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Abstract: Magnetotelluric (MT) surveying is an essential geophysical method for mapping subsurface
electrical conductivity structures. The MT signal is susceptible to cultural noise, and the intensity
of noise is growing with urbanization. Cultural noise is increasingly difficult to be removed by
conventional data processing methods. We propose a novel time-series editing method based on
the deep residual shrinkage network (DRSN) to address this issue. Firstly, the MT data are divided
into small segments to form a dataset system. Secondly, we use the dataset system to train the
denoising model. Finally, the trained model is used for MT data denoising. The experiments using
synthetic data and actual field data collected in Qinghai and Luzong, China, show that the DRSN can
effectively remove the cultural noise and has better adaptability and efficiency than traditional MT
signal processing methods.

Keywords: magnetotelluric; cultural noise; denoising; deep residual shrinkage network

1. Introduction

The magnetotelluric method has been widely used in geophysical exploration to
investigate Earth’s deep electrical structure [1–4]. It is based on the relationship between
the electric fields and the magnetic fields measured on the Earth’s surface, which can be
expressed as follows:

E = ZH (1)

where E, H and Z denote the electric field, the magnetic field, and the impedance tensor,
respectively. Then, the apparent resistivity ρ and phase φ were calculated as follows: ρ = 1

ωµ

∣∣∣Z∣∣∣2
φ = arctan

(
Im(Z)
Re(Z)

) (2)

where ω is the angular frequency, µ is the magnetic permeability of free space, and Z is the
impedance tensor; the real part of Z is denoted as Re(Z), and the imaginary part is marked
as Im(Z).

The sources of the MT method are lightning activities at high frequencies and the
current magnetospheric current flows excited by solar wind at low frequencies [5]. The
MT signal is non-stationary and broadband. It can be easily affected by cultural noises,
from power lines, railway lines, road vibration, and vehicles [6]. Noisy MT data have low
reliability and interpretability for deep structure detection. Improving the quality of MT
data can make the subsequent inversion more reliable [7,8].
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Classical denoising methods are the remote reference (RR) method, the robust method,
and the time domain signal–noise separation method. RR uses the correlation between
the magnetic fields of the measuring station and those of the reference station to improve
the quality of the apparent resistivity and phase curves [9]. It can separate signal and
noise when signals are correlated and noises are uncorrelated [10]. However, in the case
of continuous and cultural solid noises, choosing remote reference stations becomes very
difficult [11]. The robust method does not depend on remote reference stations. It is a
power spectrum selection method [12,13]. The robust method may lead to erroneous results
if the noise is continuous and intense during the whole observation process [14–16]. The
signal–noise separation methods in the time domain can effectively remove intense cultural
noises [17–22]. However, these methods have their limitations [22]. For example, these
methods are more or less prone to damage to low-frequency effective signals and require
manual intervention [23,24].

Deep learning algorithms have recently been applied to process geo-electromagnetic
datasets [25]. For instance, the authors of [26] used the self-organizing feature map (SOM)
neural network combined with the data segment selection method to remove the cultural
noise in MT data. The authors of [27] employed the wavelet neural network to eliminate the
noise generated by high-frequency motion in helicopter airborne transient electromagnetics.
The authors of [28] used the long short-term memory (LSTM) neural network to remove
power frequency noise.

After flowing through some layers of the convolutional neural network (ConvNet), the
gradients of the error function become inaccurate. Residual Network (ResNet), a ConvNet
variant, uses identity shortcuts to optimize the parameters [29]. It has been applied in signal
denoising [30] but has poor feature learning ability for highly noisy MT data. New methods
were needed for removing magnetotelluric noise under a robust noise environment.

In 2019, the deep residual shrinkage network (DRSN) model was proposed for improv-
ing the feature learning ability of low signal-to-noise ratio (SNR) signals [31]. It has been
successfully used in signal recognition [31–33]. The DRSN model excavates the substrate
features of the data and can extract hidden features without using prior knowledge. So, it
provides more accurate and effective denoising results.

This study uses the DRSN for MT noise suppression. To improve the feature extraction
ability, we add the Squeeze-and-Excitation Network (SENet), a deep learning method based
on attention mechanism and a soft threshold function, to DRSN.

