Characterization of Atmospheric Deposition as the Only Mineral Matter Input to Ombrotrophic Bog
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dust Events at Study Site in 2020 and 2021
2.2. Sampling and Sample Preparation
2.3. SEM/EDS Analysis
3. Results
3.1. Electrical Conductivity and pH of Snowmelt and Rainwater
3.2. SEM/EDS Characterization of Particles
3.2.1. Passive Deposition Samples
3.2.2. Particles from Rainwater
3.2.3. Particles Deposited in Snow
4. Discussion
4.1. Evaluation of Application of Various Atmospheric Deposition Mediums
4.2. Origin of the Atmospheric Particles and Relation to Dust Events
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Vleeschouwer, F.; Le Roux, G.; Shotyk, W. Peat as an archive of atmospheric pollution and environmental change: A case study of lead in Europe. PAGES News 2010, 18, 20–22. [Google Scholar] [CrossRef]
- Martínez Cortizas, A.; García-Rodeja, E.; Pontevedra Pombal, X.; Nóvoa Muñoz, J.C.; Weiss, D.; Cheburkin, A. Atmospheric Pb deposition in Spain during the last 4600 years recorded by two ombrotrophic peat bogs and implications for the use of peat as archive. Sci. Total Environ. 2002, 292, 33–44. [Google Scholar] [CrossRef]
- Clymo, R.S. The ecology of peatlands. Sci. Prog. 1987, 71, 593–614. [Google Scholar]
- Biester, H.; Knorr, K.H.; Schellekens, J.; Basler, A.; Hermanns, Y.M. Comparison of different methods to determine the degree of peat decomposition in peat bogs. Biogeosciences 2014, 11, 2691–2707. [Google Scholar] [CrossRef]
- Karjalainen, S.M.; Ronkanen, A.-K.; Heikkinen, K.; Kløve, B. Long-term accumulation and retention of Al, Fe and P in peat soils of northern treatment wetlands. Ecol. Eng. 2016, 93, 91–103. [Google Scholar] [CrossRef]
- Martínez Cortizas, A.; López-Costas, O.; Orme, L.; Mighall, T.; Kylander, M.E.; Bindler, R.; Gallego Sala, A. Holocene atmospheric dust deposition in NW Spain. Holocene 2020, 30, 507–518. [Google Scholar] [CrossRef]
- Shotyk, W.; Cheburkin, A.K.; Appleby, P.G.; Fankhauser, A.; Kramers, J.D. Two thousand years of atmospheric arsenic, antimony, and lead deposition recorded in an ombrotrophic peat bog profile, Jura Mountains, Switzerland. Earth Planet. Sci. Lett. 1996, 145, E1–E7. [Google Scholar] [CrossRef]
- Shotyk, W.; Weiss, D.; Kramers, J.D.; Frei, R.; Cheburkin, A.K.; Gloor, M.; Reese, S. Geochemistry of the peat bog at Etang de la Gruère, Jura Mountains, Switzerland, and its record of atmospheric Pb and lithogenic trace metals (Sc, Ti, Y, Zr, and REE) since 12,370 14C yr BP. Geochim. Cosmochim. Acta 2001, 65, 2337–2360. [Google Scholar] [CrossRef]
- Hansson, S.V.; Tolu, J.; Bindler, R. Downwash of atmospherically deposited trace metals in peat and the influence of rainfall intensity: An experimental test. Sci. Total Environ. 2015, 506–507, 95–101. [Google Scholar] [CrossRef]
- Broder, T.; Biester, H. Linking major and trace element concentrations in a headwater stream to DOC release and hydrologic conditions in a bog and peaty riparian zone. Appl. Geochem. 2017, 87, 188–201. [Google Scholar] [CrossRef]
- Sjöström, J.K.; Cortizas, A.M.; Hansson, S.V.; Sánchez, N.S.; Bindler, R.; Rydberg, J.; Mörth, C.-M.; Ryberg, E.E.; Kylander, M.E. Paleodust deposition and peat accumulation rates—Bog size matters. Chem. Geol. 2020, 554, 119795. [Google Scholar] [CrossRef]
- Syrovetnik, K.; Puura, E.; Neretnieks, I. Accumulation of heavy metals in Oostriku peat bog, Estonia: Site description, conceptual modelling and geochemical modelling of the source of the metals. Environ. Geol. 2004, 45, 731–740. [Google Scholar] [CrossRef]
