A Study of Respirable Silica in Underground Coal Mines: Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. RCMD Samples
2.2. Respirable Dust Samples Generated from Primary Source Materials
2.3. Analytical Methods
2.3.1. SEM-EDX Analysis
2.3.2. FTIR Analysis
2.3.3. NIOSH Method 7603 Analysis
3. Results and Discussion
3.1. Dust Generated from Primary Source Materials
3.2. RCMD Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans: Silica and Some Silicates; IARC: Lyon, France, 1987; Volume 42. [Google Scholar]
- IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans: Silica, Some Silicates, Coal Dust and Para-Aramid Fibrils; IARC: Lyon, France, 1997; Volume 68. [Google Scholar]
- Hall, N.B.; Blackley, D.J.; Halldin, C.N.; Laney, A.S. Pneumoconiosis progression patterns in US coal miner participants of a job transfer programme designed to prevent progression of disease. Occup. Environ. Med. 2020, 77, 402–406. [Google Scholar] [CrossRef]
- Hall, N.B.; Blackley, D.J.; Halldin, C.N.; Laney, A.S. Current Review of Pneumoconiosis Among US Coal Miners. Curr. Environ. Heal. Rep. 2019, 6, 137–147. [Google Scholar] [CrossRef]
- Reynolds, L.E.; Blackley, D.J.; Colinet, J.F.; Potts, J.D.; Storey, E.; Short, C.; Carson, R.; Clark, K.A.; Laney, A.S.; Halldin, C.N. Work Practices and Respiratory Health Status of Appalachian Coal Miners With Progressive Massive Fibrosis. J. Occup. Environ. Med. 2018, 60, e575–e581. [Google Scholar] [CrossRef]
- Cohen, R.A.; Petsonk, E.L.; Rose, C.; Young, B.; Regier, M.; Najmuddin, A.; Abraham, J.L.; Churg, A.; Green, F.H.Y. Lung Pathology in U.S. Coal Workers with Rapidly Progressive Pneumoconiosis Implicates Silica and Silicates. Am. J. Respir. Crit. Care Med. 2016, 193, 673–680. [Google Scholar] [CrossRef]
- Blanc, P.D.; Seaton, A. Pneumoconiosis Redux. Coal Workers’ Pneumoconiosis and Silicosis Are Still a Problem. Am. J. Respir. Crit. Care Med. 2016, 193, 603–605. [Google Scholar] [CrossRef]
- Joy, G.J.; Listak, J.M.; Beck, T.W. Respirable quartz hazards associated with coal mine roof bolter dust. In Proceedings of the 13th U.S./North American Mine Ventilation Symposium, Sudbury, ON, Canada, 13–16 June 2010; pp. 59–64. [Google Scholar]
- Cohen, R.A.C.; Patel, A.; Green, F.H.Y. Lung Disease Caused by Exposure to Coal Mine and Silica Dust. Semin. Respir. Crit. Care Med. 2008, 29, 651–661. [Google Scholar] [CrossRef]
- Almberg, K.S.; Halldin, C.N.; Blackley, D.J.; Laney, A.S.; Storey, E.; Rose, C.S.; Go, L.H.T.; Cohen, R.A. Progressive Massive Fibrosis Resurgence Identified in U.S. Coal Miners Filing for Black Lung Benefits, 1970–2016. Ann. Am. Thorac. Soc. 2018, 15, 1420–1426. [Google Scholar] [CrossRef]
- Code of Federal Regulations (CFR). Title 30—Mineral Resources, Part 70—Mandatory Health Standards-Underground Coal Mines; last amended 2022; Office of the Federal Register: Washington, DC, USA, 1977.