This method has three advantages. Firstly, it does not require professional signal
processing knowledge and can adaptively select the noise threshold for MT denoising.
Secondly, it can directly separate the signal and noise of MT data collected in various
regions. Thirdly, using one-dimensional data can extract essential features from time series
signals and avoid dimension transformation.

The rest of this study is arranged as follows. Section 2 introduces the DRSN model.
Section 3 validates the DRSN model using synthetic and real MT datasets. In Section 4, the
advantages and limitations of this method are discussed. Section 5 presents conclusions.

2. Methods
2.1. The DRSN Method

The DRSN is a deep learning method that can extract hidden features without prior
knowledge, providing more accurate denoising performance. The residual building unit of
the DRSN (RSBU) structure is shown in Figure 1.
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Figure 1. The 1D residual shrinkage building unit (RSBU) of the DRSN structure. We insert the
adaptive noise filter layer into the ResNet block. y is the input MT data. BN represents the batch
normalization layer. ReLU represents the rectified linear unit layer. Conv represents the convolutional
layer. Abs represents the absolute operation processes. GAP is an operation layer that calculates a
mean value. FC represents the fully connected layer. f represents the feature obtained by domain
transformation. S is the output MT signal. Mul denotes the multiplication of corresponding positions.

DRSN has two types:

(1) DRSN-CS has the block of “residual shrinkage building unit with channel-shared
thresholds (RSBU-CS)”.

(2) DRSN-CW has the block of “residual shrinkage building unit with channel-wise
thresholds (RSBU-CW)”.

DRSN-CW is more effective than DRSN-CS in removing the noise because different
channels of the feature map usually contain different amounts of noise-related informa-
tion [30]. We adopt DRSN-CW and call it DRSN hereafter.

The structure of the proposed network is shown in Figure 2. RSBU (4,3,/2) means an
RSBU has 4 convolutional kernels with a width of 3, and “/2” represents a step length of 2.
In the RSBUs, three RSBUs were followed when the previous DRSN’s step length was 2,
and there were 12 RSBUs. The residual module, BN layer, and threshold subnetwork were
used to achieve regular training. The learning rate decreased exponentially from 0.001 to
0.0001, and the number of training cycles was 200. However, the training process will stop
if the loss has no change within ten cycles.
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2.2. Principle of MT Denoising by DRSN
2.2.1. Soft Threshold Function

The most representative time-series editing method is the soft threshold method. The
soft threshold function is as follows:

y =

{
(|x|−τ)sign(x), |x|≥ τ

0, |x|< τ
, (3)

where x, y are the input feature and the output feature, respectively, and τ is the threshold
with a positive value.

The partial derivative of the soft thresholding function is as follows:

∆y
∆x

=


1 x > τ

0 −τ ≤ x ≤ τ

1 x < −τ

, (4)

The partial derivative of the soft thresholding function is either 1 or 0; thus, we can
perform the signal–noise separation.

2.2.2. Adaptive Noise Filter Block

The noise features are first extracted through the ResNet Block, and then a one-
dimensional vector with an absolute operation (Abs) and a GAP layer is used to reduce the
feature map size.

f1(y) = GAP(Abs( f0(y))) , f1(y) ∈ RC×1×1 (5)

Moreover, the number of neurons in the FC layer is the same as the number of channels
from the input feature map. Then enters the two full connection layers a scale factor is
obtained,

α = FC(ReLU(BN(FC( f1(y))))), α ∈ RC×1×1 (6)

The scale factor is normalized to the range of (0, 1) by a sigmoid function. The
threshold value of filtered noise features was obtained by multiplying the normalized
result f1(y).

τ = Sigmoid(α)× f1(y) (7)

After the soft threshold processing, the noise-related features are removed.

f2(y) = st f ( f0(y), τ) (8)

where st f (·) represents the soft threshold function for filtering features generated by
the noises.



Minerals 2022, 12, 1086 5 of 21

To enhance the nonlinearity and the fitting capability, we apply the ReLU functions
defined as follows:

fR(a) = max(a, 0) (9)

where a represents the variable output from the neural network cell in the upper layers.
Finally, we have the relationship between input y and output s as follows:

s = ReLU( f2(y) + f3(y)) (10)

where f2(y) denotes the function of the below layer in Figure 1, f3(y) denotes the function
of the above layer in Figure 1, and ReLU is the rectified linear unit. Thus, f3(y) only
changes the channels (e.g., the stride in this block is set to 2, which results in different sizes
between the input and output of this block) and does not influence the value of y. That is
to say, s can still acquire the information of y from f3(y).

