reservoir Description to Engineering Needs. J. Pet. Technol. 1990, 42, 202–210. [Google Scholar] [CrossRef]
- Pranter, M.J.; Hurley, N.F.; Davis, T.L. Sequence-Stratigraphic, Petrophysical, and Multicomponent Seismic Analysis of a Shelf-Margin Reservoir: San Andres Formation (Permian), Vacuum Field, New Mexico, United States; ACS Publishers: Washington, DC, USA, 2004. [Google Scholar]
- Guo, S.; Focke, W.W.; Tichapondwa, S.M. Sn/Mn/Bi2O3 Ternary Pyrotechnic Time Delay Compositions. ACS Sustain. Chem. Eng. 2020, 8, 14524–14530. [Google Scholar] [CrossRef]
- Nabawy, B.S.; Al-Azazi, N.A. Reservoir Zonation and Discrimination Using the Routine Core Analyses Data: The Upper Jurassic Sab’atayn Sandstones as a Case Study, Sab’atayn Basin, Yemen. Arab. J. Geosci. 2015, 8, 5511–5530. [Google Scholar] [CrossRef]
- Yu, P. Hydraulic Unit Classification of Un-Cored Intervals/Wells and Its Influence on the Productivity Performance. J. Pet. Sci. Eng. 2021, 197, 107980. [Google Scholar] [CrossRef]
- Asadi, A.; Rahimpour-Bonab, H.; Aleali, M.; Arian, M. Geologically Based Integrated Approach for Zonation of a Late Jurassic–Early Cretaceous Carbonate Reservoir; a Case from Persian Gulf. J. Pet. Explor. Prod. Technol. 2022, 12, 1265–1283. [Google Scholar] [CrossRef]
- Alqubalee, A.; Babalola, L.; Abdullatif, O.; Makkawi, M. Factors Controlling Reservoir Quality of a Paleozoic Tight Sandstone, Rub’al Khali Basin, Saudi Arabia. Arab. J. Sci. Eng. 2019, 44, 6489–6507. [Google Scholar] [CrossRef]
- Makeen, Y.M.; Shan, X.; Lawal, M.; Ayinla, H.A.; Su, S.; Yelwa, N.A.; Liang, Y.; Ayuk, N.E.; Du, X. Reservoir Quality and Its Controlling Diagenetic Factors in the Bentiu Formation, Northeastern Muglad Basin, Sudan. Sci. Rep. 2021, 11, 18442. [Google Scholar] [CrossRef] [PubMed]
Well | Top Depth (m) | Bottom Depth (m) | Thickness (m) | Porosity % | Permeability mD | Zone | r35 (μm) | PRT/HFU | Rock Type | FZI (μm) | Ranking |
---|---|---|---|---|---|---|---|---|---|---|---|
12–22 | 200–1000 | High | ≥10 | 1 | Megaporous | ≥6 | Very Good | ||||
10–12 | 20–200 | Moderate | 4–10 | 2 | Macroporous | 3–6 | Good | ||||
5–10 | 5–20 | Low | 2–4 | 3 | Mesoporous | 2–3 | Fair | ||||
5–10 | 1–5 | Very Low | 1–2 | 4 | Microporous | 1–2 | Poor | ||||
<5 | <1.0 | Tight | <1 | 5 | Nanoporous | ≤1 | Impervious | ||||
MO7 | 2415.1 | 2418.0 | 2.9 | 6.0 | 2.1 | Very Low | 3.4 | 4 | Microporous | 2.2 | Poor |
2418.0 | 2429.3 | 31.3 | 7.8 | 29.8 | Moderate | 8.3 | 2 | Macroporous | 4.9 | Good | |
2429.3 | 2435.7 | 6.4 | 5.9 | 10.8 | Low | 4.1 | 3 | Mesoporous | 2.3 | Fair | |
2435.7 | 2443.3 | 7.6 | 7.3 | 53.8 | Moderate | 10.1 | 4 | Macroporous | 5.8 | Good | |
2443.3 | 2446.6 | 3.1 | 4.9 | 0.5 | Tight | 1.2 | 5 | Nanoporous | 0.9 | Impervious | |
MO8 | 2368.2 | 2380.1 | 11.9 | 13.7 | 237.0 | High | 15.2 | 1 | Megaporous | 8.1 | Very Good |