- Antao, V.C.D.S.; Petsonk, E.L.; Sokolow, L.; Wolfe, A.L.; Pinheiro, G.A.; Hale, J.M.; Attfield, M.D. Rapidly progressive coal workers’ pneumoconiosis in the United States: Geographic clustering and other factors. Occup. Environ. Med. 2005, 62, 670–674. [Google Scholar] [CrossRef]
- Blackley, D.J.; Reynolds, L.E.; Short, C.; Carson, R.; Storey, E.; Halldin, C.N.; Laney, A.S. Progressive Massive Fibrosis in Coal Miners From 3 Clinics in Virginia. JAMA 2018, 319, 500–501. [Google Scholar] [CrossRef]
- Blackley, D.J.; Crum, J.B.; Halldin, C.N.; Storey, E.; Laney, A.S. Resurgence of Progressive Massive Fibrosis in Coal Miners—Eastern Kentucky. MMWR. Morb. Mortal. Wkly. Rep. 2016, 65, 1385–1389. [Google Scholar] [CrossRef] [Green Version]
- Graber, J.M.; Harris, G.; Almberg, K.S.; Rose, C.S.; Petsonk, E.L.; Cohen, R.A. Increasing Severity of Pneumoconiosis Among Younger Former US Coal Miners Working Exclusively Under Modern Dust-Control Regulations. J. Occup. Environ. Med. 2017, 59, e105–e111. [Google Scholar] [CrossRef] [PubMed]
- Laney, A.S.; Weissman, D.N. Respiratory Diseases Caused by Coal Mine Dust. J. Occup. Environ. Med. 2014, 56 (Suppl. S10), S18–S22. [Google Scholar] [CrossRef] [PubMed]
- Kuempel, E.D.; Attfield, M.D.; Vallyathan, V.; Lapp, N.L.; Hale, J.M.; Smith, R.J.; Castranova, V. Pulmonary inflammation and crystalline silica in respirable coal mine dust: Dose-response. J. Biosci. 2003, 28, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.A.; Rose, C.S.; Go, L.H.T.; Zell-Baran, L.M.; Almberg, K.S.; Sarver, E.A.; Lowers, H.A.; Iwaniuk, C.; Clingerman, S.M.; Richardson, D.L.; et al. Pathology and Mineralogy Demonstrate Respirable Crystalline Silica is a Major Cause of Severe Pneumoconiosis in US Coal Miners. Ann. Am. Thorac. Soc. 2022. [Google Scholar] [CrossRef]
- Agioutanti, E.; Keles, C.; Sarver, E. A thermogravimetric analysis application to determine coal, carbonate, and non-carbonate minerals mass fractions in respirable mine dust. J. Occup. Environ. Hyg. 2020, 17, 47–58. [Google Scholar] [CrossRef]
- Doney, B.C.; Blackley, D.; Hale, J.M.; Halldin, C.; Kurth, L.; Syamlal, G.; Laney, A.S. Respirable coal mine dust in underground mines, United States, 1982–2017. Am. J. Ind. Med. 2019, 62, 478–485. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Monitoring and Sampling Approaches to Assess Underground Coal Mine Dust Exposures; The National Academies Press: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Trechera, P.; Moreno, T.; Córdoba, P.; Moreno, N.; Zhuang, X.; Li, B.; Li, J.; Shangguan, Y.; Kandler, K.; Dominguez, A.O.; et al. Mineralogy, geochemistry and toxicity of size-segregated respirable deposited dust in underground coal mines. J. Hazard. Mater. 2020, 399, 122935. [Google Scholar] [CrossRef]
- Mischler, S.E.; Cauda, E.G.; Di Giuseppe, M.; McWilliams, L.J.; Croix, C.S.; Sun, M.; Franks, J.; Ortiz, L.A. Differential activation of RAW 264.7 macrophages by size-segregated crystalline silica. J. Occup. Med. Toxicol. 2016, 11, 57. [Google Scholar] [CrossRef]
- Vallyathan, V.; Shi, X.L.; Dalal, N.S.; Irr, W.; Castranova, V. Generation of free radicals from freshly fractured silica dust. Potential role in acute silica-induced lung injury. Am. Rev. Respir. Dis. 1988, 138, 1213–1219. [Google Scholar] [CrossRef]
- Pavan, C.; Piane, M.D.; Gullo, M.; Filippi, F.; Fubini, B.; Hoet, P.; Horwell, C.J.; Huaux, F.; Lison, D.; Giudice, C.L.; et al. The puzzling issue of silica toxicity: Are silanols bridging the gaps between surface states and pathogenicity? Part. Fibre Toxicol. 2019, 16, 32. [Google Scholar] [CrossRef]
- Pavan, C.; Fubini, B. Unveiling the Variability of “Quartz Hazard” in Light of Recent Toxicological Findings. Chem. Res. Toxicol. 2017, 30, 469–485. [Google Scholar] [CrossRef] [PubMed]
- Turci, F.; Pavan, C.; Leinardi, R.; Tomatis, M.; Pastero, L.; Garry, D.; Anguissola, S.; Lison, D.; Fubini, B. Revisiting the paradigm of silica pathogenicity with synthetic quartz crystals: The role of crystallinity and surface disorder. Part. Fibre Toxicol. 2015, 13, 3. [Google Scholar] [CrossRef]
- Stone, V.; Jones, R.; Rollo, K.; Duffin, R.; Donaldson, K.; Brown, D. Effect of coal mine dust and clay extracts on the biological activity of the quartz surface. Toxicol. Lett. 2004, 149, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Walton, W.H.; Dodgson, J.; Hadden, G.G.; Jacobsen, M. The effect of quartz and other non-coal dusts in coal workers’ pneumoconiosis. In Inhaled Particles IV; Walton, W.H., Ed.; Unwin Brothers: Surrey, UK, 1977; pp. 669–689. [Google Scholar]
- United States National Institute for Occupational Safety and Health. Criteria for a Recommended Standard—Occupational Exposure to Respirable Coal Mine Dust (DHHS (NIOSH); Publ. No. 95-106; United States National Institute for Occupational Safety and Health: Cincinnati, OH, USA, 1995.
