Rare Element Enrichment in Lithium Pegmatite Exomorphic Halos and Implications for Exploration: Evidence from the Leinster Albite-Spodumene Pegmatite Belt, Southeast Ireland
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. Mineralogical and Petrographic Features
4.2. Whole-Rock Geochemistry
4.3. Characterization of Exomorphic Halos
5. Discussion
5.1. Pegmatite-Country Rock Interactions and Exomorphic Halo Formation
5.2. Economic Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glover, A.J.; Rogers, W.Z.; Barton, J.E. Granitic Pegmatites: Storehouses of Industrial Minerals. Elements 2012, 8, 269–273. [Google Scholar] [CrossRef]
- Linnen, R.L.; Van Lichtervelde, M.; Černý, P. Granitic Pegmatites as Sources of Strategic Metals. Elements 2012, 8, 275–280. [Google Scholar] [CrossRef]
- London, D. Rare-Element Granitic Pegmatites. In Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists; Verplanck, P.L., Hitzman, L.W., Eds.; Society of Economic Geologists, Inc.: Littleton, CO, USA, 2016; Volume 18, pp. 165–194. [Google Scholar]
- United States Geological Survey. Mineral Commodity Summaries; United States Geological Survey: Reston, VA, USA, 2022; p. 202.
- European Commission. Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability; European Commission: Brussels, Belgium, 2020; p. 23. [Google Scholar]
- Pirajno, F. Hydrothermal Processes and Mineral Systems; Springer: Berlin/Heidelberg, Germany, 2009; p. 1250. [Google Scholar]
- Smith, R.E.; Perdrix, J.L.; Davis, J.M. Dispersion into pisolitic laterite from the Greenbushes mineralized Sn-Ta pegmatite system, Western Australia. J. Geochem. Explor. 1987, 28, 251–265. [Google Scholar] [CrossRef]
- Shearer, C.K.; Papike, J.J.; Simon, S.B.; Laul, J.C. Pegmatite-wallrock interactions, Black Hills, South Dakota: Interaction between pegmatite-derived fluids and quartz-mica schist wallrock. Am. Mineral. 1986, 71, 518–539. [Google Scholar]
- Trueman, D.L.; Černý, P. Exploration for rare-element granitic pegmatites. In Granitic Pegmatites in Science and Industry: Mineralogical Association of Canada Short Course Handbook; Černý, P., Ed.; Mineralogical Association of Canada: Quebec, QC, Canada, 1982; Volume 8, pp. 463–493. [Google Scholar]
- Selway, J.B.; Breaks, F.W.; Tindle, A.G. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits. Explor. Min. Geol. 2005, 14, 1–30. [Google Scholar] [CrossRef]
- Galeschuk, C.R.; Vanstone, P.J. Exploration for buried rare-element pegmatites in the Bernic Lake area of southeastern Manitoba. In Rare-Element Geochemistry and Mineral Deposits, Geological Association of Canada, Short Course Notes; Linnen, R.L., Samson, I.M., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 2005; Volume 17, pp. 153–167. [Google Scholar]
