Geochronology, Geochemistry, and Lu-Hf Isotopic Compositions of Monzogranite Intrusion from the Chang’anpu Mo Deposit, NE China: Implications for Tectonic Setting and Mineralization
Abstract
:1. Introduction
2. Regional Geological Setting
3. Petrological Characteristics
4. Analytical Methods
4.1. Major and Trace Element Determinations
4.2. Zircon U–Pb Dating
4.3. Lu–Hf Isotopic Analysis
5. Results
5.1. Major and Trace Element Geochemistry
5.2. Zircon U–Pb Geochronology
5.3. Zircon Hf Isotopic
6. Discussion
6.1. Petrogenesis and Sources of the Monzogranite Intrusion
6.1.1. Genetic Type of the Monzogranite
6.1.2. Petrogenesis and Source of the Magma
6.2. Temporal and Spatial Distribution of Regional Metallogenic Granitic Intrusions
6.3. Diagenetic and Metallogenic Model
6.4. Geodynamic Setting
7. Conclusions
- LA–ICP–MS zircon U–Pb dating reveals that the emplacement age of monzogranite intrusions in the Chang’anpu Mo deposit was 174.3 ± 1.8 to 174.9 ± 1.4 Ma. The emplacement age of intrusions, and the formation age of mineralization (168.0 ± 1.0 Ma), are close to each other and their sequence is reasonable, which suggests the causal relationship between mineralization and monzogranite intrusion.
- The Chang’anpu monzogranite intrusion has been subjected to significant fractional crystallization, belonging to high-K calc-alkaline highly fractionated I-type granite.
- Positive εHf(t) values (6.72–8.85) and young TDM2 (551–673 Ma) of monzogranite indicate that the formation of intrusion and deposit are related to the partial melting, and subsequent fractional crystallization, of the juvenile lower crust derived from Mesoproterozoic depleted mantle.
- Formation of the monzogranite intrusion and Chang’anpu deposit was closely related to the magmatism triggered by the westward subduction of Pacific plate beneath Eurasian Plate, in Early-Middle Jurassic.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cooke, D.R.; Hollings, P.; Walshe, J.L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Econ. Geol. 2005, 100, 801–818. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I.; Gardoll, S. Orogenic gold and geological time: A global synthesis. Ore Geol. Rev. 2001, 18, 1–75. [Google Scholar] [CrossRef]
- Sillitoe, R.H. A plate tectonic model for the origin of porphyry copper deposits. Econ. Geol. 1972, 67, 184–197. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Aust. J. Earth Sci. 1997, 44, 373–388. [Google Scholar] [CrossRef]
- Kerrich, R.; Goldfarb, R.; Groves, D.; Garwin, S.; Jia, Y.F. The characteristics, origins and geodynamic settings of supergiant gold metallogenic provinces. Sci. China Ser. 2000, 43, 1–68. [Google Scholar] [CrossRef]
- Mitchell, A.H.G. Metallogenic belts and angle of dip of Benioff zones. Nature 1973, 245, 49–52. [Google Scholar] [CrossRef]
- He, X.H.; Deng, X.H.; Pirajno, F.; Zhang, J.; Li, C.; Chen, S.B.; Sun, H.W. The genesis of the granitic rocks associated with the Mo-mineralization at the Hongling deposit, eastern Tianshan, NW China: Constraints from geology, geochronology, geochemistry, and Sr-Nd-Hf isotopes. Ore Geol. Rev. 2022, 146, 104947. [Google Scholar] [CrossRef]
- Li, J.; Li, C.-Y.; Liang, J.-L.; Song, M.-C.; Zhang, L.-P.; Song, Y.-X. Mineralization of the Shangjiazhuang Mo deposit in the Jiaodong peninsula, China: Constraints from S–H–O isotopes and fluid inclusions. Solid Earth Sci. 2021, 6, 370–384. [Google Scholar] [CrossRef]
- Hou, X.-G.; Sun, D.-Y.; Gou, J.; Yang, D.-G. The origin of variable-delta 18O zircons in Jurassic and Cretaceous Mo-bearing granitoids in the eastern Xing-Meng Orogenic Belt, Northeast China. Int. Geol. Rev. 2019, 61, 129–149. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, T.; Jia, Q.; Li, J.; Kong, H. Highly differentiated felsic granites linked to Mo mineralization in the East Kunlun Orogenic Belt, NW China: Constrains from geochemistry, and Sr-Nd-Hf isotopes of the Duolongqiarou porphyry Mo deposit. Ore Geol. Rev. 2022, 145, 104891. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, Y.-C.; Han, S.-J.; Meng, F. Geochemistry of zircon and apatite from the Mo ore-forming granites in the Dabie Mo belt, East China: Implications for petrogenesis and mineralization. Ore Geol. Rev. 2020, 126, 103733. [Google Scholar] [CrossRef]
- Shen, P.; Hattori, K.; Pan, H.D. Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace-Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt. Econ. Geol. 2016, 110, 1861–1878. [Google Scholar] [CrossRef]
- Mi, K.; Lü, Z.; Yan, T.; Yao, X.; Ma, Y.; Lin, C. Zircon geochronological and geochemical study of the Baogaigou Tin deposits, southern Great Xing’an Range, Northeast China: Implications for the timing of mineralization and ore genesis. Geol. J. 2020, 55, 5062–5081. [Google Scholar] [CrossRef]