- Schatzel, S.J. Identifying sources of respirable quartz and silica dust in underground coal mines in southern West Virginia, western Virginia, and eastern Kentucky. Int. J. Coal Geol. 2009, 78, 110–118. [Google Scholar] [CrossRef]
- Sarver, E.; Keles, C.; Rezaee, M. Beyond conventional metrics: Comprehensive characterization of respirable coal mine dust. Int. J. Coal Geol. 2019, 207, 84–95. [Google Scholar] [CrossRef]
- Sarver, E.; Keles, C.; Rezaee, M. Characteristics of respirable dust in eight appalachian coal mines: A dataset including particle size and mineralogy distributions, and metal and trace element mass concentrations. Data Brief 2019, 25, 104032. [Google Scholar] [CrossRef]
- Sarver, E.; Keleş, Ç.; Afrouz, S.G. Particle size and mineralogy distributions in respirable dust samples from 25 US underground coal mines. Int. J. Coal Geol. 2021, 247, 103851. [Google Scholar] [CrossRef]
- Pollock, D.E.; Potts, J.D.; Joy, G.J. Investigation into dust exposures and mining practices in mines in the southern Appalachian region. Min. Eng. 2010, 62, 44–49. [Google Scholar]
- Miller, A.L.; Drake, P.L.; Murphy, N.C.; Noll, J.D.; Volkwein, J.C. Evaluating portable infrared spectrometers for measuring the silica content of coal dust. J. Environ. Monit. 2011, 14, 48–55. [Google Scholar] [CrossRef]
- Oman, C.L.; Finkelman, R.B.; Talley, R.T. Analysis of Ten Coal Samples from the Michigan Basin; U.S. Geologic Survey Open-File Report; U.S. Geological Survey: Reston, VA, USA, 1992; pp. 92–180. [CrossRef]
- Trent, V.A.; Medlin, J.H.; Coleman, S.L.; Stanton, R.W. Chemical Analyses and Physical Properties of 12 Coal Samples from the Pocahontas Field, Tazewell County, Virginia, and McDowell County, West Virginia; Geological Survey Bulletin 1528; U.S. Government Printing Office: Washington, DC, USA, 1982.
- Code of Federal Regulations (CFR). Title 30—Mineral Resources, Part 75.2—Mandatory Safety Standards-Underground Coal Mines; Office of the Federal Register: Washington, DC, USA, 1969.
- Pokhrel, N.; Agioutanti, E.; Keles, C.; Afrouz, S.; Sarver, E. Comparison of Respirable Coal Mine Dust Constituents Estimated using FTIR, TGA, and SEM–EDX. Min. Met. Explor. 2022, 39, 291–300. [Google Scholar] [CrossRef]
- Farcas, D.; Lee, T.; Chisholm, W.P.; Soo, J.-C.; Harper, M. Replacement of filters for respirable quartz measurement in coal mine dust by infrared spectroscopy. J. Occup. Environ. Hyg. 2016, 13, D16–D22. [Google Scholar] [CrossRef] [PubMed]
- Johann-Essex, V.; Keles, C.; Sarver, E. A Computer-Controlled SEM-EDX Routine for Characterizing Respirable Coal Mine Dust. Minerals 2017, 7, 15. [Google Scholar] [CrossRef]
- Miller, A.L.; Weakley, A.T.; Griffiths, P.R.; Cauda, E.G.; Bayman, S. Direct-on-Filter α-Quartz Estimation in Respirable Coal Mine Dust Using Transmission Fourier Transform Infrared Spectrometry and Partial Least Squares Regression. Appl. Spectrosc. 2016, 71, 1014–1024. [Google Scholar] [CrossRef] [PubMed]
- Cauda, E.; Miller, A.; Drake, P. Promoting early exposure monitoring for respirable crystalline silica: Taking the laboratory to the mine site. J. Occup. Environ. Hyg. 2016, 13, D39–D45. [Google Scholar] [CrossRef]
- NIOSH. FAST (Field Analysis of Silica Tool), Build 1.0.7.2 ed.; NIOSH-CDC: Pittsburgh, PA, USA, 2019.
