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Abstract: A shale lithofacies scheme is commonly used to characterize source rock reservoirs of
the Lower Cambrian Niutitang Formation. However, this classification ignores that individual
components such as quartz may have different origins, potentially affecting reservoir quality. The
main objective of this article is, therefore, to present a refined scheme for lithofacies and an image
processing workflow for the detection of quartz types in the Niutitang Formation shales from the
Jiumen outcrop in the Guizhou Province (Upper Yangtze Basin, SW China). In order to do so, a
combination of bulk density, optical and scanning electron microscopy and image analysis was
used. The shale lithology was macroscopically classified into seven major categories and nineteen
subcategories. Subsequently, the shales were investigated at the microscopic level, mainly focusing
on quartz types and microstructural variations. Afterwards, the workflow to calculate the weight
per unit volume (1 cm3) of the quartz types was presented, i.e., firstly, by calculating the weight of
mineral matter by subtraction of the measured weight of organic matter from the bulk shale; secondly,
by calculating the weight of total quartz in bulk shale from the weight of mineral matter and its
proportion calculated from X-ray diffraction data; thirdly, by calculating the weight of detrital quartz
and non-detrital quartz with energy dispersive X-ray mapping, image processing and quartz density;
finally, by calculating the weight of clay-sized quartz by subtracting of the weight of detrital and
non-detrital quartz from the weight of the total quartz. The bulk quartz content was found to be
dominated by clay-sized quartz, which may mainly control the mesopore volume available for gas
storage and, hence, the shale gas reservoir development.

Keywords: shale gas; clay-sized quartz; image analysis

1. Introduction

The United States was the first and also the most successful country in the world to
commercially develop shale gas, subsequently evolving source rock reservoirs into a key
factor in the global energy landscape [1,2]. Following the concepts of carbon neutrality
and carbon emission constraints, increasing the share of natural gas versus oil and coal
in the energy mix may be an effective way to reduce carbon emissions [3]. Thus, the
importance of shale gas as a supplementary source of natural gas will likely become even
more prominent for years to come. Furthermore, global exploration efforts may foreseeably
pick up again, as renewable energy sources will not suffice to meet the ever-rising energy
demands, particularly in less developed regions. China has good prospects for shale
gas, for which breakthroughs have been achieved in some regions such as the Jiaoshiba,
Changning-Weiyuan, and Zhaotong areas [4–6]. The increasing scientific interest in the
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evaluation of source rock reservoirs has also led to a significant knowledge gain in the field
of shale geology, including method development for a better understanding of primary
and diagenetic controlling factors on reservoir quality [7–10].

A general problem related to the initial nomenclature of fine-grained sedimentary
rocks is that the definition of shale is mainly based on the grain size distribution and present
fissility, largely ignoring mineralogical variation as well as other important factors such
as the potential input of biogenic vs. terrigenous detrital components [11,12]. However,
as shale research progresses, scholars are increasingly aware of the complexity of shale
genesis [13–15] and the influence of mineral composition and mineral–organic matter inter-
actions on the shale reservoirs [16]. Recent classification approaches therefore increasingly
acknowledge compositional variability [17,18]. Nevertheless, the numerous and partly
incompatible definition schemes for shale lithofacies types reflect a still existing knowledge
gap and a lack of common understanding in shale petrology [19,20].

Quartz is one of the most dominant constituents of most shales, and considered
crucial for production success due to its brittle character being favorable for both fracturing
behavior and matrix pore preservation [21–23]. However, besides its significance for
physical reservoir properties, the identification of different quartz sources may also help
in understanding the primary depositional environment and diagenetic history of a shale
formation [24,25]. In general, detrital quartz is considered to impede compaction and
preserve matrix porosity, whereas authigenic quartz (often formed in lithotypes rich in
biogenic silica) may form shale cements [24,26,27]. Still, this fact is not fully acknowledged
and often, bulk quartz contents are used as a brittleness indicator without a detailed
investigation of quartz types, e.g., [21].

The identification of quartz types could be carried out via various methods,
such as microscopic morphological observation, and characteristics of cathodoluminescence
and its spectrum [28]. However, there are relatively few quantitative studies on quartz
types, even the bulk quartz content is frequently measured. An Al-normalization method
has been widely used to calculate the content of detrital Si and “excess Si” [29]. Some
scholars also used a physical crushing-chemical dissolution-settling separation method
to obtain and measure quartz in various intervals of grain size [30]. These methods are
usually not straightforward enough, or are prone to large errors due to complex process-
ing steps. In contrast, methods based on lithological in situ observations could avoid
these problems.