2380.1 | 2396.0 | 15.9 | 12.2 | 65.0 | Moderate | 7.0 | 2 | Macroporous | 4.9 | Good | |
2396.0 | 2417.6 | 21.6 | 11.5 | 29.0 | Moderate | 5.0 | 2 | Macroporous | 3.2 | Good | |
2417.6 | 2436.8 | 19.2 | 11.7 | 42.0 | Moderate | 5.8 | 2 | Macroporous | 3.9 | Good | |
2436.8 | 2445.2 | 8.4 | 11.2 | 18.0 | Low | 3.3 | 3 | Mesoporous | 2.6 | Fair | |
MO9 | 2369.2 | 2376.2 | 7.0 | 16.8 | 842.0 | High | 27.0 | 1 | Megaporous | 11.6 | Very Good |
2376.2 | 2387.2 | 11.0 | 12.2 | 27.5 | Low | 4.3 | 3 | Mesoporous | 3.0 | Poor | |
2387.2 | 2393.3 | 6.1 | 15.3 | 300.0 | High | 14.0 | 1 | Megaporous | 6.8 | Very Good | |
2393.3 | 2419.3 | 26.0 | 12.8 | 43.0 | Moderate | 6.7 | 2 | Macroporous | 4.2 | Good | |
2419.3 | 2428.2 | 8.9 | 12.9 | 277.0 | High | 16.0 | 1 | Megaporous | 10.0 | Very Good | |
2428.2 | 2442.4 | 14.2 | 10.1 | 0.5 | Tight | 0.7 | 5 | Nanoporous | 0.8 | Impervious |
MO7 | MO8 | MO9 | ||||
---|---|---|---|---|---|---|
FLOW UNIT | Storage Capacity (%) | Flow Capacity (%) | Storage Capacity (%) | Flow Capacity (%) | Storage Capacity (%) | Flow Capacity (%) |
1 | 34.0 | 9.5 | 16.0 | 51.0 | 14.0 | 44.0 |
2 | 28.0 | 50.5 | 70.0 | 45.0 | 14.0 | 3.0 |
3 | 10.0 | 8.0 | 14.0 | 4.0 | 9.0 | 13.0 |
4 | 15.0 | 31.0 | - | - | 47.0 | 39.0 |
5 | 13.0 | 1.0 | - | - | 6.0 | 1.0 |
Well | Depth (m) | Zone Name | Quartz (%) | Dolomite (%) | Plagioclase (%) | Muscovite (%) | Calcite (%) | Microcline (%) | Pyrite (%) | Kaolinite (%) |
---|---|---|---|---|---|---|---|---|---|---|
MO7 | 2427 | Moderate | 93.7 | 0 | 3.2 | 0.6 | 0 | 2.4 | 0 | 0.1 |
MO7 | 2430 | Low | 84.6 | 7.5 | 3.8 | 1.4 | 0 | 2.4 | 0.2 | 0.2 |
MO9 | 2369 | High | 95.3 | 0 | 2.6 | 0.4 | 0 | 1.5 | 0 | 0.1 |
MO9 | 2442 | Tight | 75.8 | 0 | 12.1 | 1.3 | 8.5 | 1.7 | 0 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opuwari, M.; Ubong, M.O.; Jamjam, S.; Magoba, M. The Impact of Detrital Minerals on Reservoir Flow Zones in the Northeastern Bredasdorp Basin, South Africa, Using Core Data. Minerals 2022, 12, 1009. https://doi.org/10.3390/min12081009
Opuwari M, Ubong MO, Jamjam S, Magoba M. The Impact of Detrital Minerals on Reservoir Flow Zones in the Northeastern Bredasdorp Basin, South Africa, Using Core Data. Minerals. 2022; 12(8):1009. https://doi.org/10.3390/min12081009
Chicago/Turabian StyleOpuwari, Mimonitu, Moses Okon Ubong, Simamkele Jamjam, and Moses Magoba. 2022. "The Impact of Detrital Minerals on Reservoir Flow Zones in the Northeastern Bredasdorp Basin, South Africa, Using Core Data" Minerals 12, no. 8: 1009. https://doi.org/10.3390/min12081009
APA StyleOpuwari, M., Ubong, M. O., Jamjam, S., & Magoba, M. (2022). The Impact of Detrital Minerals on Reservoir Flow Zones in the Northeastern Bredasdorp Basin, South Africa, Using Core Data. Minerals, 12(8), 1009. https://doi.org/10.3390/min12081009