- Miller, A.L.; Drake, P.L.; Murphy, N.C.; Cauda, E.G.; LeBouf, R.; Markevicius, G. Deposition Uniformity of Coal Dust on Filters and Its Effect on the Accuracy of FTIR Analyses for Silica. Aerosol Sci. Technol. 2013, 47, 724–733. [Google Scholar] [CrossRef]
- NIOSH. Method 7603, Quartz in coal mine dust, by IR (Redeposition). In NIOSH Manual of Analytical Methods (NMAM), 5th ed.; Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health: Cincinnati, OH, USA, 2017. [Google Scholar]
- Jaramillo, L.; Agioutanti, E.; Afrouz, S.G.; Keles, C.; Sarver, E. Thermogravimetric Analysis of Respirable Coal Mine Dust for Simple Source Apportionment. J. Occup. Environ. Hyg. 2022, 1–14. [Google Scholar] [CrossRef]
Mine | Mine Reg. 1 | MSHA District | State | Mining Method 2 | Coal Ht. (m) | Mining Ht. (m) | Roof Strata 3 | Mine Dust Samples | Source Materials | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location 4 | Total | Material Type 5 | Total | |||||||||||||||
B | P | R | F | I | BD | RS | C | RD | ||||||||||
10 | CA | 5 | KY | CM | 1–1.2 | 1.8–1.9 | Sh/Sn | 2 | 1 | 1 | 2 | 1 | 7 | 1 | 1 | 0 | 0 | 2 |
11 | CA | 5 | VA | CM | 0.8 | 1.2–1.3 | Sh | 1 | 1 | 1 | 1 | 0 | 4 | 0 | 1 | 0 | 1 | 2 |
12 | CA | 5 | VA | CM | 0.8–1.5 | 1.9–2.0 | Sh/Sn | 1 | 1 | 1 | 0 | 1 | 4 | 0 | 1 | 1 | 1 | 3 |
13 | CA | 5 | VA | LW | 1.5–1.8 | 1.8–2.0 | Sn/Sh | 1 | 0 | 2 | 1 | 2 | 6 | 1 | 0 | 1 | 1 | 3 |
14 | CA | 5 | VA | CM | 0.6–0.9 | 1.5–1.9 | Sh | 1 | 1 | 0 | 1 | 1 | 4 | 1 | 1 | 1 | 1 | 4 |
15 | CA | 4 | WV | CM | 0.9–1.2 | 2.0 | Sh | 1 | 1 | 1 | 1 | 1 | 5 | 0 | 1 | 1 | 1 | 3 |
16 | NA | 3 | WV | CM | 2.7 | 2.1 | Sh | 1 | 1 | 1 | 1 | 0 | 4 | 1 | 0 | 1 | 1 | 3 |
17 | NA | 3 | WV | LW | 1.5–1.8 | 2.0–2.3 | Sh | 1 | 1 | 2 | 0 | 2 | 6 | 1 | 0 | 1 | 1 | 3 |
18 | NA | 3 | WV | CM | 0.7–0.8 | 1.5–1.8 | Sh | 1 | 1 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | 4 |
19 | MW | 8 | IL | CM | 1.8–2.0 | 1.9–2.3 | Sh/Lm | 1 | 1 | 2 | 1 | 1 | 6 | 1 | 1 | 1 | 1 | 4 |
20 | MW | 8 | IL | CM | 1.8–1.9 | 1.8–2.0 | Sh/Lm | 1 | 1 | 1 | 2 | 1 | 6 | 1 | 0 | 0 | 1 | 2 |
21 | CA | 12 | WV | CM | 0.8–1.0 | 2.0 | Sh/Sn | 1 | 1 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 0 | 3 |
22 | CA | 12 | WV | CM | 0.8 | 1.4 | Sh | 0 | 1 | 0 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 4 |
23 | W | 9 | CO | LW | 6.1 | 4.3 | Sh | 0 | 1 | 1 | 0 | 2 | 4 | 1 | 1 | 1 | 1 | 4 |