This study aims at addressing this deficit by using a combination of X-ray diffrac-
tion (XRD) and optical as well as scanning electron microscopy (SEM)-based petrology
with subsequent statistical processing to derive information mainly on both silt- and
clay-sized quartz in shales from the Cambrian Niutitang Formation (Fm) exposed at the
Jiumen outcrop in the Guizhou Province (southeastern margin of the Upper Yangtze Basin,
Qiannan Depression, SW China; Figure 1). From this information, the implications for the
regional reservoir setting were drawn. However, the most important task of this paper
is to develop a workflow to (semi-)quantify the abundance of different quartz-types in
shale lithologies.
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2. Geological Setting

The Cambrian period was dominated by the breakup of the Rodinia and the formation
of the Gondwana supercontinent [32,33]. It was characterized by warm climate and gen-
erally rising sea levels [34–36]. Furthermore, the biological evolution from soft-bodied to
hard-bodied organisms represented a major global change [37,38]. During the Early Cam-
brian, the Yangtze Block was located near the equator [39,40], where organic-rich shales
were extensively accumulated on a global level [41]. These shales are often high-quality
hydrocarbon source rocks and partly host polymetallic deposits (e.g., manganese), as well
as phosphorite or sapropelitic layers [42–44].

According to [45], the studied part of the Niutitang Fm (Figure 1) was deposited at the
outer continental shelf. After deposition, the burial depth of the studied Niutitang shales
slowly increased during formation of the Qiannan Depression, until a period of slight
uplift commenced at the onset of the Caledonian orogeny during the Middle Ordovician
to the Late Silurian. Subsequently, the burial depth continued to increase and reached its
maximum of about 7000 m during the Late Jurassic. Finally, the Niutitang Fm was uplifted
and exposed to the surface in the Early Cretaceous as a result of the Yanshan orogenic
episode [46]. The significant paleo-burial depth led to an advanced thermal maturity
beyond the dry gas window (vitrinite reflectance values of 2–4% Rr) [47].

In the course of deep burial and uplift, the Niutitang Fm underwent complex diagenetic
changes including compaction, mineral dissolution and replacement, recrystallization, etc. [48].
The quartz content of the Niutitang shales in this depression ranges from 23 to 72% and
implied that the main types may be radiolarians and sponges [49,50]. The Niutitang Fm shales
have higher total organic carbon (TOC) contents and thermal maturity than the Longmaxi
Formation shale, the main shale gas-producing formation in China, and are therefore of
promising potential of shale gas [50,51].
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3. Samples

The studied outcrop is located at Jiumen village, near the town of Nangao and 127 km
east of the city of Guiyang in the southeastern Guizhou Province (Figure 1). The GPS
coordinates are 26◦22′51.29′′ N and 107◦52′51.03′′ E. At the studied location, the Niutitang
Fm crops out in its full thickness. The lithology is heterogeneous, covering a layer of
polymetallic enrichment overlain by carbonaceous shale, silty shale, silty carbonaceous
shale, silty mudstone, silty carbonaceous mudstone, and silty calcareous shale layers within
the formation.

The samples included in this study represent the lower part of the profile (Figure 1),
where the highest TOC contents were found in this interval of 14 m [49]. The samples are
labeled from base to top as N-1 to N-6. The porosity characteristics of these samples were
reported by [48], from which the TOC content, the bulk mineralogical composition, as well
as porosity data have been adopted for this study (Table 1).

Table 1. Bulk mineralogical, TOC, and bulk density data for the studied sample set [48].

Sample
Bulk Mineralogical Composition (wt.%). 1

TOC
(%). 1

Bulk
Density
(g/cm3)Q K-

Feldspar Plagioclase Dolomite Pyroxene Illite Kaolinite Pyrite Barite

N-1 71.1 10 4.1 8 6.8 10.0 2.24
N-2 44.4 6.3 13.5 11.2 8.1 10.8 5.7 12.7 2 2.33
N-3 47.7 5.6 4.3 8.5 27.5 6.4 4.8 2.46
N-4 46.2 6.5 2.8 16.9 7.3 17 3.3 9.9 2.19
N-5 60.2 7.9 6.8 21.2 3.9 10.0 2.30
N-6 50.6 4 3.7 27 10.4 4.3 8.8 2.34

1 data from [48]; 2: retested sample from [48].

4. Methods
4.1. Bulk Density, Optical and Scanning Electron Microscopy-Based Petrography

This study combines previously published bulk compositional with newly acquired
bulk density and petrographical data. Based on post-processing of SEM images, grain size
statistical studies were conducted.

Bulk density measurements on crushed shale samples (3–6 mm pieces with a to-
tal weight of 25 g) were performed at Jiangsu Design and Research Institute of Geol-
ogy and Mineral Resources (JDRIGMR) according to the China Coal Industry Standard
MT/T 1027-2006 (results shown in Table 1).

Optical petrography was performed at the Key Laboratory of Coalbed Methane Re-
sources and Reservoir Formation Process of the Ministry of Education (at China University
of Mining and Technology) using a Nikon LV100NPOL microscope, made in Shanghai,
China, and equipped with a Nikon NIS-Element 4.0 capture system, which allows adjust-
ment of exposure intensity, exposure time, and other recording parameters.

SEM petrography was carried out at the JDRIGMR using a ZEISS SIGMA microscope
equipped with an OXFORD X-Max 20 energy dispersive spectrometer. In this paper, large
scanning areas of about 300 × 200 µm2 were used in order to capture the heterogenies in
shale lithotypes as well as possible, thereby sacrificing the maximum achievable resolution
of SEM-based studies which are more relevant to pore scale studies [15,52].

