Enhanced Stability of Scorodite in Oxic and Anoxic Systems via Surface Coating with Hydroxyapatite and Fluorapatite
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation and Characterization of Scorodite
2.2. HAP and FAP Precipitation and Metastable Width Zone Determination
2.3. Encapsulation Experiments
- (i)
- Encapsulation A (ENCH-A): Scorodite in 9 nucleation steps followed by one step of growth carried out with flow rates of 20 mL/h of 60 mmol/L P plus 100 mmol/L Ca at 22 °C, pH 7.4 for 7 h.
- (ii)
- Encapsulation B (ENCH-B): Scorodite in 9 nucleation steps followed by growth according to the procedure suggested by Wu and Nancollas [30] at 37 °C pH 7.4; in this case, the addition of constituent elements is not performed at fixed rates but according to pH variation.
- (iii)
- Encapsulation C (ENCH-C): Previous conditioning of scorodite with 4.25 M CaCl2 solution at pH 6.0 for 15 h, before the procedure of Wu and Nancollas [30] at 37 °C pH 7.4. Here, a stronger CaCl2 solution was adopted for conditioning to populate the surface with Ca ions hence facilitating the subsequent nucleation-growth steps (not shown in this paper).
- (iv)
- Encapsulation D (ENCH-D): Scorodite in two stages of nucleation (N) the first one at pH 6.0–6.5, considering the metastable region of FAP and the second at pH 7.0, and two steps of growth.
- (v)
- Encapsulation E (ENCH-E): Scorodite was previously conditioned in calcium chloride solution and subjected directly to one step of deposition-growth.
2.4. Stability Evaluation
3. Results and Discussion
3.1. Scorodite Preparation
3.2. HAP and FAP Metastable Width Zone Determination
3.3. Encapsulation
3.3.1. Encapsulation of Scorodite with Hydroxyapatite
3.3.2. Encapsulation of Scorodite with Fluorapatite
3.4. Stability in Oxic and Anoxic Environments
3.4.1. Stability of HAP-Encapsulated Scorodite
3.4.2. Stability of FAP-Encapsulated Scorodite
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Bluteau, M.-C.; Demopoulos, G. The incongruent dissolution of scorodite—Solubility, kinetics and mechanism. Hydrometallurgy 2007, 87, 163–177. [Google Scholar] [CrossRef]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Herschy, R.W.; Fairbridge, R.W. Water quality for drinking: Who guidelines. Springer Ref. 2011. [Google Scholar] [CrossRef]
- Le Berre, J.F.; Gauvin, R.; Demopoulos, G.P. Characterization of poorly-crystalline ferric arsenate precipitated from equimolar Fe(III)-As(V) solutions in the pH range 2 to 8. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2007, 38, 751–762. [Google Scholar] [CrossRef]
- Nazari, A.M.; Radzinski, R.; Ghahreman, A. Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic. Hydrometallurgy 2017, 174, 258–281. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U., Jr. Arsenic removal from water/wastewater using adsorbents—A critical review. J. Hazard. Mater. 2007, 142, 1–53. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Demopoulos, G.P. Adsorption of Arsenate onto Ferrihydrite from Aqueous Solution: Influence of Media (Sulfate vs Nitrate), Added Gypsum, and pH Alteration. Environ. Sci. Technol. 2005, 39, 9523–9527. [Google Scholar] [CrossRef]
- Demopoulos, G. On the preparation and stability of scorodite. In Proceedings of the TMS Annual Meeting, San Francisco, CA, USA, 1 January 2005; pp. 25–50. [Google Scholar]
- Wang, H.-J.; Gong, W.-X.; Liu, R.-P.; Liu, H.-J.; Qu, J.-H. Treatment of high arsenic content wastewater by a combined physical–chemical process. Colloids Surf. A Physicochem. Eng. Asp. 2011, 379, 116–120. [Google Scholar] [CrossRef]