24 | W | 9 | CO | LW | 1.8 | 2.1–2.4 | Sh/Sn | 0 | 0 | 2 | 1 | 3 | 6 | 1 | 0 | 0 | 1 | 2 |
B | P | R | F | I | Total | BD | RS | C | RD | Total | ||||||||
Total | 13 | 13 | 17 | 14 | 18 | 75 6 | 12 | 10 | 11 | 13 | 46 7 |
Mine Region 1 | Source Material 2 | Total | SEM-EDX | FTIR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PLD 3 < 0.035 | PLD > 0.035 | >LOD 4 | <LOD | ||||||||||
n | n | Mean PLD (#/µm2) | Mean Silica% | n | Mean PLD (#/µm2) | Mean Silica% | n | Mean Sample Mass 5 (mg) | Mean Quartz % | n | Mean Sample Mass (mg) | ||
CA | BD | 5 | 5 | 0.007 | 16.5 | 0 | - | - | 5 | 0.97 | 22.1 | 0 | - |
RS | 7 | 6 | 0.012 | 13.1 | 0 | - | - | 7 | 1.04 | 16.1 | 0 | - | |
C | 6 | 6 | 0.005 | 6.4 | 0 | - | - | 6 | 1.01 | 2.8 | 0 | - | |
RD | 6 | 6 | 0.006 | 0.1 | 0 | - | - | 0 | - | - | 6 | 1.077 | |
NA | BD | 3 | 3 | 0.013 | 31.8 | 0 | - | - | 3 | 1.11 | 34.9 | 0 | - |
RS | 1 | 1 | 0.005 | 8.0 | 0 | - | - | 1 | 1.94 | 18.6 | 0 | - | |
C | 3 | 3 | 0.003 | 4.0 | 0 | - | - | 3 | 0.95 | 2.3 | 0 | - | |
RD | 3 | 3 | 0.009 | 0.3 | 0 | - | - | 2 | 0.98 | 0.3 | 1 | 0.830 | |
MW | BD | 2 | 2 | 0.008 | 4.6 | 0 | - | - | 2 | 1.05 | 9.8 | 0 | - |
RS | 1 | 1 | 0.014 | 35.1 | 0 | - | - | 1 | 1.01 | 14.2 | 0 | - | |
C | 1 | 1 | 0.009 | 10.3 | 0 | - | - | 0 | - | - | 1 | 0.800 | |
RD | 2 | 2 | 0.016 | 0.0 | 0 | - | - | 2 | 0.95 | 2.7 | 0 | - | |
W | BD | 2 | 2 | 0.009 | 45.2 | 0 | - | - | 2 | 0.94 | 48.1 | 0 | - |
RS | 1 | 1 | 0.013 | 20.6 | 0 | - | - | 1 | 0.83 | 38.0 | 0 | - | |
C | 1 | 1 | 0.003 | 4.5 | 0 | - | - | 1 | 0.89 | 0.4 | 0 | - | |
RD | 2 | 2 | 0.007 | 0.1 | 0 | - | - | 1 | 0.96 | 1.3 | 1 | 0.870 | |
all samples | BD | 12 | 12 | 0.009 | 23.1 | 0 | - | - | 12 | 1.01 | 27.6 | 0 | - |
RS | 10 | 9 | 0.011 | 15.8 | 0 | - | - | 10 | 1.11 | 18.4 | 0 | - | |
C | 11 | 11 | 0.005 | 5.9 | 0 | - | - | 10 | 0.98 | 2.4 | 1 | 0.800 | |
RD | 13 | 13 | 0.008 | 0.1 | 0 | - | - | 5 | 0.96 | 1.4 | 8 | 1.020 |
Mine Region 1 | Sampling Location 2 | Total | SEM-EDX | FTIR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PLD 3 < 0.035 | PLD > 0.035 | >LOD 4 | <LOD | ||||||||||
n | n | Mean PLD (#/µm2) | Mean Silica% | n | Mean PLD (#/µm2) | Mean Silica% | n | Mean Sample Mass 5 (µg) | Mean Quartz% | n | Mean Sample Mass (µg) | ||
CA | B | 8 | 6 | 0.015 | 13.2 | 2 | 0.049 | 2.0 | 1 | 2.54 | 12.3 | 7 | 0.115 |
P | 7 | 2 | 0.024 | 6.1 | 5 | 0.043 | 0.7 | 6 | 1.62 | 5.6 | 1 | 1.494 | |