4.2. Shale Lithofacies Classification

Considering the macroscopic texture and structure of the present shale samples, which
are relatively homogeneous and difficult to identify, the shale lithofacies classification
scheme in this study was achieved based on the material composition obtained from XRD
data, and refined from [53].
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As shown in Figure 2, the ternary diagram categorizes shale lithofacies in detail,
mainly considering the relative weight content of silicate minerals (quartz + feldspar), clay
minerals, and carbonate minerals (calcite + dolomite) in shales, as shown below:
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If the most dominant part, i.e., quartz + feldspar, clay minerals or carbonate, is more
than 75%, the lithofacies is named siliceous rock, claystone or carbonate rock/dolostone
respectively. However, it should be noted that the name of siliceous rock is narrowly defined
and applied only to the present classification scheme in fine-grained sediments without
considering the content of clasts and cementation, unlike the conventional definition of
rocks formed by chemical, biological, or volcanic action and rich in siliceous minerals [54].

If the most dominant part is between 50 and 75%, the lithofacies is named siliceous/
argillaceous/calcareous shale; if the content of each part is less than 50%, the lithofacies is
named (X-X) mixed shale, where X is argillaceous/siliceous/calcareous. In addition, as the
sum content of quartz and feldspar is considered as one variable, the category of siliceous
shale is further divided into two subcategories based on the content of feldspar and quartz
(feldspar siliceous shale and quartz siliceous shale).

However, if the case of a mineral content between 10 and 25% is considered strictly,
there will be more than sixty types of lithofacies, which is too complex to apply. For
simplicity, minerals with content in 10–25% range are not considered. Ultimately, the final
classification of seven lithofacies categories (Roman numbers) and nineteen lithofacies
subcategories (Arabic numbers) was determined (Figure 2).

4.3. Quartz Type Classification

The quartz in shale is of diverse origin and has been modified by complex diagenesis. In
the early stage of diagenesis, especially in the case of biogenic quartz and volcanic quartz input,
there is frequent dissolution and devitrification of amorphous quartz, e.g., transformations from
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opal-A to opal-CT (18–56 ◦C), from opal-CT to quartz (31–165 ◦C) [55–58]. Furthermore, in the
presence of clay minerals (e.g., illite), quartz also undergoes pressure dissolution (>100 ◦C) [59,60].
Moreover, the degree of clastic quartz modification varies between different shale formations,
as seen in [61,62]. Additionally, the dissolution of feldspar and clay mineral transformation are
common in shales [63]. All these processes could form or promote the formation of authigenic
quartz. In conclusion, the types of quartz in the Niutitang shales could be clastic origin, biogenic
origin, hydrothermal origin, volcanogenic origin, and authigenic origin (Figure 3).
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In this study, optical microscopy with transmitted and reflected light, and SEM were
mainly used to identify diverse quartz types.

4.4. Image Analysis

The image processing focused on non-clay-sized quartz and feldspar particles based on
energy dispersive X-ray (EDX) mapping. The grain classification approach is schematically
shown in Figure 4.
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Figure 4. Flowchart of grain classification, modified after [31].

In the first step, areal quartz and feldspar percentages were calculated based on the
abundance of Si vs. Al, Na and K in large and isolated grains (the clay-sized matrix below
the threshold value of 4 µm was ignored). Particles with the highest Si were counted as
quartz, whereas particles with second highest Al or significant signals for Na or K were
counted as feldspar. Additionally, when signals of Na and K were used to calculate feldspar,
the effect of pyroxene needed to be taken into account, because pyroxene minerals could
contain Na. Therefore, the volume share of pyroxene needed to be calculated from XRD
results and reduced from the share of feldspar.

Grain boundaries seen in the elemental images but blurred out were recovered as well
as possible by comparing with secondary electron maps. The obtained areal percentages
roughly correspond to the volume percentage of the respective phase in the bulk sample.
It is important to note that since the TOC content of the studied section is up to 12% and
strongly variable between samples, the impact of lighter-weight organic compounds to
the weight percent distribution within each sample cannot be ignored when comparing
image-derived with bulk mineralogical data (e.g., XRD data). Therefore, the image-derived
data was converted to the weight percent share within a unit volume of 1 cm3, taking
the individual TOC content and resulting bulk density (Table 1) of each sample into
consideration (see equations in Figure 5). The weight of (i) total quartz (WtQ), (ii) detrital
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silt-sized quartz (WdQ), (iii) non-detrital quartz (WndQ), which is very different from
common detrital particle morphology, and (iv) clay-sized quartz of detrital and non-detrital
origin (WcQ) were distinguished based on the weight calculated for 1 cm3 of shale (WS)
with a given percentage or weight of organic matter (WOM) which was estimated using the
carbon content of anthracite (CANT).
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Apart from the weight percentages of quartz types, the mean size values of detrital
quartz and feldspar, standard deviations, the weight proportions of detrital quartz and
feldspar to the bulk shale, and the detrital quartz/feldspar ratios based on area percentages
were calculated for each sample.

5. Results
5.1. Bulk Density

The measured bulk density values ranged from 2.19 to 2.46 g/cm3 for the six investi-
gated Niutitang Fm shale samples (Table 1). There were weak correlations between bulk
densities and TOC contents (R2 = 0.4), bulk densities and quartz contents (R2 = 0.1), bulk
densities and feldspar contents (R2 = 0.1), bulk densities and K-feldspar contents (R2 = 0.2),
bulk densities and illite contents (R2 = 0.4), bulk densities and barite contents (R2 = 0.02).