The hardware resources of the computer used for the processing in this study are
as follows:

- CPU: Intel i7-9700K, 3.00 GHz, 8×;
- GPU: Nvidia GeForce RTX 2060 SUPER, 8 GB;
- RAM: 16 GB.

2.3. Datasets

We obtained the dataset by adding simulation noise to measure high-quality data. Our
team collected the high-quality MT data in 2012 in the Qaidam Basin of Qinghai Province,
China. There was almost no interference. The MTU-5A collected the data from Phoenix
Geophysics Ltd. The MT data can be used as noise-free signals. The software for these field
data acquisitions and apparent resistivity and phase computations is SSMT-2000 (Version
0.6.0.70, Phoenix Geophysics Ltd., Toronto, ON, Canada).

We cut the actual MT data using windows and corrupted them using the artificial noise,
such as the harmonic, square, triangle, impulse, and step noises, and the noise-free data
were the label for forming datasets (Figures 3–7). We had 22,000 datasets: 20,000 datasets
for training and 2000 for verification. The training set performed denoising training on the
DRSN so that the DRSN learned the mapping relationship between the noise-free data and
the corresponding noise. Once the DRSN completed training, we fed the MT data sections
into this DRSN. The outputs of the DRSN were the denoising MT signals. We used data
from multiple places to produce the training set.

2.4. Training the DRSN for Denoising

Figure 8 shows the flow chart of the denoising process using the DRSN. Firstly, we
use the time window to scan and segment the 1D MT data. We take the 1D rather than the
2D data to reduce the calculation time and resources. Secondly, the DRSN is used for noise
suppression to obtain noise-free MT signals. The training set performs denoising training
on the DRSN so that the DRSN learns the mapping relationship between the noise-free data
and the corresponding noise. Once the DRSN completes training, those data sections are
fed into this DRSN. The outputs of the DRSN for suppression are the denoising MT data.
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We train the DRSN in two steps:

1. Hyperparameter setup

The hyperparameters were set as follows: mini-batch size 100, dropout 0.5 in full
connection, initial learning rate 0.0001 that decreases 95% every five epochs.

2. Optimize hyperparameters through training

Our DRSN has a nine-layer structure for denoising the magnetotelluric data. We use
common training strategies to achieve faster convergence, such as the Adam optimization
algorithm [34] and mini-batch training mode. The L2 norm can be used to optimize the
parameters of neural network.
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In training, the samples with noise are input into DRSN, and the samples without
interference are the output. Forward propagation was used to obtain network parameters,
and backpropagation was used to adjust network parameters.

The residual module, BN layer, and threshold subnetwork were used to achieve
regular training. The learning rate decreased exponentially from 0.001 to 0.0001, and the
number of training cycles was 200. However, the training process will stop if the loss has
no change within ten cycles.

3. Experiments
3.1. Simulation Data Experiments
3.1.1. Comparison with Wavelet Transformation and VMD

We validated the proposed method using a simulated dataset with step-wave noise,
which is typical for MT data.

First, we chose the noise-free signal from actual MT data, to which we added step-
wave noise using a simulated dataset with step-wave noise. Then we used the trained
DRSN model to separate signal and noise. We also denoised the data by using the wavelet
transformation method and VMD, and the results are compared in Figure 9.
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After signal processing, the noise was suppressed (Figure 9). As Figure 9f–h shows,
compared with the noise-free spectrum, the results obtained by the wavelet transformation
and VMD lose some low-frequency effective signals. However, our method yields no
visible distortion.

We compare the normalized mutual correlations (NCCs) of the denoising results
obtained by different methods in Table 1. NCC is often called similarity degree. When
the NCC value is 1, two signals are the same; when the NCC value is 0, two signals are
orthogonal; when the NCC value is −1, two signals have the same absolute value but
opposite signs. Therefore, the closer the NCC value to 1, the better the separation effect [35].
In addition, we use the signal-to-noise ratio (SNR) to evaluate the denoising results.

NCC =

N
∑

n=1
y(n) · r(n)√(

N
∑

n=1
y2(n)

)
·
(

N
∑

n=1
r2(n)

) (11)

SNR = 10 log10

(
‖y(n)‖2

‖y(n)− r(n)‖2

)
(12)
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where y(n) is the noise-free signal, r(n) is the denoised signal, and N is the length of
the signal.