R | 7 | 4 | 0.022 | 6.0 | 3 | 0.042 | 0.2 | 6 | 1.83 | 4.3 | 1 | 0.038 | |
F | 8 | 8 | 0.015 | 7.2 | 0 | - | - | 0 | - | - | 8 | 0.124 | |
I | 8 | 8 | 0.008 | 10.9 | 0 | - | - | 1 | 0.70 | 4.6 | 7 | 0.023 | |
NA | B | 3 | 3 | 0.011 | 10.1 | 0 | - | - | 0 | - | - | 3 | 0.076 |
P | 3 | 0 | - | - | 3 | 0.043 | 4.4 | 0 | - | - | 3 | 0.279 | |
R | 4 | 3 | 0.019 | 4.0 | 1 | 0.056 | 0.2 | 1 | 0.76 | 1.9 | 3 | 0.297 | |
F | 2 | 2 | 0.012 | 3.5 | 0 | - | - | 0 | - | - | 2 | 0.046 | |
I | 3 | 3 | 0.003 | 2.3 | 0 | - | - | 0 | - | - | 3 | 0.030 | |
MW | B | 2 | 0 | - | - | 2 | 0.047 | 3.6 | 0 | - | - | 2 | 0.356 |
P | 2 | 0 | - | - | 2 | 0.044 | 2.0 | 1 | 0.76 | 0.5 | 1 | 0.277 | |
R | 3 | 0 | - | - | 3 | 0.043 | 3.4 | 0 | - | - | 3 | 0.366 | |
F | 3 | 2 | 0.017 | 9.8 | 1 | 0.049 | 6.1 | 1 | 2.61 | 4.6 | 2 | 0.167 | |
I | 2 | 2 | 0.004 | 4.2 | 0 | - | - | 0 | - | - | 2 | 0.017 | |
W | B | 0 | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
P | 1 | 1 | 0.028 | 0.1 | 0 | - | - | 0 | - | - | 1 | 0.349 | |
R | 3 | 1 | 0.032 | 19.7 | 2 | 0.049 | 0.1 | 1 | 5.36 | 3.5 | 2 | 0.527 | |
F | 1 | 1 | 0.015 | 5.7 | 0 | - | - | 0 | - | - | 1 | 0.068 | |
I | 5 | 4 | 0.017 | 2.8 | 1 | 0.051 | 94.9 | 1 | 1.55 | 24.9 | 4 | 0.097 | |
all samples | B | 13 | 9 | 0.014 | 12.1 | 4 | 0.048 | 2.8 | 1 | 2.54 | 12.3 | 12 | 0.146 |
P | 13 | 3 | 0.025 | 4.1 | 10 | 0.043 | 2.1 | 7 | 1.49 | 4.9 | 6 | 0.493 | |
R | 17 | 8 | 0.022 | 7.0 | 9 | 0.046 | 1.2 | 8 | 2.13 | 3.9 | 9 | 0.342 | |
F | 14 | 13 | 0.015 | 6.9 | 1 | 0.049 | 6.1 | 1 | 2.61 | 4.6 | 13 | 0.114 | |
I | 18 | 17 | 0.009 | 6.7 | 1 | 0.051 | 94.9 | 2 | 1.12 | 14.8 | 16 | 0.042 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keles, C.; Pokhrel, N.; Sarver, E. A Study of Respirable Silica in Underground Coal Mines: Sources. Minerals 2022, 12, 1115. https://doi.org/10.3390/min12091115
Keles C, Pokhrel N, Sarver E. A Study of Respirable Silica in Underground Coal Mines: Sources. Minerals. 2022; 12(9):1115. https://doi.org/10.3390/min12091115
Chicago/Turabian StyleKeles, Cigdem, Nishan Pokhrel, and Emily Sarver. 2022. "A Study of Respirable Silica in Underground Coal Mines: Sources" Minerals 12, no. 9: 1115. https://doi.org/10.3390/min12091115
APA StyleKeles, C., Pokhrel, N., & Sarver, E. (2022). A Study of Respirable Silica in Underground Coal Mines: Sources. Minerals, 12(9), 1115. https://doi.org/10.3390/min12091115