- Galeschuk, C.R.; Vanstone, P.J. Exploration techniques for rare-element pegmatite in the Bird River greenstone belt, southeastern Manitoba. In Proceedings of the Exploration 07: Fifth Decennial International Conference on Mineral Exploration, Toronto, ON, Canada, 9–12 September 2007; Milkereit, B., Ed.; 2007; pp. 823–839. [Google Scholar]
- Jolliff, B.; Papike, J.; Laul, J. Mineral recorders of pegmatite internal evolution: REE contents of tourmaline from the Bob Ingersoll pegmatite, South Dakota. Geochim. Cosmochim. Acta 1987, 51, 2225–2232. [Google Scholar] [CrossRef]
- Morgan VI, G.B.; London, D. Alteration of amphibolitic wallrocks around the Tanco rare element pegmatite, Bernic Lake, Manitoba. Am. Mineral. 1987, 72, 1097–1121. [Google Scholar]
- Fritschle, T.; Daly, J.S.; Whitehouse, M.J.; McConnell, B.; Buhre, S. Multiple intrusive phases in the Leinster Batholith, Ireland: Geochronology, isotope geochemistry and constraints on the deformation history. J. Geol. Soc. Lond. 2018, 175, 229–246. [Google Scholar] [CrossRef]
- Luecke, W. Lithium pegmatites in the Leinster Granite (southeast Ireland). Chem. Geol. 1981, 34, 195–233. [Google Scholar] [CrossRef]
- Whitworth, M.P. Petrogenetic implications of garnets associated with lithium pegmatites from SE Ireland. Mineral. Mag. 1992, 56, 75–83. [Google Scholar] [CrossRef]
- Barros, R.; Kaeter, D.; Menuge, J.F.; Škoda, R. Controls on chemical evolution and rare element enrichment in crystallising albite-spodumene pegmatite and wallrocks: Constraints from mineral chemistry. Lithos 2019, 352–353, 105289. [Google Scholar] [CrossRef]
- Kaeter, D.; Barros, R.; Menuge, J.F.; Chew, D.M. The magmatic–hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite–tantalite. Geochim. Cosmochim. Acta 2018, 240, 98–130. [Google Scholar] [CrossRef]
- Kaeter, D.; Barros, R.; Menuge, J.F. Metasomatic High Field Strength Element, Tin, and Base Metal Enrichment Processes in Lithium Pegmatites from Southeast Ireland. Econ. Geol. 2020, 116, 169–198. [Google Scholar] [CrossRef]
- Holdsworth, R.E.; Woodcock, N.H.; Strachan, R.A. Geological framework of Britain and Ireland. In Geological History of Britain and Ireland, 2nd ed.; Woodcock, N.H., Strachan, R.A., Eds.; Wiley Blackwell: Chichester, UK, 2009; p. 442. [Google Scholar]
- Chew, D.M. Grampian Orogeny. In The Geology of Ireland, 2nd ed.; Holland, C.H., Sanders, I., Eds.; Dunedin Academic Press: Edinburgh, UK, 2009. [Google Scholar]
- McKerrow, W.S.; Mac Niocaill, C.; Ahlberg, P.E.; Clayton, G.; Cleal, C.J.; Eagar, M.C. The Late Palaeozoic relations between Gondwana and Laurasia. Geol. Soc. Lond. Spec. Publ. 2000, 179, 9–20. [Google Scholar] [CrossRef]
- Tietzsch-Tyler, D.; Sleeman, A.G. Geology of Carlow-Wexford: A Geological Description to Accompany the Bedrock Geology 1:100,000 Map Series, Sheet 19; Geological Survey Ireland: Dublin, Ireland, 1994; p. 57. [Google Scholar]
- McConnell, B.; Philcox, M.E. Geology of Kildare-Wicklow: A Geological Description, with Accompanying Bedrock Geology 1:100,000 Scale Map, Sheet 16; Geological Survey Ireland: Dublin, Ireland, 1994; p. 69. [Google Scholar]