5.2. Optical Microscopy

According to transmitted and reflected light microscopy, the grains in the investigated
shales were mainly composed of quartz and feldspar, with a smaller amount of mica
(Figure 6a,b). However, no pyroxene minerals could be observed in the investigated thin
sections, so as barite and carbonate minerals (Table 1). Since pyroxene minerals would be
dealt with the method mentioned above, carbonate and barite minerals could not affect the
later image processing and phase quantification, it did not matter if these minerals could
not be observed by optical microscopy, and therefore were ignored.

The detrital grains in the investigated samples were mainly angular to sub-rounded.
No major layering was visible at thin section scale, although larger mica platelets were
relatively uniformly orientated, indicating the bedding direction (Figure 6a,b).
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Figure 6. Thin section photographs of shale samples (with the exception of (b,i), all photos with
crossed polarizers). (a) Sample N-5 containing high amounts of detrital quartz and feldspar. Lami-
nation is not developed; (b) N-3 showing oriented mica; (c) spiral-like quartz, N-3; (d–f) siliceous
sponge spicules, all from N-3; (g) polycrystalline quartz, N-6 (h) microcline, N-4; (i) replacement of
large scale quartz by pyrite, N-2. Q: quartz.

Several types of quartz were observed in the studied shales: besides angular to sub-
rounded detrital quartz grains (Figure 6a), non-detrital quartz such as spiral-like quartz,
siliceous sponge spicules, polycrystalline quartz, and vein quartz (Figures 6c–g and 7a,b):

• Spiral-like quartz (Figure 6c) is rarely observed. It has a columnar outline and is longer
than the surrounding detrital minerals. When the microscope focus was slightly
adjusted, an internal three-dimensional spiral-like microstructure could be observed,
which can be used to differentiate it with sponge spicules.

• Siliceous sponge spicules often show up as needle-like, or with a massive debris
attached (Figure 6d–f). In some cases, when observed with the crossed polarizers
under microscopy and by rotating the object stage, the structure of the needle-like
object embedded in the massive debris could be found (Figure 6e). However, in some
cases, the embedded structure could not be found (Figure 6f).

• Polycrystalline quartz (Figure 6g) tends to exceed or approach the size of the largest
detrital grains and shows up a variety of morphologies, such as elliptical and elongated.
It was common in the N-6, but relatively rare in the other samples.

• Quartz veins are bedding-parallel and have a very high length to width ratio. They are
of variable size (normally around several hundred micrometers, Figure 7a,b; unlike
fault veins cutting through the sample), and contain vertically fibrous crystals [48].
Moreover quartz veins typically contain solid bitumen [8], either along their margins
or within the veins.
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Figure 7. Reflected light microphotographs. (a,b) Vein quartz and elongated solid bitumen, both
from N-6; (c) pyrites filling fossil cavities, N-3; (d) pyrite framboid, N-3. Py: pyrite; (e) organic matter
aggregates with different pore features and size exceeding detrital grains, N-1. OM: organic matter;
(f) isolated organic matter with size approaching to detrital grains, N-1.

These features could be used to identify these quartz types from each other. A more
detailed description of quartz types based on optical and scanning electron microscopy
will be provided in a later section.

Additionally, the shales contained some microcline feldspars (Figure 6h), meaning
feldspars could also be an important detrital mineral in the shales.

Pyrite was present in trace amounts in some samples (Table 1); the observed pyrite
occurred as authigenic, well-defined crystals, as massive pyrites filling fossil cavities, as
well as in the form of preserved early diagenetic pyrite framboid (Figures 6i and 7c,d).

Due to the advanced thermal maturity, organic matter particles showed generally high
reflectance values and often well-defined shapes (Figure 7e,f). However, the morphology
and pore characteristics of organic matter particles may vary between such isolated, partly
elongated organic matter aggregates with defined outlines, which may exceed or approach
the size of the largest detrital mineral grains. Normally, the organic matter aggregates
shown in Figure 7e (the upper one) usually show up as a group consisting of several parts
which are separated by nearly vertical boundaries, so as the solid bitumen companioning
with vein quartz (Figure 7a,b).

5.3. Scanning Electron Microscopy

SEM investigations were performed both on freshly broken rock surfaces as well
as on the thin sections used for optical petrography (Figures 8 and 9). The main fo-
cus was to identify quartz types and feldspar by an overlay of electron images and
EDX maps (Figure 9).

Well-crystallized authigenic quartz, around 2 µm long, was observed (Figure 8a).
Furthermore, mapped particles with intergrowth of organic matter and orientated minerals
often show Si enrichment besides the main constituents C and O, pointing to a certain
content of quartz in these aggregates (Figure 8b,c).