- Rudmin, M.; Ruban, A.; Savichev, O.; Mazurov, A.; Dauletova, A.; Savinova, O. Authigenic and Detrital Minerals in Peat Environment of Vasyugan Swamp, Western Siberia. Minerals 2018, 8, 500. [Google Scholar] [CrossRef]
- Tanneberger, F.; Tegetmeyer, C.; Busse, S.; Barthelmes, A.; Shumka, S.; Moles Mariné, A.; Jenderedjian, K.; Steiner, G.M.; Essl, F.; Etzold, J.; et al. The peatland map of Europe. Mires Peat 2017, 19, 1–17. [Google Scholar] [CrossRef]
- Franzén, L.G. Mineral matter, major elements, and trace elements in raised bog peat: A case study from southern Sweden, Ireland and Tierra del Fuego, south Argentina. In Peatlands: Evolution and Records of Environmental and Climate Changes; Martini, I.P., Martínez Cortizas, A., Chesworth, W., Eds.; Elsevier B.V.: Oxford, UK, 2006; pp. 241–269. [Google Scholar] [CrossRef]
- Francis, D.; Fonseca, R.; Nelli, N.; Bozkurt, D.; Picard, G.; Guan, B. Atmospheric rivers drive exceptional Saharan dust transport towards Europe. Atmos. Res. 2022, 266, 105959. [Google Scholar] [CrossRef]
- Miler, M. SEM/EDS characterisation of dusty deposits in precipitation and assessment of their origin. Geologija 2014, 57, 5–14. [Google Scholar] [CrossRef]
- Millán-Martínez, M.; Sánchez-Rodas, D.; Sánchez de la Campa, A.M.; de la Rosa, J. Contribution of anthropogenic and natural sources in PM10 during North African dust events in Southern Europe. Environ. Pollut. 2021, 290, 118065. [Google Scholar] [CrossRef]
- Bou Karam, D.; Flamant, C.; Cuesta, J.; Pelon, J.; Williams, E. Dust emission and transport associated with a Saharan depression: February 2007 case. J. Geophys. Res. 2010, 115, D00H27. [Google Scholar] [CrossRef]
- Formenti, P.; Schuetz, L.; Balkanski, Y.; Desboeufs, K.; Ebert, M.; Kandler, K.; Petzold, A.; Scheuvens, D.; Weinbruch, S.; Zhang, D. Recent progress in understanding physical and chemical properties of mineral dust. Atmos. Chem. Phys. Discuss. 2010, 10, 31187–31251. [Google Scholar] [CrossRef]
- Barkan, J.; Alpert, P.; Kutiel, H.; Kishcha, P. Synoptics of dust transportation days from Africa toward Italy and central Europe. J. Geophys. Res. 2005, 110, D07208. [Google Scholar] [CrossRef]
- Washington, R.; Todd, M.; Middleton, N.J.; Goudie, A.S. Dust-Storm source areas determined by the Total Ozone Monitoring Spectrometer and surface observations. Ann. Assoc. Am. Geogr. 2003, 93, 297–313. [Google Scholar] [CrossRef]
- Kylander, M.E.; Martínez-Cortizas, A.; Bindler, R.; Greenwood, S.L.; Mörth, C.-M.; Rauch, S. Potentials and problems of building detailed dust records using peat archives: An example from Store Mosse (the “Great Bog”), Sweden. Geochim. Cosmochim. Acta 2016, 190, 156–174. [Google Scholar] [CrossRef]
- Kutnar, L. Spruce mire types on the Pokljuka plateau, Slovenia. Phyton 2000, 40, 123–128. [Google Scholar]
- Gale, L.; Kukoč, D.; Rožič, B.; Vidervol, A. Sedimentological and paleontological analysis of the Lower Jurassic part of the Zatrnik Formation on the Pokljuka plateau, Slovenia. Geologija 2021, 64, 173–188. [Google Scholar] [CrossRef]
- Serianz, L.; Cerar, S.; Vreča, P. Using stable isotopes and major ions to identify recharge characteristics of the Alpine groundwater-flow dominated Triglavska Bistrica River. Geologija 2021, 64, 205–220. [Google Scholar] [CrossRef]
- Pezdir, V.; Čeru, T.; Horn, B.; Gosar, M. Investigating peatland stratigraphy and development of the Šijec bog (Slovenia) using near-surface geophysical methods. Catena 2021, 206, 105484. [Google Scholar] [CrossRef]
- Koleša, T. Air pollution in March 2020. Naše Okolje 2020, 27, 81–90. Available online: https://www.arso.gov.si/o%20agenciji/knji%c5%benica/mese%c4%8dni%20bilten/NASE%20OKOLJE%20-%20Marec%202020.pdf (accessed on 6 June 2022).