- Grogan, S.E.; Reavy, R.J. Disequilibrium textures in the Leinster Granite Complex, SE Ireland: Evidence for acid-acid magma mixing. Mineral. Mag. 2002, 66, 929–939. [Google Scholar] [CrossRef]
- Chew, D.M.; Stillman, C.J. Late Caledonian orogeny and magmatism. In The Geology of Ireland, 2nd ed.; Holland, C.H., Sanders, I., Eds.; Dunedin Academic Press: Edinburgh, UK, 2009; pp. 143–173. [Google Scholar]
- McArdle, P.; Kennedy, M.J. The East Carlow Deformation Zone and its regional implications. Geol. Surv. Irel. Bull. 1985, 3, 237–255. [Google Scholar]
- Sweetman, T.M. The geology of the Blackstairs Unit of the Leinster Granite. Ir. J. Earth Sci. 1988, 9, 39–59. [Google Scholar]
- Černý, P.; Ercit, T.S. The classification of granitic pegmatites revisited. Can. Mineral. 2005, 46, 2005–2026. [Google Scholar] [CrossRef]
- McConnell, B.J.; Morris, J.H.; Kennan, P.S. A comparison of the Ribband Group (southeastern Ireland) to the Manx Group (Isle of Man) and Skiddaw Group (northwestern England). Geol. Soc. Lond. Spec. Publ. 1999, 160, 337–343. [Google Scholar] [CrossRef]
- Graham, J.R.; Stillman, C.J. Ordovician of the south. In The Geology of Ireland, 2nd ed.; Holland, C.H., Sanders, I., Eds.; Dunedin Academic Press: Edinburgh, UK, 2009; pp. 103–117. [Google Scholar]
- Barros, R.; Menuge, J.F. The Origin of Spodumene Pegmatites Associated with the Leinster Granite In Southeast Ireland. Can. Mineral. 2016, 54, 847–862. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Rudnick, R.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 3, pp. 1–64. [Google Scholar]
- Lima, A.M.C. Estrutura, Mineralogia e Génese dos Filões Aplitopegmatíticos com Espodumena da Região Barroso-Alvão. Ph.D. Thesis, Universidade do Porto, Porto, Portugal, 2000; p. 270. [Google Scholar]
- Groat, L.A.; Mulja, T.; Mauthner, M.H.F.; Ercit, T.S.; Raudsepp, M.; Gault, R.A.; Rollo, H.A. Geology and mineralogy of the Little Nahanni rare-element granitic pegmatites, Northwest Territories. Can. Mineral. 2003, 41, 139–160. [Google Scholar] [CrossRef]
- London, D.; Kontak, D.J. Granitic pegmatites: Scientific wonders and economic bonanzas. Elements 2012, 8, 257–261. [Google Scholar] [CrossRef]
- Štemprok, M.; Novák, J.K.; David, J. The association between granites and tin-tungsten mineralization in the eastern Krušné hory (Erzgebirge), Czech Republic. Monogr. Ser. Miner. Depos. 1994, 37, 97–129. [Google Scholar]
- Li, H.; Palinkaš, L.A.; Evans, N.J.; Watanabe, K. Genesis of the Huangshaping W–Mo–Cu–Pb–Zn deposit, South China: Role of magmatic water, metasomatized fluids, and basinal brines during intra-continental extension. Geol. J. 2019, 55, 1409–1430. [Google Scholar] [CrossRef]