EDX maps of the elements Si, Al, K, and Na were used to differentiate between
quartz (Si-rich domains) and feldspar (Al-rich, or Na- and K-rich domains). Si enrichments
occurring as “elongated” particles were counted separately (Figure 9). The Al scanning
results of N-3 and N-5 were poor; therefore, K and Na were used as feldspar indicators
particularly in these samples (Figure 9e,f).
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5.4. Quartz Types Based on Optical and Electron Microscopy

Clay-sized quartz types: Clay-sized quartz types may include authigenic quartz,
detrital quartz and biogenic quartz. Authigenic quartz is often microcrystalline or grows
in pores or is embedded in clay minerals, which can be identified by its crystalline shape
(Figure 8a, with size ~2 µm; [64]). The distinction of the different types is often difficult
and, therefore, not further discussed here.
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Silt-sized detrital quartz: The roundness of silt-sized detrital quartz is angular to sub-
rounded (Figures 6a,b and 9f). The grain size of silt grade is the main basis
for identification.

Biogenic quartz types: Biogenic quartz tends to have larger sizes, as well as more
regular geometric features than detrital grains, such as circular and linear, which could be
used to identify it from other quartz types. Spiral-like quartz (Figure 6c), needle-shaped
sponge spicules together with a massive debris (Figure 6d–f) and quartz intergrowth in
particles with organic matter (Figure 8b) were considered of biogenic origin. In contrast to
sponge spicules, the origin of spiral-like quartz and of quartz-organic matter intergrowths
cannot be identified. In addition, the variable morphology and particle-size characteristics
between biogenic and detrital quartz indicate different transport mechanisms. Furthermore,
the biogenic quartz compositions of the Niutitang Fm shales in different regions are quite
different, controlled by the sedimentary environment and the stratigraphic position within
the formation [49,65,66].

Vein quartz (Figure 7a,b) is supposed to be formed from silica-rich pore fluids after
fracture generation, and the dilatation rate of wall rock was lower than the growth rate of
quartz crystal [67,68]. The timing of vein formation remains unclear. Both opening during
hydrocarbon generation or during uplift seem possible.

Quartz types of uncertain genesis: irregularly shaped polycrystalline quartz (Figure 6g)
and “elongated” quartz were classified into quartz of uncertain origin and non-detrital
quartz in Figures 4 and 5.

The morphology of “elongated” quartz (Figure 9) is similar to that of sponge spicule [56].
However, it is also similar to the lobate-to-pointed projection, which means it has a possible
authigenic origin [69]. The “elongated” shape could also be detrital.

Although the vein quartz and “elongated” quartz are morphologically similar, they can
still be differentiated by grain size and the presence or absence of accompanied elongated
solid bitumen, i.e., the former generally shows a larger scale, lower frequency and is
accompanied with elongated solid bitumen.

Even the origins of some quartz are uncertain; they were categorized into non-detrital
quartz (WndQ) and subtracted from the total quartz (WtQ) in the calculation of clay-sized
quartz (WcQ, Figure 5). Thus, the final results of clay-sized quartz will not be affected.

5.5. Shale Lithofacies

Based on the classification method mentioned in Section 4.2 (Figure 2), a total of three
lithofacies types in the studied Niutitang Fm shales was recognized, including siliceous
rock, quartz siliceous shale and argillaceous quartz siliceous shale.

Siliceous rock: representative samples were N-1, N-5. Sample N-1 was immediately
above a polymetallic layer and can stain hands easily. It shows a well-developed lamination
(Figure 1). Furthermore, organic matter as shown in Figure 7e,f was observed. Sample N-5
was characterized as thin-moderate thick-bedded carbonaceous shale. Detrital grains in
N-5 were more abundant than in N-1. Moreover, non-porous organic matter aggregates
similar to Figure 7e were also found in N-5.

Quartz siliceous shale: representative samples were N-2, N-4. Macroscopic char-
acteristics of both samples showed moderate-thick bedded organic rich shales without
laminations. Sample N-2 had the highest organic matter content. Organic matter aggregates
shown in Figure 7e were also found in N-2. In N-4, a small amount of detrital feldspar
could be identified, including microcline (with crossed twinning, Figure 6h) and plagioclase
(with albite twin). A huge amount of detrital grains were also found in N-4.

Argillaceous quartz siliceous shale: representative samples were N-3, N-6, with lower
TOC contents than the other lithofacies. Microscopically, N-3 had a high content of detrital
minerals, no lamination, little mica content, pyrite with good crystalline shape, pyrites
filling fossil cavities, and pyrite framboids (Figure 7c,d). Some quartz of biogenic origin
was also found (Figure 6c–f). In addition, N-6 included quartz vein associated with solid
bitumen (Figure 7a,b). Polycrystalline quartz was frequently found in N-6 (Figure 6g).
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5.6. Image Analysis

The first step in image analyses was to detect the distribution of particle size of all
samples. In order to do so, uniform size intervals were chosen as follows:

(i) 4–9 µm,
(ii) 9–14 µm,
(iii) 14–19 µm,
(iv) 19–24 µm,
(v) 24–29 µm,
(vi) 35–39 µm, and
(vii) 39–44 µm.

The detailed results of the statistical analyses of particle size, and related parameters,
including area ratio in a specific size interval, average grain size, standard deviation, and
ratio of detrital quartz and feldspar, were calculated (shown in Table 2 and Figure 10).
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Figure 10. Area fractions and quantity distributions for detrital quartz and feldspar. (a–f) Statistical
results of N-1, N-2, N-3, N-4, N-5 and N-6, respectively. The frequency is the corresponding result of
unifying the measurement area to 100,000 µm2, and the total frequency is rounded.
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Table 2. Image processing results of detrital quartz and feldspar.

