Re Variation Triggered from the Paleo-Pacific Plate Evolution: Constrains from Mo Polymetallic Deposits in Zhejiang Province, South China Mo Province
Abstract
:1. Introduction
2. Regional Geology
3. Deposit Geology
4. Sample Description and Analytical Methods
4.1. Sample Description
4.2. SIMS U–Pb Analysis
4.3. ICP–MS Re–Os Analysis
5. Results
5.1. Zircon U–Pb Dating
5.2. Molybdenite Re–Os Dating
6. Discussion
6.1. The Jurassic Re-Enriched Mo Mineralization in the SCMP
6.2. The Spatial-Temporal Distribution of Re-Bearing Mo Mineralization
6.3. Geodynamic Setting of the Re-Bearing Mo Mineralization
7. Conclusions
- (1)
- Our zircon U–Pb (150.8 ± 1.1 Ma) and molybdenite Re–Os (149.6 ± 1.3 Ma) ages of the Xianlin porphyry-skarn Mo(Cu)–Fe deposit indicate that a significant magmatic event was associated with the Re-enriched Mo mineralization in the SCMP.
- (2)
- This study indicates that a decreasing trend in Re content from the Jurassic Mo–Cu/Mo–Fe mineralization stage (170–145 Ma) to the Cretaceous Mo/Mo–PbZn mineralization stage (145–90 Ma) in the SCMP.
- (3)
- The Paleo-Pacific plate played a crucial role in the Late Mesozoic tectonic-magmatic development of Zhejiang Province, SCMP, especially, influencing the spatial and temporal distribution of Re contents from different Mo polymetallic deposits. Jurassic Re-enriched Mo–Cu/Mo–Fe mineralization associated with I-type granitoids was formed in an active continental margin triggered by the low-angle subduction of the Paleo-Pacific slab. Cretaceous Re-low Mo/Mo–PbZn mineralization related to I- and A-type granitoids was formed in an extensional back-arc environment triggered by the rollback of the Paleo-Pacific slab.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, J.W.; Yang, Z.X.; Xie, G.Q.; Yuan, S.D.; Zhou, Z.H. Critical minerals: International trends and thinking. Miner. Deposit. 2019, 38, 689–698, (In Chinese with English Abstract). [Google Scholar]
- Taylor, S.R.; MacLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Palo Alto, CA, USA, 1985. [Google Scholar]
- Korzhinsky, M.A.; Tkachenko, S.I.; Shmulovich, K.I.; Taran, Y.A.; Steinberg, G.S. Discovery of a pure rhenium mineral at Kudriavy volcano. Nature 1994, 369, 51–52. [Google Scholar] [CrossRef]
- Liao, R.Q.; Liu, H.; Li, C.Y.; Sun, W.D. Rhenium resource exploration prospects in China based on its geochemical properties. Acta Petrol. Sin. 2020, 36, 55–67, (In Chinese with English Abstract). [Google Scholar]
- Huang, F.; Wang, D.H.; Wang, Y.; Jiang, B.; Li, C.; Zhao, H. Study on metallogenic regularity rhenium deposits in China and their prospecting direction. Acta Geol. Sin. 2019, 93, 1252–1269, (In Chinese with English Abstract). [Google Scholar]
- Berzina, A.N.; Sotnikova, V.I.; Economou-Eliopoulosb, M.; Eliopoulos, D.G. Distribution of rhenium in molybdenite from porphyry Cu–Mo and Mo–Cu deposits of Russia (Siberia) and Mongolia. Ore Geol. Rev. 2005, 26, 91–113. [Google Scholar] [CrossRef]
- Wang, J.B.; Zou, T.; Wang, Y.W.; Long, L.L.; Zhang, H.Q.; Liao, Z.; Xie, H.J. Deposit associations, metallogenesis and metallogenic lineage of molybdenum-polymetallic deposits in China. Miner. Deposit. 2014, 33, 447–470, (In Chinese with English Abstract). [Google Scholar]
- Chen, Y.J.; Zhang, C.; Wang, P.; Pirajno, F.; Li, N. The Mo deposits of Northeast China: A powerful indicator of tectonic settings and associated evolutionary trends. Ore Geol. Rev. 2017, 81, 602–640. [Google Scholar] [CrossRef]
- Mao, J.W.; Cheng, Y.B.; Chen, M.H.; Pirajno, F. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner. Depos. 2013, 48, 267–294. [Google Scholar]
- Zeng, Q.D.; Liu, J.M.; Qin, K.Z.; Fan, H.R.; Chu, S.X.; Wang, Y.B.; Zhou, L.L. Types, characteristics, and time–space distribution of molybdenum deposits in China. Int. Geol. Rev. 2013, 55, 1311–1358. [Google Scholar] [CrossRef]
- Zeng, Q.D.; Wang, Y.B.; Zhang, S.; Liu, J.M.; Qin, K.Z.; Yang, J.H.; Sun, W.D.; Qu, W.J. U–Pb and Re–Os geochronology of the Tongcun molybdenum deposit and Zhilintou gold-silver deposit in Zhejiang province, Southeast China, and its geological implications. Resour. Geol. 2012, 63, 99–109. [Google Scholar] [CrossRef]
- Wang, Y.B.; Zeng, Q.D.; Liu, J.M.; Pirajno, F. Cretaceous magmatism and Mo mineralization in the South China Mo Province: U–Pb and Re–Os geochronology constraints from the Sanzhishu porphyry Mo deposit. Ore Geol. Rev. 2017, 81, 912–924. [Google Scholar] [CrossRef]