- Llera, A.R.; Fuertes-Fuente, M.; Cepedal, A.; Martin-Izard, A. Barren and Li–Sn–Ta Mineralized Pegmatites from NW Spain (Central Galicia): A Comparative Study of Their Mineralogy, Geochemistry, and Wallrock Metasomatism. Minerals 2019, 9, 739. [Google Scholar] [CrossRef]
- Burnham, C.W. Magmas and hydrothermal fluids. In Geochemistry of Hydrothermal ore Deposits, 3rd ed.; Barnes, H.L., Ed.; Wiley and Sons: New York, NY, USA, 1997; pp. 63–123. [Google Scholar]
- William-Jones, A.E.; Heinrich, C.A. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ. Geol. 2005, 100, 1287–1312. [Google Scholar] [CrossRef]
- Lecumberri-Sanchez, P.; Vieira, R.; Heinrich, C.A.; Pinto, F.; Wälle, M. Fluid-rock interaction is decisive for the formation of tungsten deposits. Geology 2017, 45, 579–582. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry Copper Systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Martins, T.; Linnen, R.L.; Fedikow, M.A.F.; Singh, J. Whole-rock and mineral geochemistry as exploration tools for rare-element pegmatite in Manitoba: Examples from the Cat Lake-Winnipeg River and Wekusko Lake pegmatite fields (parts of NTS 52L6, 63J13). Manit. Geol. Survey Rep. Act. 2017, 5, 42–51. [Google Scholar]
- Roda-Robles, E.; Pesquera, A.; Gil-Crespo, P.P.; Torres-Ruiz, J. Occurrence, paragenesis and compositional evolution of tourmaline from the Tormes Dome area, Central Iberian Zone, Span. Can. Mineral. 2011, 49, 207–224. [Google Scholar] [CrossRef]
- Kontak, D.J. Nature And Origin of an LCT-Suite Pegmatite with Late-Stage Sodium Enrichment, Brazil Lake, Yarmouth County, Nova Scotia. I. Geological Setting and Petrology. Can. Mineral. 2006, 44, 563–598. [Google Scholar] [CrossRef]
- Luecke, W. Soil geochemistry above a lithium pegmatite dyke at Aclare, southeast Ireland. Ir. J. Earth Sci. 1984, 6, 205–211. [Google Scholar]
- London, D.; Morgan, G.B., VI. The pegmatite puzzle. Elements 2012, 8, 263–268. [Google Scholar] [CrossRef]
- London, D.; Hervig, R.L.; Morgan, G.B., VI. Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems: Experimental results with Macusani glass at 200 MPa. Contrib. Mineral. Petrol. 1988, 99, 360–373. [Google Scholar] [CrossRef]
- Tischendorf, G.; Förster, H.J.; Gottesmann, B.; Rieder, M. True and brittle micas: Composition and solid-solution series. Mineral. Mag. 2007, 71, 285–320. [Google Scholar] [CrossRef]
- Rosing-Schow, N.; Müller, A.; Friis, H. A Comparison of the Mica Geochemistry of the Pegmatite Fields in Southern Norway. Can. Mineral. 2018, 56, 463–488. [Google Scholar] [CrossRef]
- Bettenay, L.F.; Partington, G.A.; Groves, D.I. Development of exploration concepts for Sn-Ta pegmatites: Use of host rock associations and alteration haloes. West. Aust. Miner. Pet. Res. Inst. Rep. 1985, 13, 171. [Google Scholar]
- Shearer, C.K.; Papike, J.J. Pegmatite-wallrock interaction: Holmquistite-bearing amphibolite, Edison pegmatites, Black Hills, South Dakota. Am. Mineral. 1988, 73, 324–337. [Google Scholar]