- White, T.J.; Eaton, G.F.; Kyle, J.; Lincoln, F. Xtaltite—A Mineralogical Approach to the Disposal of Mercury and Arsenic Wastes. In Extraction and Processing for the Treatment and Minimization of Wastes; The Minerals Metals & Materials Society: Warrendale, PA, USA, 1994. [Google Scholar]
- Zhu, Y.; Zhang, X.; Zeng, H.; Liu, H.; He, N.; Qian, M. Characterization, dissolution and solubility of synthetic svabite [Ca5(AsO4)3F] at 25–45 °C. Environ. Chem. Lett. 2010, 9, 339–345. [Google Scholar] [CrossRef]
- Twidwell, L.G.; McCloskey, J.W. Removing arsenic from aqueous solution and long-term product storage. JOM 2011, 63, 94–100. [Google Scholar] [CrossRef]
- Gilhotra, V.; Das, L.; Sharma, A.; Kang, T.S.; Singh, P.; Dhuria, R.S.; Bhatti, M.S. Electrocoagulation technology for high strength arsenic wastewater: Process optimization and mechanistic study. J. Clean. Prod. 2018, 198, 693–703. [Google Scholar] [CrossRef]
- Oh, C.; Ji, S.; Cheong, Y.; Yim, G. Applicability of electrochemical wastewater treatment system powered by temperature di ference energy. J. Hazard. Mater. 2018, 351, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Riveros, P.; Dutrizac, J.; Spencer, P. Arsenic Disposal Practices in the Metallurgical Industry. Can. Met. Q. 2001, 40, 395–420. [Google Scholar] [CrossRef]
- De Klerk, R.J.; Feldmann, T.; Daenzer, R.; Demopoulos, G.P. Continuous circuit coprecipitation of arsenic(V) with ferric iron by lime neutralization: The effect of circuit staging, co-ions and equilibration pH on long-term arsenic retention. Hydrometallurgy 2015, 151, 42–50. [Google Scholar] [CrossRef]
- De Klerk, R.J.; Jia, Y.; Daenzer, R.; Gomez, M.A.; Demopoulos, G.P. Continuous circuit coprecipitation of arsenic(V) with ferric iron by lime neutralization: Process parameter effects on arsenic removal and precipitate quality. Hydrometallurgy 2012, 111–112, 65–72. [Google Scholar] [CrossRef]
- Daenzer, R.; Xu, L.; Doerfelt, C.; Jia, Y.; Demopoulos, G.P. Precipitation behaviour of As(V) during neutralization of acidic Fe(II)−As(V) solutions in batch and continuous modes. Hydrometallurgy 2014, 146, 40–47. [Google Scholar] [CrossRef]
- Robins, R.G. Solubility and stability of scorodite, FeAsO4·2H2O: Discussion. Am. Mineral. 1987, 72, 842–844. [Google Scholar]
- Caetano, M.L.; Ciminelli, V.S.; Rocha, S.D.; Spitale, M.C.; Caldeira, C.L. Batch and continuous precipitation of scorodite from dilute industrial solutions. Hydrometallurgy 2009, 95, 44–52. [Google Scholar] [CrossRef]
- Min, X.-B.; Liao, Y.-P.; Chai, L.-Y.; Yang, Z.-H.; Xiong, S.; Liu, L.; Li, Q.-Z. Removal and stabilization of arsenic from anode slime by forming crystal scorodite. Trans. Nonferrous Met. Soc. China 2015, 25, 1298–1306. [Google Scholar] [CrossRef]
- Paktunc, D.; Bruggeman, K. Applied Geochemistry Solubility of nanocrystalline scorodite and amorphous ferric arsenate: Implications for stabilization of arsenic in mine wastes. Can. J. Metall. Mater. Sci. 2010, 25, 674–683. [Google Scholar]
- Verdugo, C.; Gomez, M.A.; Demopoulos, G.P. Study of arsenic release of atmospheric scorodite under reductive environments Study of arsenic release of atmospheric scorodite in reductive environments. In Proceedings of the 4th International Seminar on Process Hydrometallurgy, Hydroprocess, Santiago, Chile, 11–13 July 2012; pp. 86–94. [Google Scholar]
- Das, A.; Mandal, A. Hydrogeochemical characteristics and its role in controlling arsenic mobilization in a shallow aquifer. Acta Geochim. 2021, 40, 912–925. [Google Scholar] [CrossRef]