- Tositti, L.; Brattich, E.; Cassardo, C.; Morozzi, P.; Bracci, A.; Marinoni, A.; Di Sabatino, S.; Porcù, F.; Zappi, A. Development and evolution of an anomalous Asian dust event across Europe in March 2020. Atmos. Chem. Phys. Discuss. 2022, 22, 4047–4073. [Google Scholar] [CrossRef]
- Koleša, T. Air pollution in Februar 2021. Naše Okolje 2021, 28, 90–99. Available online: https://www.arso.gov.si/o%20agenciji/knji%c5%benica/mese%c4%8dni%20bilten/NASE%20OKOLJE%20-%20Februar%202021.pdf (accessed on 6 June 2022).
- Gaberšek, M.; Gosar, M. Towards a holistic approach to the geochemistry of solid inorganic particles in the urban environment. Sci. Total Environ. 2021, 763, 144214. [Google Scholar] [CrossRef]
- Miler, M.; Gosar, M. Assessment of Metal Pollution Sources by SEM/EDS Analysis of Solid Particles in Snow: A Case Study of Žerjav, Slovenia. Microsc. Microanal. 2013, 19, 1606–1619. [Google Scholar] [CrossRef] [PubMed]
- Miler, M.; Gosar, M. Chemical and morphological characteristics of solid metal-bearing phases deposited in snow and stream sediment as indicators of their origin. Environ. Sci. Pollut. Res. 2015, 22, 1906–1918. [Google Scholar] [CrossRef] [PubMed]
- Compton, R.R. Manual of Field Geology; John Wiley & Sons: New York, NY, USA, 1962; 378p. [Google Scholar]
- Cherubini, A.; Garcia, B.; Cerepi, A.; Revil, A. Influence of CO2 on the Electrical Conductivity and Streaming Potential of Carbonate Rocks. JGR Solid Earth 2019, 124, 10056–10073. [Google Scholar] [CrossRef]
- Gaberšek, M.; Gosar, M. Meltwater chemistry and characteristics of particulate matter deposited in snow as indicators of anthropogenic influences in an urban area. Environ. Geochem. Health 2021, 43, 2583–2595. [Google Scholar] [CrossRef] [PubMed]
- Mott, R.; Schirmer, M.; Bavay, M.; Grünewald, T.; Lehning, M. Understanding snow-transport processes shaping the mountain snow-cover. Cryosphere Discuss. 2010, 4, 865–900. [Google Scholar] [CrossRef]
- Oduber, F.; Calvo, A.I.; Castro, A.; Blanco-Alegre, C.; Alves, C.; Barata, J.; Nunes, T.; Lucarelli, F.; Nava, S.; Calzolai, G.; et al. Chemical composition of rainwater under two events of aerosol transport: A Saharan dust outbreak and wildfires. Sci. Total Environ. 2020, 734, 139202. [Google Scholar] [CrossRef]
- López-Buendía, A.M.; Whateley, M.K.G.; Bastida, J.; Urquiola, M.M. Origins of mineral matter in peat marsh and peat bog deposits, Spain. Int. J. Coal. Geol. 2007, 71, 246–262. [Google Scholar] [CrossRef]
- Gosar, M.; Šajn, R.; Bavec, Š.; Gaberšek, M.; Pezdir, V.; Miler, M. Geochemical background and threshold for 47 chemical elements in Slovenian topsoil. Geologija 2019, 62, 7–59. [Google Scholar] [CrossRef]
- Vidrih, R.M.; Herlec, U. Nahajališča bobovca v predgorju Julijskih Alp. Scopolia. Suppl. 2006, 3, 154–157. [Google Scholar]
- Van der Does, M.; Knippertz, P.; Zschenderlein, P.; Harrison, R.G.; Stuut, J.-B.W. The mysterious long-range transport of giant mineral dust particles. Sci. Adv. 2018, 12, eaau2768. [Google Scholar] [CrossRef]