- Linnen, R.L.; Galeschuk, C.; Halden, N.M. The use of fracture minerals to define metasomatic aureoles around rare-metal pegmatites. In Proceedings of the 27th International Applied Geochemistry Symposium, Tucson, Arizona, 20–24 April 2015; p. 5. [Google Scholar]
Aclare | |||||||||||||||
Mica Schist (n = 10) | Foliated Granodiorite (n = 28) | Spodumene Pegmatite, Primary Assemblage (n = 43) | Albitized Spodumene Pegmatite (n = 30) | ||||||||||||
mean | min | max | mean | min | max | mean | min | max | mean | min | max | ||||
Al | wt.% | 0.01 | 2% | 8.42 | 7.11 | 9.65 | 7.69 | 7.28 | 8.34 | 7.02 | 6.26 | 7.95 | 6.62 | 4.28 | 8.14 |
Be | ppm | 0.05 | 3% | 7.3 | 2.4 | 43.1 | 10.8 | 2.6 | 42.9 | 142.1 | 60.6 | 284.0 | 143.1 | 20.0 | 271.0 |
Ca | wt.% | 0.01 | 2% | 0.31 | 0.20 | 0.53 | 1.44 | 0.69 | 2.09 | 0.15 | 0.04 | 0.57 | 0.30 | 0.02 | 2.67 |
Cs | ppm | 0.05 | 4% | 124.2 | 8.0 | 1000 | 247.1 | 11.6 | 1000 | 85.2 | 32.9 | 264.0 | 80.4 | 6.6 | 418.0 |
Fe | wt.% | 0.01 | 1% | 4.84 | 4.08 | 6.07 | 2.00 | 1.65 | 2.28 | 0.45 | 0.21 | 0.66 | 0.38 | 0.15 | 0.78 |
Hf | ppm | 0.1 | 2% | 2.9 | 2.3 | 3.7 | 1.3 | 1.0 | 1.6 | 1.3 | 0.3 | 3.0 | 1.7 | 0.3 | 3.4 |
K | wt.% | 0.01 | 2% | 2.52 | 1.88 | 2.79 | 1.85 | 1.42 | 3.17 | 1.64 | 0.49 | 4.89 | 1.96 | 0.29 | 5.58 |
Li | ppm | 0.2 | 3% | 514.2 | 105.0 | 2420 | 692.2 | 175.5 | 2870 | 8824 | 98.8 | 19,700 | 506.5 | 15.2 | 2470 |
Mn | ppm | 5 | 2% | 782 | 437 | 2480 | 538 | 358 | 1030 | 947 | 151 | 2100 | 643 | 77 | 3300 |
Mo | ppm | 0.05 | 12% | 2.7 | 1.4 | 4.0 | 0.7 | 0.5 | 0.9 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Na | wt.% | 0.01 | 1% | 1.04 | 0.63 | 1.21 | 2.92 | 1.94 | 3.39 | 2.31 | 0.88 | 5.81 | 4.03 | 1.32 | 6.78 |
Nb | ppm | 0.1 | 6% | 13.6 | 12.1 | 15.4 | 7.8 | 5.1 | 19.2 | 31.3 | 12.7 | 80.5 | 30.5 | 11.1 | 109.5 |
Ni | ppm | 0.2 | 8% | 43.8 | 32.2 | 53.1 | 10.5 | 8.6 | 12.0 | 2.8 | 1.2 | 5.0 | 1.9 | 1.1 | 3.2 |
P | ppm | 10 | 4% | 502 | 330 | 1310 | 741 | 400 | 2050 | 690 | 210 | 2550 | 852 | 170 | 2310 |
Pb | ppm | 0.5 | 6% | 47.6 | 9.4 | 211.0 | 21.3 | 11.3 | 77.8 | 8.9 | 2.4 | 58.4 | 18.6 | 2.3 | 70.0 |
Rb | ppm | 0.1 | 4% | 299.4 | 121.0 | 1580 | 501.4 | 118.5 | 2240 | 623.7 | 208.0 | 2100 | 615.1 | 72.1 | 1590 |
Sc | ppm | 0.1 | 3% | 18.0 | 15.1 | 20.4 | 6.2 | 5.3 | 6.8 | 0.2 | 0.1 | 0.9 | 0.2 | 0.1 | 0.7 |
Sn | ppm | 0.2 | 4% | 25.4 | 2.7 | 208.0 | 50.8 | 3.6 | 225.0 | 81.3 | 34.2 | 158.5 | 54.2 | 7.7 | 123.0 |
Sr | ppm | 0.2 | 2% | 102.7 | 89.5 | 124.5 | 230.0 | 139.5 | 323.0 | 16.8 | 2.9 | 42.9 | 20.3 | 3.7 | 76.7 |
Ta | ppm | 0.05 | 5% | 1.16 | 0.80 | 2.91 | 3.89 | 0.44 | 23.30 | 29.80 | 5.43 | 55.10 | 42.54 | 4.64 | 402.0 |
Th | ppm | 0.2 | 8% | 10.3 | 7.9 | 12.0 | 4.8 | 4.0 | 5.9 | 0.6 | 0.2 | 3.1 | 0.9 | 0.2 | 3.1 |
Tl | ppm | 0.02 | 2% | 1.72 | 0.57 | 9.79 | 3.31 | 0.58 | 14.00 | 4.30 | 1.27 | 16.55 | 4.25 | 0.33 | 16.25 |