- Mi, K.-F.; Lü, Z.-C.; Yan, T.-J.; Zhao, S.-J.; Yu, H.-Y. SHRIMP U-Pb zircon geochronology and Hf isotope analyses of Middle Permian-Early Triassic intrusions in southern Manzhouli area, Northeast China: Implications for the subduction of Mongol-Okhotsk plate beneath the Erguna massif. Int. Geol. Rev. 2020, 62, 549–567. [Google Scholar] [CrossRef]
- Wan, L.; Lu, C.; Zeng, Z.; Mohammed, A.S.; Liu, Z.; Dai, Q.; Chen, K. Nature and significance of the late Mesozoic granitoids in the southern Great Xing’an range, eastern Central Asian Orogenic Belt. Int. Geol. Rev. 2019, 61, 584–606. [Google Scholar] [CrossRef]
- Chen, P.; Liu, B.; Long, Z.; Zhou, L.; Fu, Y.; Zeng, Q. Ore genesis of the Sadaigoumen porphyry Mo deposit, North China Craton: Constraints from pyrite trace element and lead isotope analyses. Ore Geol. Rev. 2022, 142, 104698. [Google Scholar] [CrossRef]
- Cao, M.; Qin, K.; Li, G.; Evans, N.; Hollings, P.; Jin, L. Genesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China. Lithos 2016, 246–247, 13–30. [Google Scholar] [CrossRef]
- Zhang, X.-Z.; Wang, Q.; Dong, Y.-S. High-pressure granulite facies overprinting during the exhumation of eclogites in the Bangong-Nujiang suture zone, central Tibet: Link to flat-slab subduction. Tectonics 2017, 36, 2918–2935. [Google Scholar] [CrossRef]
- Zhai, D.; Liu, J.; Tombros, S.; Williams-Jones, A.E. The genesis of the Hashitu porphyry molybdenum deposit, Inner Mongolia, NE China: Constraints from mineralogical, fluid inclusion, and multiple isotope (H, O, S, Mo, Pb) studies. Miner. Depos. 2018, 53, 377–397. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.-H.; Gu, X.-X.; Zhang, Y.-M.; Wang, J.-L.; Peng, Y.-W.; Xu, J.-C.; Lv, X. Temporal and spatial separation mechanisms of the Cu and Mo mineralization in the Dabate porphyry deposit, Western Tianshan, Xinjiang, China. Ore Geol. Rev. 2022, 146, 104924. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Berdnikov, N.; Kepezhinskas, N.; Konovalova, N. Adakites, high-Nb basalts and copper-gold deposits in magmatic arcs and collisional orogens: An overview. Geosciences 2022, 12, 29. [Google Scholar] [CrossRef]
- Guo, Y.; Zeng, Q.; Yang, J.; Guo, F.; Guo, W.; Liu, J. Zircon U-Pb geochronology and geochemistry of Early-Middle Jurassic intrusions in the Daheishan ore district, NE China: Petrogenesis and implications for Mo mineralization. J. Asian Earth Sci. 2018, 165, 59–78. [Google Scholar] [CrossRef]
- Zhou, L.-L.; Zeng, Q.-D.; Liu, J.-M.; Friis, H.; Zhang, Z.-L.; Duan, X.-X. Geochronology of the Xingshan molybdenum deposit, Jilin Province, NE China, and its Hf isotope significance. J. Asian Earth Sci. 2013, 75, 58–70. [Google Scholar] [CrossRef]
- Zhou, L.-L.; Zeng, Q.-D.; Liu, J.-M.; Friis, H.; Zhang, Z.-L.; Duan, X.-X.; Lan, T.-G. Geochronology of magmatism and mineralization of the Daheishan giant porphyry molybdenum deposit, Jilin Province, Northeast China: Constraints on ore genesis and implications for geodynamic setting. Int. Geol. Rev. 2014, 56, 929–953. [Google Scholar] [CrossRef]
- Ju, N.; Ren, Y.-S.; Wang, C.; Wang, H.; Zhao, H.-L.; Qu, W.-J. Ore genesis and molybdenite Re-Os dating of Dashihe molybdenum deposit in Dunhua, Jilin. Glob. Geol. 2012, 31, 68–76. [Google Scholar]
- Li, L.-X.; Song, Q.-H.; Wang, D.-H.; Wang, C.-H.; Qu, W.-J.; Wang, Z.-G.; Bi, S.-Y.; Yu, C. Re-Os isotopic dating of molybdenite from the Fuanpu Molybdenum deposit of Jilin Province and discussion on Its metallogenesis. Rock Miner. Anal. 2009, 28, 283–287. [Google Scholar]
- Lu, Z.-Q.; Li, X.-J.; Qiu, C.; Liang, B.-S. Geology, geochemistry and geochronology of ore-bearing intrusions in Jidetun molybdenum deposit in mid-east Jilin Province. Miner. Depos. 2016, 35, 349–364. [Google Scholar]
- Zhang, Y. Research on Characteristics of Geology, Geochemistry and Metallogenic Mechanism of the Jurassic Molybdenum Deposits in the Mid-East Area of Jilin; Jilin University: Changchun, China, 2013; pp. 1–144. [Google Scholar]
- Wang, Q.; Li, Z.-X.; Chung, S.-L.; Wyman, D.A.; Sun, Y.-L.; Zhao, Z.-H.; Zhu, Y.-T.; Qiu, H.-N. Late Triassic high-Mg andesite/dacite suites from northern Hohxil, North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications. Lithos 2011, 126, 54–67. [Google Scholar] [CrossRef]
- Tan, H.-Y.; Lü, J.-C.; Zhang, S.; Kou, L.-L. LA—ICP—MS zircon U-Pb andmolybdenite Re-Os dating for the luming large-scale molybdenum deposit inXiao Hinggan mountains and its geological implication. Jilin Univ. 2012, 42, 1757–1770. [Google Scholar]
- Chen, J.; Sun, F.-Y.; Pan, T.; Wang, J.; Huo, L. Geological features of Huojihe Molybdenum deposit in Heilongjiang, and geochronology and geochemistry of mineralized granodiorite. Jilin Univ. 2012, 42, 207–215. [Google Scholar]
- Yang, Y.-C.; Han, S.-J.; Sun, D.-Y.; Guo, J.; Zhang, S.-J. Geological and geochemical features and geochronology of porphyry molybdenum deposits in the Lesser Xing’an Range–Zhangguangcai Range metallogenic belt. Acta Pet. Sin. 2012, 28, 379–390. [Google Scholar]