Table 1. Quantitative evaluation of the MT data denoised by different methods.

Method NCC SNR (dB)

Wavelet transformation 0.5961 1.4672
VMD 0.5940 1.7107

Our approach 0.9301 8.1591

As Table 1 shows, the result obtained by our method has the highest NCC and SNR,
so our approach has the best denoising effect.

After denoising the wavelet transformation, VMD and DRSN find the noise is attenu-
ated (Figure 8).

However, compared with the original spectrum, it is clear that the results obtained by
DRSN, the noise-free data section, can be protected well simultaneously.

3.1.2. Comparison with Other Deep Learning Models

To further verify the effectiveness of the DRSN, we compare it with the ConvNet
and the ResNet. Several field MT time series with harmonic, square, triangle, impulse,
and step noises were used for training the models. We introduced all the models with a
one-time window (size 1× 32). Their performances are evaluated by the training loss and
computational time (Figure 10). The parameters of these models are shown in Table 2.
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Table 2. Structural parameters of the models.

Number of
Blocks Output Size ConvNet ResNet Our Approach

1 1× 256× 1 Input Input Input
1 4× 128× 1 Conv (4,3,/2) Conv (4,3,/2) Conv (4,3,/2)
1 4× 64× 1 CBU (4,3,/2) RBU (4,3,/2) RSBU (4,3,/2)
3 4× 64× 1 CBU (4,3) RBU (4,3) RSBU (4,3)
1 8× 32× 1 CBU (8,3,/2) RBU (8,3,/2) RSBU (8,3,/2)
3 8× 32× 1 CBU (8,3) RBU (8,3) RSBU (8,3)
1 16× 16× 1 CBU (16,3,/2) RBU (16,3,/2) RSBU (16,3,/2)
3 16× 16× 1 CBU (16,3) RBU (16,3) RSBU (16,3)
1 1× 256× 1 Max Pooling Max Pooling Max Pooling
1 1× 256× 1 FC FC FC

CBU: convolutional building unit. RBU: residual building unit. RSBU: residual shrinkage building unit of DRSN.
BN: batch normalization layer. ReLU: rectified linear unit. GAP: an operation layer that calculates a mean value.
FC: fully connected layer.

The first column of Table 1 shows the number of blocks in different layers.
The second column shows the output sizes of the feature maps in different layers,

which are in the 3-D form of channels×width× height. For example, 1× 256× 1 means
that the channel is 1, the width is 256, and the height is 1 (because it is 1D signal).

In the third column, CBU (4,3,/2) means a CBU has four convolutional kernels with a
width of 3. “/2” represents CBU can reduce the width of the feature map by moving the
convolutional kernels with a stride of 2. Other items have the same meaning.

Figure 10 presents the loss of training and validation datasets of the three deep learning
methods for MT noise suppression, which both descend gradually as the number of epochs
ascends. Both loss curves are stable, proving the generalization of the three deep learning
methods. Because the DRSN reaches the stationary stage of both loss curves earlier than
the ResNet, the DRSN has a better generalization capability than the ResNet. The training
and test errors of the DRSN are much more minor than those of ConvNet and ResNet. This
confirms that using the identity shortcuts, the attention mechanism, and the soft threshold
function can improve parameter optimization.

We also investigate the influence of window size on the accuracy of the proposed
method. We adopt four different window sizes, 1× 32, 1× 64, 1× 128, and 1× 256, for the
validation datasets (Table 3).

Table 3. The training loss and the training time for different window sizes.

Window Size Training Loss Time per Epoch

1× 32 0.0009411 1.3154 s
1× 64 0.0006060 1.5766 s
1× 128 0.0005103 3.4094 s
1× 256 0.0006312 4.8007 s

Table 3 shows that the window size influences denoising accuracy and training time.
As the window size grows, the DRSN’s training becomes more time-consuming. In addition,
the losses are nearly equivalent when the window sizes are 1× 64, 1× 128, and 1× 256
and are smaller than the loss of 1× 32. Hence, we choose the window size of 1× 128 to
balance the loss and running time of the DRSN.

We also compare the DRSN method with other methods regarding training time and
loss (Table 4). The window sizes were set as 1× 32. As shown in Table 3, the DRSN has the
minimum training loss and the longest training time.
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Table 4. The training loss and the training time for different methods.