U | ppm | 0.1 | 3% | 3.2 | 2.2 | 3.9 | 2.1 | 1.4 | 4.2 | 6.1 | 1.6 | 13.5 | 8.1 | 0.7 | 25.5 |
W | ppm | 0.1 | 3% | 2.6 | 1.7 | 3.5 | 0.8 | 0.2 | 3.0 | 0.3 | 0.1 | 1.5 | 0.5 | 0.1 | 0.9 |
Y | ppm | 0.1 | 7% | 15.9 | 10.9 | 21.6 | 6.5 | 4.9 | 8.7 | 0.4 | 0.1 | 2.0 | 0.8 | 0.1 | 3.9 |
Zn | ppm | 2 | 2% | 221 | 70 | 862 | 98 | 51 | 372 | 55 | 18 | 163 | 101 | 18 | 303 |
Zr | ppm | 0.5 | 5% | 98.8 | 80.7 | 131.0 | 37.0 | 31.8 | 42.5 | 10.3 | 1.4 | 23.2 | 15.3 | 1.3 | 42.8 |
Moylisha | |||||||||||||||
Porphyritic Granodiorite (n = 77) | Simple Pegmatite (n = 42) | Spodumene Pegmatite, Primary Assemblage (n = 19) | Albitized Spodumene Pegmatite (n = 23) | ||||||||||||
mean | min | max | mean | min | max | mean | min | max | mean | min | max | ||||
Al | wt.% | 0.01 | 2% | 7.49 | 6.68 | 10.5 | 6.95 | 4.32 | 10.2 | 6.72 | 6.14 | 7.61 | 6.12 | 0.89 | 7.47 |
Be | ppm | 0.05 | 3% | 13.5 | 4.5 | 103.0 | 48.9 | 4.5 | 285.0 | 153.0 | 95.1 | 218.0 | 126.8 | 1.6 | 262.0 |
Ca | wt.% | 0.01 | 2% | 1.19 | 0.71 | 1.54 | 0.39 | 0.11 | 1.42 | 0.10 | 0.05 | 0.30 | 0.13 | 0.01 | 0.31 |
Cs | ppm | 0.05 | 4% | 64.0 | 9.8 | 343.0 | 44.4 | 14.2 | 226.0 | 75.4 | 49.3 | 115.5 | 57.0 | 15.9 | 143.5 |
Fe | wt.% | 0.01 | 1% | 1.72 | 1.22 | 2.00 | 0.65 | 0.31 | 1.21 | 0.39 | 0.27 | 0.56 | 0.28 | 0.17 | 0.50 |
Hf | ppm | 0.1 | 2% | 2.9 | 1.9 | 4.7 | 1.5 | 0.2 | 10.0 | 2.1 | 0.9 | 4.1 | 2.1 | 0.2 | 4.8 |
K | wt.% | 0.01 | 2% | 2.90 | 1.54 | 4.67 | 3.18 | 1.58 | 5.00 | 2.28 | 0.82 | 3.82 | 2.23 | 0.64 | 4.95 |
Li | ppm | 0.2 | 3% | 608.4 | 287.0 | 2560 | 258.1 | 80.2 | 1540 | 5500 | 239.0 | 12,750 | 340.1 | 63.2 | 1390 |
Mn | ppm | 5 | 2% | 624 | 406 | 2530 | 916 | 159 | 5990 | 907 | 539 | 1340 | 681 | 44 | 1520 |
Mo | ppm | 0.05 | 12% | 0.6 | 0.1 | 14.4 | 0.8 | 0.1 | 10.4 | 0.1 | 0.1 | 0.3 | 0.3 | 0.1 | 1.5 |
Na | wt.% | 0.01 | 1% | 2.61 | 0.69 | 3.14 | 2.81 | 0.98 | 5.26 | 2.79 | 1.10 | 4.67 | 4.00 | 0.13 | 6.32 |
Nb | ppm | 0.1 | 6% | 8.9 | 5.8 | 59.2 | 12.5 | 4.5 | 48.1 | 27.9 | 10.7 | 72.6 | 37.0 | 3.3 | 119.5 |
Ni | ppm | 0.2 | 8% | 6.4 | 4.0 | 8.5 | 2.6 | 1.1 | 4.9 | 2.6 | 1.4 | 4.6 | 2.5 | 0.7 | 16.2 |
P | ppm | 10 | 4% | 961 | 540 | 7000 | 779 | 190 | 7240 | 526 | 270 | 1180 | 480 | 90 | 1580 |
Pb | ppm | 0.5 | 6% | 28.8 | 8.1 | 36.3 | 24.4 | 6.8 | 46.3 | 16.5 | 7.4 | 29.6 | 17.9 | 5.5 | 40.7 |
Rb | ppm | 0.1 | 4% | 321.6 | 175.5 | 1360 | 402.5 | 224.0 | 1400 | 657.5 | 255.0 | 1300 | 478.5 | 176.0 | 1270 |
Sc | ppm | 0.1 | 3% | 4.5 | 2.8 | 5.5 | 1.0 | 0.2 | 3.0 | 0.1 | 0.1 | 0.7 | 0.1 | 0.1 | 0.3 |
Sn | ppm | 0.2 | 4% | 34.9 | 5.5 | 430.0 | 56.9 | 18.2 | 395.0 | 61.6 | 36.1 | 78.3 | 28.6 | 1.9 | 45.1 |
Sr | ppm | 0.2 | 2% | 153.9 | 40.9 | 194.5 | 38.9 | 17.4 | 87.0 | 12.3 | 5.5 | 27.8 | 20.0 | 4.1 | 77.7 |
Ta | ppm | 0.05 | 5% | 2.28 | 0.65 | 40.40 | 7.29 | 1.28 | 89.00 | 26.48 | 9.06 | 85.90 | 37.91 | 0.88 | 99.50 |
Th | ppm | 0.2 | 8% | 11.4 | 6.5 | 14.4 | 3.3 | 0.4 | 26.0 | 2.3 | 0.9 | 4.1 | 2.9 | 0.2 | 7.5 |