- Shu, Q.; Chang, Z.; Lai, Y.; Hu, X.; Wu, H.; Zhang, Y.; Wang, P.; Zhai, D.; Zhang, C. Zircon trace elements and magma fertility: Insights from porphyry (-skarn) Mo deposits in NE China. Miner. Depos. 2019, 54, 645–656. [Google Scholar] [CrossRef]
- Misra, K.C. Understanding Mineral Deposits; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 2000; pp. 353–413. [Google Scholar]
- Singer, D.A.; Berger, V.I.; Menzie, W.D. Porphyry copper deposit density. Econ. Geol. 2005, 100, 491–514. [Google Scholar] [CrossRef]
- Ju, N.; Zhang, S.; Zhang, D.; Kou, L.-L. A study on metallogenic epoch and geological characteristic of Chang’anbu Cu-Mo deposit, Shulan City of Jilin Province. Acta Geol. Sin. 2015, 89, 148–149. [Google Scholar]
- Ju, N.; Ren, Y.; Zhang, S.; Kou, L.; Zhang, D.; Gu, Y.; Yang, Q.; Wang, H.; Shi, L.; Sun, Q. The Early Jurassic Chang’anbu porphyry Cu–Mo deposit in Northeastern China: Constraints from zircon U-Pb geochronology and H-O-S-Pb stable isotopes. Geol. J. 2017, 53, 2437–2448. [Google Scholar] [CrossRef]
- Ju, N.; Zhang, S.; Kou, L.-L.; Wang, H.-P.; Zhang, D.; Gu, Y.-C.; Wu, T. Source and Tectonic Setting of Porphyry Mo Deposits in Shulan, Jilin Province, China. Minerals 2019, 9, 657. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Ju, N.; Zhang, S.; Kou, L.-L.; Gu, Y.-C. Geochemical characteristics and geological implication of the ore-forming rocks of the Changanpu Mo(Cu) deposit in Jilin Province. Geol. Resour. 2016, 26, 253–259. [Google Scholar]
- Zhou, Y.; Song, Q.; Zhang, Y.; Wang, Y.; Yu, C. Zircon U-Pb ages and Hf isotope composition of the ore-bearing intrusion from the Chang’anpu Mo-Cu Deposit, Jilin Province. Gold 2016, 37, 25–29. [Google Scholar]
- Han, S.-J.; Sun, J.-G.; Bai, L.-A.; Xing, S.-W.; Chai, P.; Zhang, Y.; Yang, F.; Men, L.-J.; Li, Y.-X. Geology and ages of porphyry and medium-to high-sulphidation epithermal gold deposits of the continental margin of Northeast China. Int. Geol. Rev. 2013, 55, 287–310. [Google Scholar] [CrossRef]
- Wu, F.-Y.; Jahn, B.-M.; Wilde, S.; Sun, D.-Y. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics 2000, 328, 89–113. [Google Scholar] [CrossRef]
- Jahn, B.-M.; Wu, F.; Chen, B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 2000, 23, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Jahn, B.-M.; Capdevila, R.; Liu, D.; Vernon, A.; Badarch, G. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Asian Earth Sci. 2004, 23, 629–653. [Google Scholar] [CrossRef]
- Pei, Q.-M.; Zhang, S.-T.; Hayashi, K.-I.; Cao, H.-W.; Li, D.; Tang, L.; Hu, X.-K.; Li, H.-X.; Fang, D.-R. Permo-Triassic granitoids of the Xing’an-Mongolia segment of the Central Asian Orogenic Belt, Northeast China: Age, composition, and tectonic implications. Int. Geol. Rev. 2018, 60, 1172–1194. [Google Scholar] [CrossRef]
- Wu, F.-Y.; Sun, D.-Y.; Li, H.; Jahn, B.-M.; Wilde, S. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chem. Geol. 2002, 187, 143–173. [Google Scholar] [CrossRef]
- Wu, F.-Y.; Sun, D.-Y.; Ge, W.-C.; Zhang, Y.-B.; Grant, M.L.; Wilde, S.A.; Jahn, B.-M. Geochronology of the Phanerozoic granites in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Jahn, B.-M.; Griffin, W.L.; Windley, B. Continental growth in the Phanerozoic: Evidence from Central Asia. Tectonophysics 2000, 328, 7–10. [Google Scholar] [CrossRef]
- Jahn, B.-M.; Wu, F.; Capdevila, R.; Fourcade, S.; Wang, Y.; Zhao, Z.; Wang, Y. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing’an (Khingan) Mountains in NE China. Lithos 2001, 59, 171–198. [Google Scholar] [CrossRef]
- Shen, P.; Pan, H.; Hattori, K.; Cooke, D.R.; Seitmuratova, E. Large Paleozoic and Mesozoic porphyry deposits in the Central Asian Orogenic Belt: Geodynamic settings, magmatic sources, and genetic models. Gondwana Res. 2018, 58, 161–194. [Google Scholar] [CrossRef]
- Cao, M.-J.; Li, G.-M.; Qin, K.-Z.; Evans, N.J.; Seitmuratova, E.Y. Assessing the magmatic affinity and petrogenesis of granitoids at the giant Aktogai porphyry Cu deposit, Central Kazakhstan. Am. J. Sci. 2016, 316, 614–688. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, W.; Qin, K.; Zhang, Q. The adakite connection of the Tuwu-Yandong copper porphyry belt, eastern Tianshan, NW China: Trace element and Sr-Nd-Pb isotope geochemistry. Miner. Depos. 2006, 41, 188–200. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Taylor, R.D.; Collins, G.S.; Goryachev, N.A.; Orlandini, O.F. Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Res. 2014, 25, 48–102. [Google Scholar] [CrossRef]
- Seltmann, R.; Porter, T.M.; Pirajno, F. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: A review. J. Asian Earth Sci. 2014, 79, 810–841. [Google Scholar] [CrossRef]