AR, (%)
N-1 N-2 N-3 N-4 N-5 N-6

dQ dF dQ + F dQ dF dQ + F dQ dF dQ + F dQ dF dQ + F dQ dF dQ + F dQ dF dQ + F

Particle Size
Interval, (µm)

(4–9) 1.6 1.1 2.6 1 1 2 3 1.6 4.6 2.3 1.2 3.5 1.2 1.9 3.1 1.7 1.6 3.3
(9–14) 2.9 2.1 4.9 1.7 1.9 3.5 3.3 2.1 5.4 3.5 2.1 5.6 1.7 1.6 3.3 2.5 1.0 3.5

(14–19) 3.4 1.2 4.6 2.6 1.8 4.4 3.1 1.4 4.5 3.2 1.5 4.7 1.7 3.5 5.2 1.3 1.7 3.1
(19–24) 1.8 2.4 4.2 1.4 1.6 3 3.1 2.7 5.7 3.5 0.9 4.4 2.2 2.7 4.9 1 1 2.1
(24–29) 1.5 0.4 2 1.2 2.2 3.4 3.6 2.0 5.6 1.3 0.9 2.1 1.1 1 2 1.1 0.4 1.5
(29–34) 1.7 0.5 2.2 0 0.4 0.4 0.5 1.4 1.9 0.7 0 0.7 1.5 1.8 3.4 0 0 0
(34–39) 0 0 0 0.4 0.5 0.9 2.7 0 2.7 0 0 0 0 1.4 1.4 0 0 0
(39–44) 0 0 0 0.5 0.6 1.1 0 0 0 0 0 0 0 0 0 0 0 0

dQ/dF/dQ + F 12.8 7.6 20.5 8.7 9.9 18.6 19.1 5.3 24.3 14.3 6.7 21 9.4 9.6 19 7.7 5.7 13.4

(9–24)dQ 8.1 5.7 9.4 10.1 5.6 4.9

(9–24)dQ–dQ 63 65 49 71 60 62.9

(9–24)dQ + F 13.7 10.9 15.6 14.7 13.4 8.7

(9–24)dQ + F-dQ + F 67.1 58.5 51.6 70 57.7 64.3

Average dQ + F Size, (µm) 11.1 12 11 10.2 11 9.4

Standard deviation of
dQ + F Size 6.5 7.1 7.1 5.7 6.7 4.9

RdQ-dF 1.7 0.9 3.6 2.1 0.98 1.4

Note: the effect of pyroxene has been reduced in ARdF, ARdQ+F and RdQ-dF for N-3 and N-5, with data in Table 5; ARdQ: area ratio of detrital quartz; ARdF: area ratio of detrital
feldspar; ARdQ/dF/dQ+F: area ratio of bulk detrital quartz or detrital feldspar or detrital quartz and feldspar; AR(9–24)dQ-dQ: area ratio of detrital quartz in (9–24) to bulk detrital quartz;
AR(9–24)dQ+F: area ratio of detrital quartz and feldspar in (9–24); AR(9–24)dQ+F-dQ+F: area ratio of detrital quartz and feldspar in (9–24) to bulk detrital quartz and feldspar; ARdQ+F: area
ratio of bulk detrital quartz and feldspar; RdQ-dF: ratio of bulk detrital quartz to bulk detrital feldspar.
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The area shares of the sum of total detrital quartz and feldspar within the image
maps ranged from 13% (N-6) to 24% (N-3). The areas occupied by detrital quartz ranged
between 8% (N-6) and 19% (N-3), while the areas occupied by detrital feldspar, area ratios
of pyroxene subtracted for N-3 and N-5, ranged between 5% (N-3) and 10% (N-2). The
detrital quartz vs. feldspar ratio was greater than 1 for samples N-1, N-3, N-4 and N-6
(1.7, 3.6, 2.1 and 1.4, respectively), while it was lower than 1 for samples N-2 and N-5
(0.9 and 0.98, respectively). The dominant grain size interval of detrital quartz was 9–24 µm
(49 to 71%, Table 2). The area ratios of “elongated” quartz on total area ranged from
0.3 to 0.9%, as shown in Table 3 and Figure 10.

Table 3. Image-based quantification of “elongated” quartz (unit: %; on the bulk area).

Sample N-1 N-2 N-3 N-4 N-5 N-6

Particle Size
Interval, (µm)

(4, 9)
(9, 14)
(14, 19) 0.08 0.29
(19, 24) 0.25 0.28 0.29 0.33 0.14
(24, 29) 0.14 0.28
(29, 34) 0.18 0.62
(34, 39) 0.46 0.38
(39, 44) 0.3

The mineral weights calculated for a unit volume of 1 cm3 are shown in Table 4.
In 1 cm3 of shale, the content of quartz ranged from 0.89 g (N-2) to 1.42 g (N-1); the content
of feldspar ranged from 0.13 g (N-2) to 0.28 g (N-1); the content of pyroxene in N-3, N-4
and N-5 was 0.2, 0.14 and 0.14 g, respectively.