Method Training Loss Time per Epoch

ConvNet 0.0012367 1.2009 s
ResNet 0.0009895 1.2858 s
DRSN 0.0009411 1.3154 s

We used data by adding simulation noise to measure high-quality data. First, we chose
the noise-free signal from Qinghai in 2012, to which we added simulation noise. Then, we
used the trained ConvNet, ResNet, and DRSN to separate signal and noise (Figure 11).
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We compare the time series of the data denoised by different methods (Figure 11) 
and find the noise was attenuated, and the noise-free data section can be protected well. 

As Table 5 shows, the result obtained by our method has the highest NCC and SNR, 
so our method has the best denoising effect. 
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Figure 11. Denoising results for the data with noise. Time domain waveform of (a) Noise-free data,
(b) Noisy data, (c) the results of ConvNet, (d) the results of ResNet, and (e) the results of DRSN.
Spectrum of (f) Noise-free data, (g) Noisy data, (h) the results of ConvNet, (i) the results of ResNet,
(j) the results of DRSN.

We compare the time series of the data denoised by different methods (Figure 11) and
find the noise was attenuated, and the noise-free data section can be protected well.

As Table 5 shows, the result obtained by our method has the highest NCC and SNR,
so our method has the best denoising effect.

Table 5. Quantitative evaluation of the MT data denoised by different methods.

Method NCC SNR (dB)

ConvNet 0.9092 7.3796
ResNet 0.9237 8.1638

Our approach 0.9257 8.3184

We used data by adding simulation noise to measure high-quality data. First, we
chose the noise-free signal from Luzong in 2010, to which we added simulation noise. Then
we used the trained ConvNet, ResNet, and DRSN to separate signal and noise (Figure 11).

We compare the time series of the data denoised by different methods (Figure 12) and
find the noise was attenuated, and the noise-free data section can be protected well.
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Figure 12. Denoising results for the data with harmonic noise. Time domain waveform (a) Noise-free
data, (b) Noisy data, (c) the results of ConvNet, (d) the results of ResNet, and (e) the results of DRSN.
Spectrum of (f) Noise-free data, (g) Noisy data, (h) the results of ConvNet, (i) the results of ResNet,
and (j) the results of DRSN.

As Table 6 shows, the result obtained by our method has the highest NCC and SNR,
so our method has the best denoising effect.

Table 6. Quantitative evaluation of the MT data denoised by different methods (added simula-
tion noise).

Method NCC SNR (dB)

ConvNet 0.9001 7.2013
ResNet 0.9372 8.2241

Our approach 0.9561 8.5321

3.2. Actual Data Experiments
3.2.1. Experimental Data in Qaidam Basin

We validated our method using the MT data collected in 2012 in the Qaidam Basin
of Qinghai Province, China. There is almost no interference. The MTU-5A collected the
data from Phoenix Geophysics Ltd. (Toronto, ON, Canada) and the controlled-source
electromagnetic method (CSEM) transmitter from Central South University, China.

The sampling frequency was 15 Hz and the collection time was about 19 h, divided
into two phases; the first was 1.5 h and the second was 17.5 h. In the first phase, a
pseudo-random signal with the current of 80 A was injected into the ground 2 km from
the measuring point by the wide field electromagnetic method (CSEM) so that our team
collected the MT data under the interference of CSEM transmission. In the following 17.5 h,
the transmitter stopped working, so there was almost no interference.

The apparent resistivity, phase, and polarization direction were used to evaluate the
MT denoising performance [36].

Figure 13 shows the fragment of the noisy signal in the time domain collected in the
first 1.5 h. The CSEM severely pollutes the data.
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Figure 13. The MT data. Time domain waveform of (a) Ex component; (b) Ey component; (c) Hx 
component; (d) Hy component. The left panels are time domain waveforms, and the right panels 
are their spectra. Spectrum of (e) Ex component; (f) Ey component; (g) Hx component; (h) Hy com-
ponent. 

As shown in Figure 13, the time domain waveforms present periodicity and regular-
ity, and the MT waveforms were almost submerged. As shown in Figure 14, the apparent 
resistivity and phase curves in the whole period are discontinuous and not smooth. The 
apparent resistivity and phase curves jump sharply between 0.3 Hz and 0.05 Hz in the xy 
direction. In the yx direction, the pronounced resistivity curve rises 45° between 0.5 Hz 
and 0.01 Hz and drops sharply when the frequency is lower than 0.01 Hz. The phase is 
mainly close to −180° between 0.5 Hz and 0.01 Hz. In summary, the MT data have appar-
ent near-source interference in the whole period [37]. 