- Natal’in, B.A.; Borukayev, C.B. Mesozoic sutures in the southern Far East of USSR. Geotectonics 1991, 25, 64–74. [Google Scholar]
- Badarch, G.; Cunningham, W.D.; Windley, B.F. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia. Asian Earth Sci. 2002, 21, 87–110. [Google Scholar] [CrossRef]
- Sengör, A.M.C.; Natal’in, B.A. Paleotectonics of Asia: Fragments of a synthesis. In The Tectonic Evolution of Asia; Yin, A., Harrison, M., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 486–640. [Google Scholar]
- Xiao, W.; Windley, B.F.; Hao, J.; Zhai, M. Accretion leading to collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 2003, 22, 1069–1090. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Chen, Y.; Chen, Y.; Zeng, Q. Zircon U-Pb ages of the metamorphic supracrustal rocks of the Xinghuadukou Group and granitic complexes in the Argun massif of the northern Great Hinggan Range, NE China, and their tectonic implications. Asian Earth Sci. 2012, 49, 214–233. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Zhang, C.; Wang, P.; Pirajno, F.; Li, N. The Mo deposits of Northeast China: A powerful indicator of tectonic settings and associated evolutionary trends. Ore Geol. Rev. 2017, 81, 602–640. [Google Scholar] [CrossRef]
- Ge, W.-C.; Lin, Q.; Sun, D.-Y.; Wu, F.-Y.; Won, C.K.; Won, L.M.; Jim, Y.S.; Yun, S.-H. Geochemical characteristics of the Mesozoic basalts in Da Hinggan Ling: Evidence of the mantle-crust interaction. Acta Pet. Sin. 1999, 15, 397–407. [Google Scholar]
- Berdnikov, N.V.; Nevstruev, V.G.; Saksin, B.G. Genetic aspects of the noble metal mineralization at the Poperechnoe deposit, lesser Khingan, Russia. Pacific Geol. 2017, 11, 421–435. [Google Scholar] [CrossRef]
- Didenko, A.N.; Kaplin, V.B.; Malyshev, Y.F.; Shevchenko, B.F. Lithospheric structure and Mesozoic geodynamics of the eastern Central Asian orogen. Geol. Geophys. 2010, 51, 492–506. [Google Scholar] [CrossRef]
- Khanchuk, A.I.; Didenko, A.N.; Popeko, L.I.; Sorokin, A.A.; Shevchenko, B.F. Structure and evolution of the Mongol-Okhotsk orogenic belt. In The Central Asian Orogenic Belt: Geology, Evolution, Tectonics, and Models; Kröner, A., Ed.; Borntraeger Science Publishers: Stüttgart, Germany, 2015; pp. 211–234. [Google Scholar]
- Berdnikov, N.V.; Nevstruev, V.G.; Kepezhinskas, P.K.; Mochalov, A.G.; Yakubovich, O.V. PGE mineralization in andesite explosive breccias associated with the Poperechnoye iron-manganese deposit (Lesser Khingan, Far East Russia): Whole-rock geochemical, 190Pt-4He isotopic, and mineralogical evidence. Ore Geol. Rev. 2020, 118, 3352. [Google Scholar] [CrossRef]
- Berdnikov, N.V.; Nevstruev, V.G.; Kepezhinskas, P.K.; Astapov, I.; Konovalova, N. Gold in mineralized volcanic systems in the Lesser Khingan Range (Russian Far East): Textural types, composition and possible origins. Geosciences 2021, 11, 103. [Google Scholar] [CrossRef]
- Slama, J.; Kosler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, S.A.; Morris, G.A. Plesovice Zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Liu, Y.-S.; Hu, Z.-C.; Gao, S. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Zong, K.; Gao, C.; Gao, S.; Xu, J.; Chen, H. Reappraisement and refinement of zircon U–Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Anderson, T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochron Center Special Publication: Berkeley, CA, USA, 2003; pp. 1–71. [Google Scholar]
- Wu, F.-Y.; Yang, Y.-H.; Xie, L.-W.; Yang, J.-H.; Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Albarede, F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.-S.; Zhou, X.-M. Zircon chemistry and magma mixing, SE China: In situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Song, Q.-H.; Xing, S.-W.; Zhang, Y.; Li, C.; Wang, Y.; Yu, C. Origin and Geochronology of Chang’anpu Mo-Cu Deposit in Jilin Province: Constraints from Molybdenite Re-Os Isotope Systematics. Rock Mineral. Anal. 2016, 35, 550–557. [Google Scholar]
- Söderlund, U.; Patchett, P.J.; Vervoort, J.D.; Isachsen, C.E. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Pet. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Barbarin, B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 1999, 46, 605–626. [Google Scholar] [CrossRef]
- Sylvester, P.J. Post-collisional alkaline granites. J. Geol. 1989, 97, 261–280. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Pet. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. Two contrasting granite type. Pac. Geol. 1974, 8, 173–174. [Google Scholar]
- Pitcher, W.S. Granite Type and Tectonic Environment; Mountain Building Processes; Academic Press: London, UK, 1982; pp. 19–40. [Google Scholar]
- Pitcher, W.S. The Nature and Origin of Granite Blackie; Academic and Professional: London, UK, 1993; p. 311. [Google Scholar]