Table 4. Mineral weight calculated for a unit sample volume of 1 cm3 (see descriptions in the text).

Sample
Weight of Mineral Matter in 1 cm3 (g)

Quartz K-Feldspar Plagioclase Feldspar Dolomite Pyroxene Clay
Mineral Pyrite Barite

N-1 1.42 0.2 0.08 0.28 0 0 0.16 0 0.14
N-2 0.89 0.13 0 0.13 0.27 0 0.39 0.22 0.11
N-3 1.11 0.13 0.1 0.23 0 0.20 0.64 0.15 0
N-4 0.9 0.13 0.05 0.18 0.33 0.14 0.33 0 0.06
N-5 1.23 0.16 0 0.16 0 0.14 0.43 0 0.08
N-6 1.07 0.08 0.08 0.16 0 0 0.57 0.22 0.09

Note: all mineral weight fractions are normalized to a unit volume of 1 cm3; weight of individual mineral
phase = weight ratio from XRD × total weight of mineral matter calculated from the respective bulk density.

The intermediate and final results of the quartz fraction calculations, using the method
schematically outlined in Figure 5, are shown in Table 5. The mass shares of clay-sized
quartz versus bulk mineral matter (WRcQ-MM) ranged from 25% (N-3) to 53% (N-1), with
a mean value of 37%. Furthermore, the volume ratios of pyroxene (VRP) are shown in
Table 5, ranging from 4.2% to 6%.

For all samples, the particle frequency decreased with increasing particle size
(Figure 10). The total frequency of measured quartz and feldspar varied between samples,
with N-3 containing the highest amount of clast (n = 505), and N-2 containing the lowest
amount of clast (n = 281, Figure 10). The area ratio decreased as the grain size increased
or decreased from the grain size interval corresponding to the highest area ratio, with a
number that could not be ignored in 4–9 µm (Figure 10). It means that the interval less than
4 µm may contain few detrital particles.
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Table 5. Content calculation results for clay-sized, “elongated” quartz and volume ratio of pyroxene
(see text descriptions).

Parameter N-1 N-2 N-3 N-4 N-5 N-6

ρQ, ρF (g/cm3) 2.65
TOC (%) 10 12.7 4.8 9.9 10 8.8

WOM (g/cm3) 0.25 0.33 0.13 0.24 0.26 0.23
WMM (g/cm3) 2 2 2.3 2 2 2.1

VRdQ (%) 12.9 8.7 19.1 14.3 9.4 7.7
WdQ (g/cm3) 0.34 0.23 0.51 0.38 0.25 0.2
WRdQ-MM (%) 17.1 11.6 21.7 19.5 12.2 9.7

WRdQ-S (%) 15.2 9.9 20.6 17.4 10.8 8.7
ρS (g/cm3) 2.24 2.33 2.46 2.19 2.3 2.34

WRtQ-MM (%) 71.1 44.4 47.7 46.2 60.2 50.6
WcQ (g/cm3) 1.05 0.64 0.59 0.51 0.96 0.84
WRcQ-tQ (%) 74 72 53 57 78 79
WRcQ-S (%) 47 28 24 23 42 36

WRcQ-MM (%) 53 32 25 26 47 40
VReQ (%) 0.8 0.61 0.65 0.29 0.9 0.76

WeQ (g/cm3) 0.021 0.016 0.017 0.008 0.024 0.02
WReQ-tQ (%) 1.5 1.8 1.6 0.9 1.9 1.9
WReQ-S (%) 0.94 0.69 0.7 0.35 1.03 0.86

WReQ-MM (%) 1.06 0.81 0.74 0.4 1.16 0.96
VRP (%) - - 6 4.3 4.2 -

Note: all mineral weight fractions were normalized to a unit volume of 1 cm3; quartz density was taken for
α quartz [70]; the carbon content of anthracite (CANT) was considered to be 90% [71]; pyroxene density was
taken as 3.3 g/cm3;.ρQ, ρF, ρS: quartz density, feldspar density, shale density; WOM: weight of organic mat-
ter; WMM: weight of mineral matter; VRdQ: volume ratio of detrital quartz; WdQ: weight of detrital quartz;
WRdQ-MM: weight ratio of detrital quartz to the mineral matter; WRdQ-S: weight ratio of detrital quartz to the
shale; WRtQ-MM: weight ratio of total quartz to the mineral matter; WtQ: weight of total quartz in bulk shale;
WcQ: weight of clay-sized quartz; WRcQ-tQ: weight ratio of clay-sized quartz to the total quartz;
WRcQ-S: weight ratio of clay-sized quartz to the shale; WRcQ-MM: weight ratio of clay-sized quartz to
the mineral matter; VReQ: volume ratio of “elongated” quartz; WeQ: weight of “elongated” quartz;
WReQ-tQ: weight ratio of “elongated” quartz to the total quartz; WReQ-S: weight ratio of “elongated” quartz to the
shale; WReQ-MM: weight ratio of “elongated” quartz to the mineral matter; VRP: volume ratio of pyroxene.