 
Figure 14. The apparent resistivity (upper panel) and the phase of the test dataset (lower panel) of 
the MT data. The red curve shows the apparent resistivity and phase curves in the xy direction. The 
green curve shows the apparent resistivity and phase curve in the yx direction. 

Figure 13. The MT data. Time domain waveform of (a) Ex component; (b) Ey component; (c) Hx
component; (d) Hy component. The left panels are time domain waveforms, and the right panels are
their spectra. Spectrum of (e) Ex component; (f) Ey component; (g) Hx component; (h) Hy component.

As shown in Figure 13, the time domain waveforms present periodicity and regularity,
and the MT waveforms were almost submerged. As shown in Figure 14, the apparent
resistivity and phase curves in the whole period are discontinuous and not smooth. The
apparent resistivity and phase curves jump sharply between 0.3 Hz and 0.05 Hz in the
xy direction. In the yx direction, the pronounced resistivity curve rises 45◦ between 0.5
Hz and 0.01 Hz and drops sharply when the frequency is lower than 0.01 Hz. The phase
is mainly close to −180◦ between 0.5 Hz and 0.01 Hz. In summary, the MT data have
apparent near-source interference in the whole period [37].
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Figure 14. The apparent resistivity (upper panel) and the phase of the test dataset (lower panel) of
the MT data. The red curve shows the apparent resistivity and phase curves in the xy direction. The
green curve shows the apparent resistivity and phase curve in the yx direction.

Figure 13 shows that the waveform and spectrum in the time domain of each original
noise-containing signal are almost the same as those of each separate noise corresponding
to Figure 15.
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We compare the denoising performance of the proposed method and the robust 
method in Figure 17. After processing our way, the apparent resistivity and phase curves 
have good continuity and smoothness across all frequency bands. Between 0.5 Hz and 
0.01 Hz, the pronounced resistivity curve of the robust method has a 45° rising trend in 
the yx direction, but that of DRSN only shows a slight upward trend. 

Figure 15. The noise isolated by DRSN. Time domain waveform of (a) Ex component; (b) Ey
component; (c) Hx component; (d) Hy component. Spectrum of (e) Ex component; (f) Ey component;
(g) Hx component; (h) Hy component.

Figure 16 shows the signal denoised by our method. Before denoising, the signals in
the time domain present periodicity and regularity, and the MT signal is almost submerged.
After denoising, the signals present randomness and irregularity, which are the features of
a natural MT signal. In addition, the signal amplitude is small.
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Figure 16. The time-series segments denoised by DRSN. Time domain waveform of (a) Ex component;
(b) Ey component; (c) Hx component; (d) Hy component. The left panels are time domain waveforms,
and the right panels are their spectra. Spectrum of (e) Ex component; (f) Ey component; (g) Hx
component; (h) Hy component.

We compare the denoising performance of the proposed method and the robust
method in Figure 17. After processing our way, the apparent resistivity and phase curves
have good continuity and smoothness across all frequency bands. Between 0.5 Hz and
0.01 Hz, the pronounced resistivity curve of the robust method has a 45◦ rising trend in the
yx direction, but that of DRSN only shows a slight upward trend.
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We compare the two results in Figure 17. The apparent resistivity and phase curves 
after robust processing are not consistent with those of the undisturbed segment. Still, the 
results of our method coincide with the steady part, indicating that our approach is better 
than the robust method in processing the cultural noise. 

As shown in Figure 18, the noise leads to polarization direction converging in some 
angles, such as the range 0° in Figure 18a,b, indicating that the data are subject to extreme 
interference. Figure 18c,d show that the noise-free data’s polarization directions become 
random in electric and magnetic fields. After denoising, their polarization directions be-
come overall random in electric and magnetic fields (Figure 18e,f). Because the undis-
turbed magnetotelluric signal originates from the natural area, its polarization direction 
was randomly distributed due to the characteristics of the field source. However, after 
noise interference, the strength of the artificial source is greater than that of the natural 
field, making the polarization direction show the characteristics of the artificial field 
source, which is relatively concentrated and regular. These results demonstrate that our 
approach can remove MT noise well regardless of the noise level. 