- Wu, F.-Y.; Jahn, B.-M.; Wilde, S.A.; Lo, C.-H.; Yui, T.-F.; Lin, Q.; Ge, W.-C.; Sun, D.-Y. Highly fractionated I-type granites in NE China (II): Isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos 2003, 67, 191–204. [Google Scholar] [CrossRef]
- Wu, F.-Y.; Li, X.-H.; Zheng, Y.-F.; Gao, S. Lu-Hf isotopic systematics and their application in petrology. Acta Pet. Sin. 2007, 23, 185–220. [Google Scholar]
- Cheng, Y.-B.; Mao, J.-W. Age and geochemistry of granites in Gejiu area, Yunnan province, SW China: Constraints on their petrogenesis and tectonic setting. Lithos 2010, 120, 258–276. [Google Scholar]
- Castillo, P.R.; Janney, P.E.; Solidum, R.U. Petrology and geochemistry of Camiguin island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contrib. Mineral. Pet. 1999, 134, 33–51. [Google Scholar] [CrossRef]
- Schiano, P.; Monzier, M.; Eissen, J.P.; Martin, H.; Koga, K.T. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib. Mineral. Petr. 2010, 160, 297–312. [Google Scholar] [CrossRef]
- Chappell, B.W.; Bryant, C.J.; Wyborn, D. Peraluminous I-type granites. Lithos 2012, 153, 142–153. [Google Scholar] [CrossRef]
- Castillo, P.R. Adakite petrogenesis. Lithos 2012, 135, 304–316. [Google Scholar] [CrossRef]
- Defant, M.J.; Xu, J.-F.; Kepezhinskas, P.; Wang, Q.; Zhang, Q.; Xiao, L. Adakites: Some variations on a theme. Acta Pet. Sin. 2002, 18, 128–142. [Google Scholar]
- Drummond, M.S.; Defant, M.J.; Kepezhinskas, P.K. Petrogenesis of slab-derived trondhjemite- tonalite- dacite/adakite magmas. Earth Environ. Sci. Trans. R. Soc. Edinburgh. 1996, 87, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Cocherine, A. Systematic use of trace element distribution patterns in log-log diagram for plutonic suites. Geochim. Et. Cosmochim. Acta 1986, 1, 2517–2522. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, A.R. Geochemistry of Eocene calc–alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contr. Miner. Petro. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Vervoort, J.D.; Blichert-Toft, J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Et. Cosmochim. Acta 1999, 63, 533–556. [Google Scholar] [CrossRef]
- Kinny, P.D.; Maas, R. Lu-Hf and Sm-Nd isotope systems in zircon. Rev. Mineral. Geochem. 2003, 53, 327–341. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, F.; Wiled, S.A.; Zhai, M.; Lu, X.; Sun, D. Zircon U-Pb ages and tectonic implications of Early Paleozoic granitoids at Yanbian, Jilin Province, northeast China. Isl. Arc. 2004, 13, 484–505. [Google Scholar] [CrossRef]
- Wilkinson, J.J. Triggers for the formation of porphyry ore deposits in magmatic arcs: Predisposition or perfect storm? Nat. Geosci. Rev. Artic. 2013, 10, 1038–1940. [Google Scholar]
- Solomon, M. Subduction, arc reversal, and the origin of porphyry copper-gold deposits in island arcs. Geology 1990, 18, 630–633. [Google Scholar] [CrossRef]
- Richards, J.P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ. Geol. 2003, 98, 1515–1533. [Google Scholar] [CrossRef]
- Audétat, A. Source and evolution of molybdenum in the porphyry Mo (-Nb) deposit at Cave Peak, Texas. J. Pet. 2010, 51, 1739–1760. [Google Scholar] [CrossRef]
- Audétat, A.; Dolejš, D.; Lowenstern, J.B. Molybdenite saturation in silicic magmas: Occurrence and petrological implications. J. Pet. 2011, 52, 891–904. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-Z.; Qin, K.-Z.; Li, G.-M.; Ishihara, S.; Jin, L.-Y.; Song, G.-X.; Meng, Z.-J. Formation of the giant Chalukou porphyry Mo deposit in northern Great Xing’an Range, NE China: Partial melting of the juvenite lower crust in untra-plate extensional environment. Lithos 2014, 202–203, 138–1156. [Google Scholar] [CrossRef]
- Fan, W.-M.; Guo, F.; Wang, Y.-J.; Lin, G. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China. J. Volcanol. Geotherm. Res. 2003, 121, 115–135. [Google Scholar] [CrossRef]
- Shao, J.-A.; Zang, S.-X.; Mou, B.-L.; Li, X.-B.; Wang, B. Extensional tectonics and asthenospheric upwelling in the orogenic belt: A case study from Hinggan—Mongolia orogenic belt. Chin. Sci. Bull. 1994, 39, 533–537. [Google Scholar]
- Lin, Q.; Ge, W.-C.; Sun, D.-Y.; Wu, F.-Y. Geomechanical significance of the Mesozoic volcanics in Northeast Asia. Chin. J. Geophys. Chin. Ed. 1999, 42, 75–84. [Google Scholar]
- Mao, J.-W.; Wang, Z.-L. A preliminary study on time limits and geodynamic setting of large-scale metallogeny in East China. Miner. Depos. 2000, 19, 289–296. [Google Scholar]
- Muller, D.; Groves, D.I. Potassic igneous rocks and associated gold-copper mineralization. Miner. Resour. Rev. 2019, 53, 1235–1236. [Google Scholar]
- Pearce, J.A. Sources and settings of granitic rock. Episodes 1996, 19, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Wakita, K.; Metcalfe, I. Ocean plate stratigraphy in East and Southeast Asia. J. Asian Earth Sci. 2005, 24, 679–702. [Google Scholar] [CrossRef]