- Huang, J.P.; Liu, J.J.; Chen, B.; Nasiri, S.L. Detection of anthropogenic dust using CALIPSO lidar measurements. Atmos. Chem. Phys. 2015, 15, 11653–11665. [Google Scholar] [CrossRef]
- Zupančič, N.; Bozau, E. Effect of Corona Virus Pandemic Lockdown to Chemical Composition of Peat Mosses. Environ. Sci. Pollut. R 2021, 25473–25485. [Google Scholar] [CrossRef]
Sample | Code | Date of Sampling | Location (See Figure 1) | Depth in Case of Snow Profile Sampling |
---|---|---|---|---|
Passive deposition 2020 | S1 | 8.10.–20.10.2020 | Middle | - |
S2 | 8.10.–20.10.2020 | NW part | - | |
S3 | 8.10.–20.10.2020 | NW part | - | |
Passive deposition 2021 | S4 | 24.2.–4.3.2021 | Middle | - |
S5 | 24.2.–4.3.2021 | NW part | - | |
Rainwater 2020 | R1 | 8.10.–25.11.2020 | Middle | - |
R2 | 8.10.–25.11.2020 | NW part | - | |
Rainwater 2021 | R3 | 3.8.–23.9.2021 | Middle | - |
R4 | 3.8.–23.9.2021 | NW part | - | |
Snow 2020 | M1-1 | 31.3.2020 | Middle, upper layer | 0–20 cm |
M1-2 | 31.3.2020 | Middle, lower layer | 20–32 cm | |
M2-1 | 31.3.2020 | Middle, upper layer | 0–20 cm | |
M2-2 | 31.3.2020 | Middle, lower layer | 20–32 cm | |
Snow 2021 | M3 | 24.2.2021 | Middle | 0–5 cm |
M4 | 24.2.2021 | Middle, snow dune | 0–5 cm | |
M5 | 4.3.2021 | Middle | 0–5 cm |
Water Sample | Code | Volume of Water Sample (L) | pH | EC (μS/cm) | T (°C) |
---|---|---|---|---|---|
Rainwater 2020 | R1 | 4.3 | - | - | - |
R2 | 3.7 | - | - | - | |
Rainwater 2021 | R3 | 3.6 | 7.14 | 23.97 | 17.0 |
R4 | 3.8 | 6.27 | 7.54 | 16.6 | |
Snowmelt 2020 | M1-1 | 1.85 | 6.32 | 5.99 | 17.0 |
M1-2 | 5.5 | 6.30 | 7.57 | 16.9 | |
M2-1 | 1.65 | 6.34 | 5.51 | 17.0 | |
M2-2 | 5.5 | 6.41 | 6.69 | 16.9 | |
Snowmelt 2021 | M3 | 3.6 | 5.52 | 2.96 | 16.0 |
M4 | 3.2 | 5.69 | 3.71 | 15.6 | |
M5 | 3.8 | 5.78 | 3.27 | 15.8 |
Sample Code | Quartz (%) | Aluminosilicates (%) | Carbonates (%) | Organic Matter (%) | Fe-Oxyhydroides (%) |
---|---|---|---|---|---|
R1 | 20 | 40 | 15 | 15 | 10 |
R2 | 25 | 40 | 15 | 15 | 5 |
R3 | 30 | 35 | 15 | 10 | 10 |
R4 | 15 | 45 | 20 | 10 | 10 |
M1-1 | 25 | 30 | 20 | 15 | 10 |
M1-2 | 40 | 30 | 20 | 5 * | 5 |
M2-1 | 25 | 40 | 15 | 10 | 10 |
M2-2 | 35 | 45 | 5 | 5 * | 10 |
M3 | 40 | 35 | 5 | 10 | 10 |
M4 | 35 | 30 | 10 | 15 | 10 |
M5 | 40 | 40 | 5 | 10 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pezdir, V.; Gaberšek, M.; Gosar, M. Characterization of Atmospheric Deposition as the Only Mineral Matter Input to Ombrotrophic Bog. Minerals 2022, 12, 982. https://doi.org/10.3390/min12080982
Pezdir V, Gaberšek M, Gosar M. Characterization of Atmospheric Deposition as the Only Mineral Matter Input to Ombrotrophic Bog. Minerals. 2022; 12(8):982. https://doi.org/10.3390/min12080982
Chicago/Turabian StylePezdir, Valentina, Martin Gaberšek, and Mateja Gosar. 2022. "Characterization of Atmospheric Deposition as the Only Mineral Matter Input to Ombrotrophic Bog" Minerals 12, no. 8: 982. https://doi.org/10.3390/min12080982
APA StylePezdir, V., Gaberšek, M., & Gosar, M. (2022). Characterization of Atmospheric Deposition as the Only Mineral Matter Input to Ombrotrophic Bog. Minerals, 12(8), 982. https://doi.org/10.3390/min12080982