- Guo, F.; Demopoulos, G.P. Development of an Encapsulation Process to Extend the Stability of Scorodite Under Wider pH and Redox Potential Range Conditions. In The Minerals, Metals & Materials Series; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1411–1420. [Google Scholar] [CrossRef]
- Lagno, F.; Rocha, S.D.F.; Chryssoulis, S.; Demopoulos, G. Scorodite encapsulation by controlled deposition of aluminum phosphate coatings. J. Hazard. Mater. 2010, 181, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Leetmaa, K.; Guo, F.; Becze, L.; Gomez, M.A.; Demopoulos, G.P. Stabilization of iron arsenate solids by encapsulation with aluminum hydroxyl gels. J. Chem. Technol. Biotechnol. 2014, 91, 408–415. [Google Scholar] [CrossRef]
- Demopoulos, G.P. Aqueous precipitation and crystallization for the production of particulate solids with desired properties. Hydrometallurgy 2009, 96, 199–214. [Google Scholar] [CrossRef]
- Wu, W.; Nancollas, G.H. Kinetics of nucleation and crystal growth of hydroxyapatite and fluorapatite on titanium oxide surfaces. Colloids Surf. B Biointerfaces 1997, 10, 87–94. [Google Scholar] [CrossRef]
- Bluteau, M.C.; Becze, L.; Demopoulos, G.P. The dissolution of scorodite in gypsum-saturated waters: Evidence of Ca-Fe-AsO4 mineral formation and its impact on arsenic retention. Hydrometallurgy 2009, 97, 221–227. [Google Scholar] [CrossRef]
- Gomez, M.; Becze, L.; Cutler, J.; Demopoulos, G. Hydrothermal reaction chemistry and characterization of ferric arsenate phases precipitated from Fe2(SO4)3–As2O5–H2SO4 solutions. Hydrometallurgy 2011, 107, 74–90. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, X.; Chen, Y.; Xie, Q.; Lan, J.; Qian, M.; He, N. A comparative study on the dissolution and solubility of hydroxyapatite and fluorapatite at 25 °C and 45 °C. Chem. Geol. 2009, 268, 89–96. [Google Scholar] [CrossRef]
- Wei, C.; Zhu, Y.; Yang, F.; Li, J.; Zhu, Z.; Zhu, H. Dissolution and solubility of hydroxyapatite and fluorapatite at 25 °C at different pH. Res. J. Chem. Environ. 2013, 17, 57–61. [Google Scholar]
pH 7 | pH 9 | |||
---|---|---|---|---|
Oxic | Anoxic | Oxic | Anoxic | |
Naked Scorodite | ||||
6 days (mmol/L) | 0.094 | 0.291 | 0.210 | 1.009 |
6 days (mg/L) | 7.04 | 21.80 | 15.7 | 75.59 |
10 days (mg/L) | 8.99 | 23.44 | nd | nd |
20 days (mg/L) | 10.24 | nd | 20.22 | n.d. |
ENCH-D-Sco@FAP | ||||
6 days (mmol/L) | 0.057 | 0.177 | 0.057 | 0.138 |
6 days (mg/L) | 3.99 | 13.28 | 4.26 | 10.38 |
10 days (mg/L) | 4.24 | 16.74 | 5.10 | 11.22 |
20 days (mg/L) | 3.21 | 20.66 | 6.67 | 12.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, S.D.F.; Katsarou, L.; Demopoulos, G.P. Enhanced Stability of Scorodite in Oxic and Anoxic Systems via Surface Coating with Hydroxyapatite and Fluorapatite. Minerals 2022, 12, 1014. https://doi.org/10.3390/min12081014
Rocha SDF, Katsarou L, Demopoulos GP. Enhanced Stability of Scorodite in Oxic and Anoxic Systems via Surface Coating with Hydroxyapatite and Fluorapatite. Minerals. 2022; 12(8):1014. https://doi.org/10.3390/min12081014
Chicago/Turabian StyleRocha, Sônia D. F., Lydia Katsarou, and George P. Demopoulos. 2022. "Enhanced Stability of Scorodite in Oxic and Anoxic Systems via Surface Coating with Hydroxyapatite and Fluorapatite" Minerals 12, no. 8: 1014. https://doi.org/10.3390/min12081014
APA StyleRocha, S. D. F., Katsarou, L., & Demopoulos, G. P. (2022). Enhanced Stability of Scorodite in Oxic and Anoxic Systems via Surface Coating with Hydroxyapatite and Fluorapatite. Minerals, 12(8), 1014. https://doi.org/10.3390/min12081014