- Yu, J.-J.; Wang, F.; Xu, W.-L.; Gao, F.-H.; Pei, F.-P. Early Jurassic mafic magmatism in the Lesser Xing’an—Zhangguangcai Range, NE China, and its tectonic implications: Constraints from zircon U-Pb chronology and geochemistry. Lithos 2012, 142, 256–266. [Google Scholar] [CrossRef]
- Xiao, W.; Song, D.; Windley, B.F.; Li, J.; Han, C.; Wan, B.; Zhang, J.; Ao, S.; Zhang, Z. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: Advances and perspectives. Sci. China Earth Sci. 2020, 63, 329–361. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.-Y.; Lin, J.-Q.; Wilde, S.A.; Zhang, X.-O.; Yang, J.-H. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett. 2005, 233, 103–119. [Google Scholar] [CrossRef]
- Guo, F.; Li, H.; Fan, W.; Li, J.; Zhao, L.; Huang, M.; Xu, W. Early Jurassic subduction of the Paleo-Pacific Ocean in NE China: Petrologic and geochemical evidence from the Tumen mafic intrusive complex. Lithos 2015, 224, 46–60. [Google Scholar] [CrossRef]
No. | Typical Deposits | Mineral Type | Metallogenic Rock | Ages (Ma) | Tectonic Setting | References |
---|---|---|---|---|---|---|
1 | Dongfengbeishan | Mo | Porphyritic monzogranite | 195.6 ± 1.9 | Extensional tectonic setting caused by subduction of the Pacific plate | [22] |
2 | Daheishan | Mo | Granodiorite porphyry | 166.6 ± 4 | Extensional tectonic setting caused by subduction of the Pacific plate | [23] |
3 | Xingshan | Mo | Granodiorite porphyry | 171.7 ± 2.2 | Active continental margin; related to subduction of the Pacific plate | [24] |
4 | Dashihe | Mo | Porphyritic granodiorite | 186.7 ± 5 | Extensional tectonic setting caused by subduction of the Pacific plate | [25] |
5 | Fu’anpu | Mo | Porphyritic monzogranite | 166.9 ± 6.7 | Extensional tectonic setting caused by subduction of the Pacific plate | [26] |
6 | Jidetun | Mo | Granodiorite | 180.2 ± 0.8 | Active continental margin; related to subduction of the Pacific plate | [27] |
7 | Chang’anpu | Mo | Monzogranite | 174.3–174.9 | Extensional tectonic setting caused by subduction of the Pacific plate | This study |
8 | Houdaomu | Mo | Yanshanian granite | 167.5 ± 1.2 | Extensional tectonic setting caused by subduction of the Pacific plate | [28] |
9 | Liushengdian | Mo | Monzogranite porphyry | 169.4 ± 1.0 | Volcanic arc setting; related to subduction of the Pacific plate | [29] |
10 | Luming | Mo | Monzogranite porphyry | 183.2 ± 1.9 | Volcanic arc setting; related to subduction of the Pacific plate | [30] |
11 | Huojihe | Mo | Granodiorite | 181.0 ± 1.9 | Volcanic arc setting; related to subduction of the Pacific plate | [31] |
12 | Cuiling | Mo | Quratz monzonite | 178.0 ± 0.7 | Volcanic arc setting; related to subduction of the Pacific plate | [32] |
Sample No. | N1-Q1 | N1-Q2 | N1-Q3 | N1-Q4 | N1-Q5 | N1-Q6 | N2-Q1 | N2-Q2 | N2-Q3 | N3-Q1 | N3-Q2 | N3-Q3 | N3-Q4 | N3-Q5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 69.81 | 70.22 | 70.11 | 70.36 | 70.03 | 69.50 | 73.48 | 75.42 | 70.19 | 69.76 | 72.16 | 84.39 | 74.78 | 71.33 |
Al2O3 | 15.24 | 15.20 | 15.36 | 14.93 | 15.30 | 15.02 | 13.93 | 13.08 | 15.21 | 15.00 | 14.28 | 6.35 | 11.96 | 13.12 |
TFe2O3 | 2.56 | 2.17 | 2.34 | 2.24 | 2.26 | 2.30 | 0.68 | 1.00 | 2.26 | 2.24 | 2.05 | 1.22 | 1.02 | 1.95 |
MgO | 0.67 | 0.63 | 0.66 | 0.56 | 0.59 | 0.66 | 0.13 | 0.14 | 0.60 | 0.67 | 0.50 | 0.15 | 0.34 | 0.60 |
CaO | 1.86 | 1.80 | 1.82 | 1.86 | 1.94 | 1.77 | 0.74 | 0.47 | 1.94 | 1.78 | 1.44 | 0.74 | 1.61 | 2.00 |
Na2O | 4.25 | 4.42 | 4.42 | 4.44 | 4.58 | 4.04 | 3.31 | 3.02 | 4.55 | 4.30 | 4.10 | 0.16 | 2.13 | 0.21 |
K2O | 3.58 | 3.77 | 3.69 | 3.73 | 3.70 | 4.10 | 6.50 | 5.88 | 3.63 | 4.13 | 4.22 | 4.23 | 5.57 | 7.19 |
MnO | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 |
TiO2 | 0.37 | 0.34 | 0.35 | 0.33 | 0.34 | 0.37 | 0.06 | 0.07 | 0.34 | 0.35 | 0.29 | 0.19 | 0.19 | 0.16 |
P2O5 | 0.14 | 0.12 | 0.13 | 0.12 | 0.12 | 0.13 | <0.01 | <0.01 | 0.12 | 0.14 | 0.10 | 0.15 | 0.04 | 0.03 |
LOI 1000 | 1.24 | 0.90 | 1.00 | 0.91 | 0.94 | 1.30 | 0.84 | 0.66 | 0.90 | 1.58 | 1.34 | 1.36 | 1.98 | 3.04 |
Mg# | 0.34 | 0.36 | 0.36 | 0.32 | 0.33 | 0.36 | 0.27 | 0.22 | 0.34 | 0.37 | 0.32 | 0.19 | 0.40 | 0.38 |
La | 33.2 | 31.1 | 32.9 | 31.9 | 31.6 | 30.5 | 17.1 | 28.0 | 32.3 | 24.7 | 20.5 | 14.9 | 20.7 | 24.0 |
Ce | 67.9 | 61.3 | 67.8 | 64.1 | 62.8 | 61.1 | 33.9 | 53.0 | 64.9 | 58.7 | 47.5 | 35.8 | 46.0 | 52.7 |
Pr | 7.37 | 6.42 | 7.21 | 6.99 | 6.65 | 6.66 | 3.42 | 5.08 | 7.06 | 7.20 | 5.69 | 4.01 | 4.79 | 5.35 |
Nd | 25.6 | 22.3 | 24.7 | 24.5 | 23.5 | 24.1 | 10.7 | 15.1 | 24.7 | 23.0 | 18.0 | 13.4 | 13.9 | 15.5 |
Sm | 4.08 | 3.46 | 3.99 | 3.77 | 3.70 | 4.14 | 1.73 | 2.38 | 3.80 | 3.98 | 3.09 | 2.47 | 2.43 | 2.76 |
Eu | 0.91 | 0.91 | 0.87 | 0.85 | 0.92 | 0.93 | 0.26 | 0.29 | 0.89 | 0.80 | 0.72 | 0.49 | 0.48 | 0.56 |
Gd | 2.77 | 2.34 | 2.76 | 2.54 | 2.44 | 2.67 | 1.36 | 2.08 | 2.37 | 2.63 | 2.04 | 1.68 | 1.74 | 2.09 |