6. Discussion
6.1. Advantages and Disadvantages of This Workflow

The workflow proposed by this paper aimed to calculate the content of silt-sized
quartz and clay-sized quartz in gas shales in respect of petrology, using a combination of
some relatively low-cost and easy-to-operate methods. Although both are for the study of
refined quartz types, this workflow is more specific and straightforward than the method
of calculating “excess Si” [72]. In contrast to the workflow of physical crushing-chemical
dissolution-grain size separation [30], the present workflow reduced the interference of the
physical crushing process on the results of quartz size analysis, by in situ measuring.

However, the observation of transmitted light microscopy does not correspond per-
fectly to that of the reflected light microscopy and SEM. For example, three-dimensional
microstructures observed with the transmitted light did not show up with the reflected
light and SEM. This led to a limited in-depth discussion of the origins of quartz types.

6.2. Influence of Clay-Sized Quartz on Shale Gas Reservoir

Pore evolution during depositional processes and diagenesis is strongly controlled by
mineral composition [73]. The same samples were studied by [48], and the mesopore size
distribution and the BET specific surface area (based on Brunauer–Emmett–Teller theory
for N2-sorption) of the samples were measured. It was concluded that a higher quartz
content can contribute to relatively high porosity as the pore space development correlates
well with the quartz content [48]. Following the study by [48], the present study found that
the porosity development was not only a function of bulk quartz content, but furthermore,
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of the clay-sized quartz. The evidence was given by the better correlations between the
clay-sized quartz weight and pore data (Figure 11):
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The correlation between the clay-sized quartz weight and mesopore volume (R2 = 0.96,
Figure 11a) was much stronger than that between the total quartz weight and mesopore
volume (R2 = 0.79, Figure 11b). Furthermore, the BET specific surface area was also better
correlated with the clay-sized quartz weight (R2 = 0.93, Figure 11c) than with the total
quartz weight (R2 = 0.81, Figure 11d). Additionally, the poor correlations between pore
data and detrital quartz/feldspar weight (not shown here), and the clay-sized quartz being
the most abundant phase (except N-3, Tables 3–5) both suggest that clay-sized quartz may
play the most important role in mesopore development compared to other types of quartz
or feldspar. However, it remains to be explored whether clay-sized quartz in organic matter
or clay-sized quartz in mineral plays a more essential role.

The rigid matrix minerals and siliceous matrix framework can limit the compaction of
pores and significantly favor the development of mesopores [74,75]. The clay-sized quartz
in the Niutitang Fm shales may play the same role and contribute to the preservation
of mesopores. Moreover, the enrichment of brittle minerals such as quartz and feldspar
benefits the fracture tendency of shales [76]. Although mesopores for gas storage are less
developed in the Niutigang Fm than, e.g., in the Longmaxi Fm, from which most shale gas
in China is produced [77], the Niutitang Fm shales may benefit from the high clay-sized
quartz content for hydraulic fracturing behavior, pore connectivity, and resulting shale gas
storage and production potential.

6.3. Origin of Clay-Sized Quartz

The origin of the clay-sized quartz is complex as mentioned in the Section 4.3, and was
investigated by comparing clay-sized quartz weight with the weights of other components,
e.g., detrital quartz and feldspar, clay minerals and “elongated” quartz. These parameters
were obtained with various measurements, or the same measurements but based on differ-
ent information (e.g., different image processing areas for detrital quartz and “elongated”
quartz). Although one parameter was derived from another, new data were involved in
the process (e.g., weight of detrital quartz and weight of clay-sized quartz). Thus these
parameters are comparable.
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Overall, the clay-sized quartz weight increases with increasing total quartz content
(R2 = 0.74, Figure 12a). There is also a good positive correlation between “elongated” quartz
and clay-sized quartz (R2 = 0.71, Figure 12b). Nevertheless, the origin of the clay-sized
quartz remains unclear and probably includes several (detrital, authigenic and biogenic)
sources. In addition, authigenic quartz formed from clay transformation, and quartz and
feldspar dissolution is common in shales [78,79], and was observed in the studied shales [48].
However, the correlations between clay-sized quartz contents with detrital quartz, detrital
feldspar and clay mineral contents were weak and not shown here. Ultimately, the source
of clay-sized quartz could be clay transformation, quartz and feldspar dissolution, and
biogenic quartz transformation, consistent with [80].
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7. Conclusions

• A workflow was proposed in this paper to calculate the content of clay-sized quartz in
gas shales, by using a combination of microscopies, image analysis, and data of TOC
content, bulk density, XRD.

• A refined shale lithofacies classification with seven major categories and nineteen
subcategories was conducted. Based on it, three lithofacies of the Niutitang Fm shales
were identified.

• A variety of quartz types in shale were observed and described in detail, including
the detrital quartz, vein quartz, “elongated” quartz, needle-like quartz, and spiral-like
quartz. Furthermore, the intergrowth of organic matter with oriented minerals was
also considered as a type of quartz.

• The contents of various components, e.g., detrital quartz, clay-sized quartz and detrital
feldspar, were semi-quantitatively calculated. Clay-sized quartz may be the main
factor affecting mesopore volume and BET specific surface area. It is believed that
clay-sized quartz accounts for most of the bulk quartz content in the Niutitang Fm
shales and could origin from feldspar and quartz dissolution, clay transformation, and
biogenic quartz transformation.
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