Tl | ppm | 0.02 | 2% | 1.89 | 1.00 | 9.15 | 2.34 | 1.08 | 8.38 | 4.56 | 1.43 | 10.05 | 3.32 | 0.87 | 12.15 |
U | ppm | 0.1 | 3% | 4.9 | 1.8 | 15.6 | 6.5 | 0.8 | 25.6 | 6.3 | 1.5 | 16.8 | 5.8 | 1.7 | 10.5 |
W | ppm | 0.1 | 3% | 0.9 | 0.2 | 5.8 | 1.1 | 0.2 | 4.6 | 0.3 | 0.1 | 0.4 | 0.4 | 0.1 | 0.6 |
Y | ppm | 0.1 | 7% | 8.2 | 5.6 | 9.6 | 4.5 | 0.6 | 22.7 | 0.2 | 0.1 | 1.0 | 0.7 | 0.1 | 5.6 |
Zn | ppm | 2 | 2% | 91 | 56 | 301 | 46 | 14 | 215 | 79 | 32 | 144 | 65 | 4 | 125 |
Zr | ppm | 0.5 | 5% | 97.6 | 58.0 | 120.5 | 26.2 | 3.5 | 102.5 | 13.4 | 4.7 | 28.1 | 13.3 | 1.0 | 29.9 |
Drill Core | Element (ppm) | Total (SP + Wall Rocks) | Total (Wall Rocks Only) | % of Element in Halo |
---|---|---|---|---|
ACL 13-02 | Li | 3881 | 189 | 5% |
Cs | 126 | 48 | 38% | |
Ta | 25 | 2 | 7% | |
Rb | 744 | 103 | 14% | |
Be | 149 | 4 | 3% | |
Sn | 79 | 17 | 22% | |
ACL 13-04 | Li | 9840 | 171 | 2% |
Cs | 129 | 55 | 43% | |
Ta | 27 | 1 | 3% | |
Rb | 672 | 78 | 12% | |
Be | 134 | 3 | 2% | |
Sn | 94 | 9 | 10% | |
ACL 13-05 | Li | 4021 | 134 | 3% |
Cs | 227 | 144 | 63% | |
Ta | 41 | 2 | 4% | |
Rb | 671 | 78 | 12% | |
Be | 172 | 2 | 1% | |
Sn | 71 | 9 | 13% | |
MOY 13-01 | Li | 3501 | 216 | 6% |
Cs | 109 | 31 | 28% | |
Ta | 23 | 1 | 3% | |
Rb | 758 | 77 | 10% | |
Be | 150 | 6 | 4% | |
Sn | 60 | 14 | 23% | |
MOY 13-02 | Li | 4138 | 113 | 3% |
Cs | 86 | 14 | 17% | |
Ta | 35 | 1 | 2% | |
Rb | 672 | 41 | 6% | |
Be | 170 | 8 | 5% | |
Sn | 60 | 9 | 15% | |
MOY 13-03 | Li | 1503 | 187 | 12% |
Cs | 100 | 48 | 48% | |
Ta | 43 | 1 | 3% | |
Rb | 563 | 138 | 24% | |
Be | 137 | 10 | 7% | |
Sn | 62 | 26 | 43% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barros, R.; Kaeter, D.; Menuge, J.F.; Fegan, T.; Harrop, J. Rare Element Enrichment in Lithium Pegmatite Exomorphic Halos and Implications for Exploration: Evidence from the Leinster Albite-Spodumene Pegmatite Belt, Southeast Ireland. Minerals 2022, 12, 981. https://doi.org/10.3390/min12080981
Barros R, Kaeter D, Menuge JF, Fegan T, Harrop J. Rare Element Enrichment in Lithium Pegmatite Exomorphic Halos and Implications for Exploration: Evidence from the Leinster Albite-Spodumene Pegmatite Belt, Southeast Ireland. Minerals. 2022; 12(8):981. https://doi.org/10.3390/min12080981
Chicago/Turabian StyleBarros, Renata, David Kaeter, Julian F. Menuge, Thomas Fegan, and John Harrop. 2022. "Rare Element Enrichment in Lithium Pegmatite Exomorphic Halos and Implications for Exploration: Evidence from the Leinster Albite-Spodumene Pegmatite Belt, Southeast Ireland" Minerals 12, no. 8: 981. https://doi.org/10.3390/min12080981
APA StyleBarros, R., Kaeter, D., Menuge, J. F., Fegan, T., & Harrop, J. (2022). Rare Element Enrichment in Lithium Pegmatite Exomorphic Halos and Implications for Exploration: Evidence from the Leinster Albite-Spodumene Pegmatite Belt, Southeast Ireland. Minerals, 12(8), 981. https://doi.org/10.3390/min12080981