Tb | 0.33 | 0.32 | 0.32 | 0.31 | 0.31 | 0.32 | 0.21 | 0.32 | 0.30 | 0.34 | 0.27 | 0.23 | 0.28 | 0.28 |
Dy | 1.68 | 1.43 | 1.54 | 1.43 | 1.50 | 1.58 | 1.18 | 1.79 | 1.49 | 1.67 | 1.19 | 1.23 | 1.61 | 1.56 |
Ho | 0.29 | 0.26 | 0.29 | 0.25 | 0.26 | 0.25 | 0.26 | 0.38 | 0.26 | 0.30 | 0.24 | 0.23 | 0.34 | 0.29 |
Er | 0.81 | 0.72 | 0.77 | 0.64 | 0.69 | 0.66 | 0.82 | 1.36 | 0.71 | 0.83 | 0.60 | 0.66 | 1.02 | 0.83 |
Tm | 0.12 | 0.10 | 0.11 | 0.09 | 0.10 | 0.09 | 0.15 | 0.25 | 0.10 | 0.12 | 0.10 | 0.10 | 0.17 | 0.13 |
Yb | 0.66 | 0.64 | 0.66 | 0.59 | 0.66 | 0.63 | 1.07 | 1.75 | 0.62 | 0.76 | 0.56 | 0.67 | 1.21 | 0.87 |
Lu | 0.11 | 0.11 | 0.11 | 0.09 | 0.10 | 0.10 | 0.19 | 0.34 | 0.10 | 0.12 | 0.10 | 0.10 | 0.20 | 0.15 |
Y | 7.7 | 7.0 | 7.5 | 7.0 | 7.0 | 6.8 | 7.2 | 11.7 | 7.1 | 7.1 | 5.8 | 5.3 | 6.1 | 7.5 |
ΣREE | 145.83 | 131.41 | 144.03 | 138.05 | 135.23 | 133.73 | 72.35 | 112.12 | 139.60 | 125.15 | 100.60 | 75.97 | 94.87 | 107.07 |
LREE | 139.06 | 125.49 | 137.47 | 132.11 | 129.17 | 127.43 | 67.11 | 103.85 | 133.65 | 118.38 | 95.50 | 71.07 | 88.30 | 100.87 |
HREE | 6.77 | 5.92 | 6.56 | 5.94 | 6.06 | 6.30 | 5.24 | 8.27 | 5.95 | 6.77 | 5.10 | 4.90 | 6.57 | 6.20 |
LREE/HREE | 20.54 | 21.20 | 20.96 | 22.24 | 21.32 | 20.23 | 12.81 | 12.56 | 22.46 | 17.49 | 18.73 | 14.50 | 13.44 | 16.27 |
LaN/YbN | 33.91 | 32.76 | 33.61 | 36.45 | 32.28 | 32.64 | 10.77 | 10.79 | 35.12 | 21.91 | 24.68 | 14.99 | 11.53 | 18.60 |
δEu | 0.78 | 0.92 | 0.76 | 0.79 | 0.88 | 0.80 | 0.50 | 0.39 | 0.85 | 0.71 | 0.83 | 0.70 | 0.68 | 0.69 |
δCe | 1.00 | 0.99 | 1.02 | 0.99 | 0.99 | 0.99 | 1.01 | 0.99 | 0.99 | 1.05 | 1.04 | 1.09 | 1.07 | 1.08 |
Rb | 104.5 | 97.4 | 103.5 | 94.3 | 94.2 | 118.5 | 214 | 200 | 93.5 | 113.0 | 118.0 | 129.5 | 195.0 | 272 |
Ba | 710 | 741 | 729 | 758 | 757 | 870 | 751 | 327 | 736 | 710 | 690 | 360 | 430 | 480 |
Th | 11.50 | 7.71 | 12.10 | 8.94 | 8.25 | 8.98 | 33.1 | 37.7 | 8.45 | 6.58 | 6.59 | 16.45 | 32.1 | 36.2 |
U | 4.89 | 3.09 | 3.87 | 5.63 | 4.64 | 2.69 | 6.63 | 16.10 | 3.75 | 1.7 | 2.8 | 8.0 | 8.1 | 20.2 |
K | 29,100 | 31,100 | 31,300 | 31,100 | 29,500 | 33,000 | 52,000 | 47,900 | 28,500 | 32,900 | 33,200 | 33,100 | 44,400 | 56,700 |
Ta | 0.96 | 0.69 | 0.80 | 0.71 | 0.84 | 0.58 | 1.82 | 2.23 | 0.69 | 0.36 | 0.55 | 0.64 | 1.11 | 0.85 |
Nb | 9.2 | 7.9 | 9.2 | 8.6 | 8.5 | 7.6 | 4.2 | 9.0 | 7.7 | 4.7 | 6.9 | 5.5 | 4.2 | 3.8 |
Sr | 551 | 575 | 578 | 571 | 604 | 529 | 175.0 | 134.0 | 574 | 488 | 399 | 79.4 | 125.0 | 119.0 |
P | 630 | 590 | 610 | 550 | 550 | 590 | 20 | 30 | 560 | 600 | 480 | 620 | 170 | 160 |
Zr | 196.0 | 183.0 | 190.0 | 190.0 | 193.0 | 195.0 | 82.9 | 85.6 | 168.0 | 178 | 158 | 66 | 79 | 79 |
Ti | 1860 | 1850 | 1820 | 1840 | 1820 | 1800 | 260 | 430 | 1820 | 1400 | 1640 | 890 | 750 | 620 |
Spot No. | Content (ppm) | Isotopic Ratios | Ages (Ma) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Th | U | Th/U | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | |
CAPN1-01 | 1166 | 1909 | 0.61 | 0.0505168 | 0.001 | 0.188312 | 0.0052 | 0.027276 | 0.0004 | 175 | 4 | 173 | 3 |
CAPN1-03 | 934 | 1157 | 0.81 | 0.0499482 | 0.002 | 0.188502 | 0.0057 | 0.027734 | 0.0004 | 175 | 5 | 176 | 2 |
CAPN1-05 | 885 | 1074 | 0.82 | 0.0528013 | 0.005 | 0.196195 | 0.0193 | 0.027704 | 0.0007 | 182 | 16 | 176 | 4 |
CAPN1-07 | 565 | 814 | 0.69 | 0.0494549 | 0.002 | 0.182835 | 0.0062 | 0.027033 | 0.0004 | 170 | 5 | 172 | 3 |
CAPN1-08 | 1256 | 2166 | 0.58 | 0.0499937 | 0.001 | 0.188835 | 0.0054 | 0.027514 | 0.0004 | 176 | 5 | 175 | 2 |
CAPN1-09 | 1295 | 1274 | 1.02 | 0.0507414 | 0.002 | 0.191476 | 0.0088 | 0.027871 | 0.0009 | 178 | 8 | 177 | 6 |
CAPN1-10 | 1794 | 4265 | 0.42 | 0.0494465 | 0.001 | 0.187614 | 0.0051 | 0.027709 | 0.0005 | 175 | 4 | 176 | 3 |
CAPN1-11 | 597 | 1330 | 0.45 | 0.0498194 | 0.001 | 0.190612 | 0.0055 | 0.027937 | 0.0004 | 177 | 5 | 178 | 2 |
CAPN1-12 | 915 | 1460 | 0.63 | 0.0504564 | 0.004 | 0.185356 | 0.0138 | 0.027401 | 0.0006 | 173 | 12 | 174 | 4 |
CAPN1-13 | 906 | 1309 | 0.69 | 0.0500006 | 0.002 | 0.185935 | 0.0062 | 0.027183 | 0.0004 | 173 | 5 | 173 | 2 |
CAPN1-14 | 1593 | 3157 | 0.5 | 0.0477714 | 0.001 | 0.175782 | 0.0051 | 0.02713 | 0.0005 | 164 | 4 | 173 | 3 |
CAPN1-15 | 1319 | 1912 | 0.69 | 0.049947 | 0.001 | 0.190564 | 0.0052 | 0.02789 | 0.0005 | 177 | 4 | 177 | 3 |
CAPN1-17 | 1514 | 2242 | 0.68 | 0.0515432 | 0.003 | 0.186514 | 0.0137 | 0.027435 | 0.0006 | 174 | 12 | 174 | 4 |
CAPN1-18 | 1221 | 1030 | 1.19 | 0.0487357 | 0.002 | 0.179784 | 0.0053 | 0.027008 | 0.0004 | 168 | 5 | 172 | 2 |
CAPN1-19 | 1724 | 3141 | 0.55 | 0.0497213 | 0.002 | 0.194386 | 0.0073 | 0.027577 | 0.0006 | 180 | 6 | 175 | 4 |
CAPN1-20 | 1025 | 949 | 1.08 | 0.0500614 | 0.002 | 0.189231 | 0.0075 | 0.027619 | 0.0004 | 176 | 6 | 176 | 3 |
CAPN2-02 | 416 | 659 | 0.63 | 0.0520146 | 0.003 | 0.197099 | 0.0104 | 0.027532 | 0.0005 | 183 | 9 | 175 | 3 |
CAPN2-03 | 528 | 634 | 0.83 | 0.0510265 | 0.002 | 0.195921 | 0.0104 | 0.02757 | 0.0005 | 182 | 9 | 175 | 3 |