Figure 17. The (upper panels) are apparent resistivity curves, and the (bottom panels) are phase
curves denoised by DRSN and the robust method.

We compare the two results in Figure 17. The apparent resistivity and phase curves
after robust processing are not consistent with those of the undisturbed segment. Still, the
results of our method coincide with the steady part, indicating that our approach is better
than the robust method in processing the cultural noise.

As shown in Figure 18, the noise leads to polarization direction converging in some
angles, such as the range 0◦ in Figure 18a,b, indicating that the data are subject to extreme
interference. Figure 18c,d show that the noise-free data’s polarization directions become
random in electric and magnetic fields. After denoising, their polarization directions
become overall random in electric and magnetic fields (Figure 18e,f). Because the undis-
turbed magnetotelluric signal originates from the natural area, its polarization direction
was randomly distributed due to the characteristics of the field source. However, after
noise interference, the strength of the artificial source is greater than that of the natural
field, making the polarization direction show the characteristics of the artificial field source,
which is relatively concentrated and regular. These results demonstrate that our approach
can remove MT noise well regardless of the noise level.

3.2.2. Experimental Data in Luzong

In 2010, we performed a magnetotelluric experiment in the Luzong mining area,
Anhui Province, China, using V5-2000 from Phoenix Geophysics Ltd. Due to the developed
economy, there is much cultural noise, so the MT signals have many abnormal time series.
However, the noise is relevant and persistent, making it challenging to eliminate effectively
by traditional methods.

As shown in Figure 19, there are many outliers in the curves of the raw data. When
the frequency is below 40 Hz, the apparent resistivity changes linearly with the frequency,
showing a 45◦ rise, and the phase approaches 0 or±180◦. The noise around the observation
station contaminates these data, so the original curves cannot accurately reflect the electrical
structure underground.
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Figure 18. The polarization direction of the test dataset. The electric field of (a) noisy data,
(c) noise-free data, and (e) denoised data at 0.075 Hz. The magnetic field of (b) noisy data, (d)
noise-free data, and (f) denoised data at 0.075 Hz.
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uses the noisy raw data to train the model. Furthermore, the algorithm, benefiting from 
the end-to-end DRSN structure, can extract useful features from noisy data. Finally, DRSN 
has a better noise removal effect, shorter training times, and fewer overfitting risks. 

It has limitations. For instance, it requires a longer training time than other deep 
learning algorithms. 

  

Figure 19. The apparent resistivity (upper panel) and phase (lower panel) of the raw data in the
Luzon ore district.

Figure 20 shows the apparent resistivity, and phase curves varied smoothly with
frequency after DRSN treatment. The results obtained by our method are consistent with
those obtained by the RR method, except for the data in the low-frequency band. It shows
that DRSN can be effective in MT denoising.
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Figure 20. The apparent resistivity curves (upper panels) and the phase curves (bottom panels)
denoised by DRSN and remote reference (RR).

4. Discussion

This study applied the deep residual shrinkage network for MT signal–noise sepa-
ration. Testing shows that in noise mitigation, the DRSN outperforms traditional noise
removal methods and deep learning methods such as ConvNet and ResNet. First, it directly
uses the noisy raw data to train the model. Furthermore, the algorithm, benefiting from the
end-to-end DRSN structure, can extract useful features from noisy data. Finally, DRSN has
a better noise removal effect, shorter training times, and fewer overfitting risks.

It has limitations. For instance, it requires a longer training time than other deep
learning algorithms.

5. Conclusions

Using the MT method to investigate underground structures requires high-quality
time series, which are difficult to extract from noisy MT data. To address this issue, we
propose a novel signal–noise separation method based on the deep residual shrinkage
network. The method can learn features and separate signal and noise. The results are
improved obviously in the time domain, spectrum, apparent resistivity, phase curve, and
polarization direction. In addition, the method was based on a relatively simple deep
learning network, so no professional signal processing knowledge is needed, resulting in a
simple operation. The DRSN method is effective and intelligent, effectively adjusting the
sample distribution and improving the data quality. Although its training time is extended,
the denoising process only takes 1–3 s, making it much faster than other MT denoising
algorithms. In addition, the DRSN method can remove unknown electric noise, correct the
distortion of resistivity and phases, and randomize the distribution of electric and magnetic
fields.
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