CAPN2-05 | 556 | 833 | 0.67 | 0.0512714 | 0.002 | 0.192038 | 0.0101 | 0.027793 | 0.0007 | 178 | 9 | 177 | 4 |
CAPN2-06 | 699 | 1863 | 0.38 | 0.0495716 | 0.002 | 0.18808 | 0.0064 | 0.027496 | 0.0004 | 175 | 5 | 175 | 3 |
CAPN2-07 | 438 | 1062 | 0.41 | 0.0502362 | 0.002 | 0.188845 | 0.0062 | 0.027359 | 0.0003 | 176 | 5 | 174 | 2 |
CAPN2-08 | 701 | 861 | 0.81 | 0.0520615 | 0.003 | 0.187827 | 0.0086 | 0.027355 | 0.0005 | 175 | 7 | 174 | 3 |
CAPN2-09 | 820 | 882 | 0.93 | 0.0508521 | 0.002 | 0.192526 | 0.0071 | 0.027582 | 0.0003 | 179 | 6 | 175 | 2 |
CAPN2-12 | 406 | 768 | 0.53 | 0.0512003 | 0.002 | 0.195554 | 0.0076 | 0.027821 | 0.0003 | 181 | 6 | 177 | 2 |
CAPN2-14 | 490 | 822 | 0.6 | 0.0512211 | 0.006 | 0.179694 | 0.0115 | 0.027362 | 0.0004 | 168 | 10 | 174 | 2 |
CAPN2-15 | 556 | 641 | 0.87 | 0.0481857 | 0.003 | 0.188462 | 0.0137 | 0.027444 | 0.0005 | 175 | 12 | 175 | 3 |
CAPN2-20 | 697 | 1391 | 0.5 | 0.0461123 | 0.002 | 0.175779 | 0.0104 | 0.027403 | 0.0004 | 164 | 9 | 174 | 2 |
CAPN3-01 | 309 | 367 | 0.84 | 0.05053 | 0.004 | 0.18999 | 0.014 | 0.02728 | 0.0005 | 177 | 12 | 174 | 3 |
CAPN3-02 | 289 | 549 | 0.53 | 0.05109 | 0.003 | 0.19454 | 0.0112 | 0.02762 | 0.0005 | 180 | 10 | 176 | 3 |
CAPN3-03 | 1029 | 1110 | 0.93 | 0.05064 | 0.003 | 0.18893 | 0.0117 | 0.02706 | 0.0005 | 176 | 10 | 172 | 3 |
CAPN3-04 | 396 | 416 | 0.95 | 0.04931 | 0.009 | 0.18155 | 0.0316 | 0.02671 | 0.0011 | 169 | 27 | 170 | 7 |
CAPN3-05 | 158 | 263 | 0.6 | 0.04978 | 0.008 | 0.19239 | 0.0282 | 0.02804 | 0.0009 | 179 | 24 | 178 | 6 |
CAPN3-06 | 238 | 291 | 0.82 | 0.05078 | 0.006 | 0.18888 | 0.02 | 0.02699 | 0.0007 | 176 | 17 | 172 | 4 |
CAPN3-07 | 247 | 324 | 0.76 | 0.05019 | 0.003 | 0.19099 | 0.0127 | 0.02761 | 0.0005 | 177 | 11 | 176 | 3 |
CAPN3-10 | 519 | 689 | 0.75 | 0.04934 | 0.004 | 0.18679 | 0.0158 | 0.02747 | 0.0006 | 174 | 13 | 175 | 4 |
CAPN3-12 | 819 | 1036 | 0.79 | 0.05026 | 0.003 | 0.18991 | 0.011 | 0.02742 | 0.0005 | 177 | 9 | 174 | 3 |
CAPN3-13 | 163 | 328 | 0.5 | 0.04892 | 0.008 | 0.18685 | 0.0284 | 0.02773 | 0.0009 | 174 | 24 | 176 | 6 |
CAPN3-14 | 114 | 194 | 0.59 | 0.05055 | 0.01 | 0.18068 | 0.0361 | 0.02595 | 0.0011 | 169 | 31 | 165 | 7 |
CAPN3-15 | 238 | 238 | 1 | 0.05008 | 0.009 | 0.19644 | 0.0357 | 0.02848 | 0.0012 | 182 | 30 | 181 | 7 |
CAPN3-16 | 321 | 302 | 1.07 | 0.05229 | 0.01 | 0.19021 | 0.0342 | 0.02642 | 0.0009 | 177 | 29 | 168 | 6 |
CAPN3-17 | 424 | 386 | 1.1 | 0.05125 | 0.004 | 0.19832 | 0.0155 | 0.0281 | 0.0006 | 184 | 13 | 179 | 4 |
CAPN3-18 | 378 | 535 | 0.71 | 0.05205 | 0.007 | 0.18961 | 0.0259 | 0.02646 | 0.0008 | 176 | 22 | 168 | 5 |
CAPN3-19 | 1015 | 809 | 1.25 | 0.05018 | 0.003 | 0.19373 | 0.0095 | 0.02805 | 0.0004 | 180 | 8 | 178 | 3 |
CAPN3-20 | 1111 | 458 | 2.42 | 0.05144 | 0.003 | 0.19129 | 0.0124 | 0.02702 | 0.0005 | 178 | 11 | 172 | 3 |
Spot No. | t (Ma) | 176Yb/177Hf | 176Lu/177Hf | 176Hf/177Hf | ±2σ | εHf(0) | εHf(t) | TDM1(Hf) | TDM2(Hf) | fLu/Hf |
---|---|---|---|---|---|---|---|---|---|---|
CAP1-1 | 168 | 0.02592766 | 0.0009840158 | 0.2828861 | 0.0000219 | 4.04 | 7.62 | 518 | 618 | −0.97 |
CAP1-2 | 179 | 0.01729984 | 0.0006920099 | 0.2828532 | 0.0000187 | 2.87 | 6.72 | 561 | 673 | −0.98 |
CAP1-3 | 175 | 0.01901383 | 0.0007703959 | 0.2828679 | 0.0000155 | 3.39 | 7.15 | 541 | 648 | −0.98 |
CAP1-4 | 165 | 0.01363266 | 0.0005199855 | 0.2829033 | 0.0000164 | 4.64 | 8.21 | 488 | 585 | −0.98 |
CAP1-5 | 176 | 0.01551419 | 0.0005905786 | 0.2828648 | 0.0000210 | 3.28 | 7.08 | 543 | 652 | −0.98 |
CAP1-6 | 163 | 0.01858129 | 0.0006998950 | 0.2829231 | 0.0000192 | 5.34 | 8.85 | 462 | 551 | −0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Yang, Y.; Han, S.; Wutiepu, W. Geochronology, Geochemistry, and Lu-Hf Isotopic Compositions of Monzogranite Intrusion from the Chang’anpu Mo Deposit, NE China: Implications for Tectonic Setting and Mineralization. Minerals 2022, 12, 967. https://doi.org/10.3390/min12080967
Zhang J, Yang Y, Han S, Wutiepu W. Geochronology, Geochemistry, and Lu-Hf Isotopic Compositions of Monzogranite Intrusion from the Chang’anpu Mo Deposit, NE China: Implications for Tectonic Setting and Mineralization. Minerals. 2022; 12(8):967. https://doi.org/10.3390/min12080967
Chicago/Turabian StyleZhang, Jian, Yanchen Yang, Shijiong Han, and Wukeyila Wutiepu. 2022. "Geochronology, Geochemistry, and Lu-Hf Isotopic Compositions of Monzogranite Intrusion from the Chang’anpu Mo Deposit, NE China: Implications for Tectonic Setting and Mineralization" Minerals 12, no. 8: 967. https://doi.org/10.3390/min12080967
APA StyleZhang, J., Yang, Y., Han, S., & Wutiepu, W. (2022). Geochronology, Geochemistry, and Lu-Hf Isotopic Compositions of Monzogranite Intrusion from the Chang’anpu Mo Deposit, NE China: Implications for Tectonic Setting and Mineralization. Minerals, 12(8), 967. https://doi.org/10.3390/min12080967