- Zhong, J.; Chen, Y.J.; Pirajno, F. Geology, geochemistry and tectonic settings of the molybdenum deposits in South China: A review. Ore Geol. Rev. 2017, 81, 829–855. [Google Scholar] [CrossRef]
- Shuo, G.; Zhao, Y.Y.; Qu, H.C.; Wu, D.X.; Xu, H.; Li, C.; Liu, Y.; Zhu, X.Y.; Wang, Z.K. Geological characteristics and ore-forming time of the Dexing porphyry copper ore mine in Jiangxi Province. Acta Geol. Sin.-Engl. 2012, 86, 691–699. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Xiao, W.J.; Zhao, G.C. Introduction to tectonics of China. Gondwana Res. 2013, 23, 1189–1206. [Google Scholar] [CrossRef]
- Zhou, X.M.; Sun, T.; Shen, W.Z.; Shu, L.S.; Niu, Y.L. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes 2006, 29, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, S. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed. Isl. Arc 1997, 6, 91–120. [Google Scholar] [CrossRef]
- Zhou, X.; Li, W. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 2000, 326, 269–287. [Google Scholar] [CrossRef]
- Wang, Y.B.; Zeng, Q.D.; Liu, J.M.; Zhou, L.L. The late Early Cretaceous Mo mineralization in the South China Mo Province: Constraints from U–Pb and Re–Os geochronology of the Lufeng porphyry Mo deposit. Acta Geol. Sin.-Engl. 2019, 93, 1773–1782. [Google Scholar] [CrossRef]
- Wang, Y.B.; Zeng, Q.D.; Liu, J.M.; Qin, K.Z.; Wu, L. Porphyry Mo and epithermal Au–Ag–Pb–Zn mineralization in the Zhilingtou polymetallic deposit, South China. Miner. Depos. 2020, 55, 1385–1406. [Google Scholar] [CrossRef]
- Li, X.H.; Li, W.X.; Li, Z.X.; Lo, C.H.; Wang, J.; Ye, M.F.; Yang, Y.H. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Res. 2009, 174, 117–128. [Google Scholar] [CrossRef]
- Zhang, S.B.; Zheng, Y.F. Formation and evolution of Precambrian continental lithosphere in South China. Gondwana Res. 2013, 23, 1241–1260. [Google Scholar] [CrossRef]
- Pirajno, F.; Bagas, L.; Hickman, A.H.; Gold Research Team. Gold mineralization of the Chencai-Suichang uplift and tectonic evolution of Zhejiang province, Southeast China. Ore Geol. Rev. 1997, 12, 35–55. [Google Scholar] [CrossRef]
- Wang, Y.B.; Zeng, Q.D.; Zhang, S.; Chen, P.W.; Gao, S. Spatial–temporal relationships of late Mesozoic granitoids in Zhejiang Province, Southeast China: Constraints on tectonic evolution. Int. Geol. Rev. 2018, 60, 1529–1559. [Google Scholar] [CrossRef]
- Li, Y.J.; Wei, J.H.; Chen, H.Y.; Tan, J.; Fu, L.B.; Wu, G. Origin of the Maoduan Pb-Zn-Mo deposit, eastern Cathaysia Block, China: Geological, geochronological, geohemical, and Sr–Nd–Pb–S isotopic constraints. Miner. Depos. 2012, 47, 763–780. [Google Scholar] [CrossRef]
- Zhu, A.Q.; Zhang, Y.S.; Lu, Z.D.; Zhang, C.L. Metallogenic series and belts of the metal and nonmetallic deposits of Zhejiang Province. Beijing Geol. Publ. House 2009, 1–433. (In Chinese) [Google Scholar]
- Li, X.H.; Liu, Y.; Li, Q.L.; Guo, C.H. Precise determination of Phanerozoic zircon Pb/Pb age by multi-collector SIMS without external standardization. Geochem. Geophys. Geosyst. 2009, 10, Q04010. [Google Scholar] [CrossRef]
- Du, A.D.; He, H.L.; Yin, N.W.; Zou, X.Q.; Sun, Y.L.; Sun, D.Z.; Chen, S.Z.; Qu, W.J. A study of the rhenium-osmium geochronometry of molybdenites. Acta Geol. Sin. 1994, 68, 339–347, (In Chinese with English Abstract). [Google Scholar]
- Du, A.D.; Wu, S.Q.; Sun, D.Z.; Wang, S.X.; Qu, W.J.; Markey, R.; Stein, H.; Morgan, J.W.; Malinovskiy, D. Preparation and Certification of Re–Os Dating Reference Materials: Molybdenite HLP and JDC. Geostandard. Geoanal. Res. 2004, 28, 41–52. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zheng, Y.F. Genesis of zircon and its constraints on interpretation of U–Pb age. Chin. Sci. Bull. 2004, 49, 1554–1569, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Smoliar, M.I.; Walker, R.J.; Morgan, J.W. Re–Os ages of group IIA, IIIA, IVA and VIB iron meteorites. Science 1996, 271, 1099–1102. [Google Scholar] [CrossRef]
- Tang, Z.C.; Dong, X.F.; Hu, W.J.; Meng, X.S.; Rong, Y.P. SHRIMP zircon U-Pb dating of Xianlin granodiorite rock in Western Zhejiang and their geological significance. Geoscience 2014, 28, 884–891, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.B.; Zeng, Q.D.; Qu, W.J. Ore-forming age and geological significance of there-stage Mo polymetallic deposits in the Zhejiang province. Acta Mineral. Sin. 2013, 33, 55–56. (In Chinese) [Google Scholar]
- Hu, K.M.; Tang, Z.C.; Meng, X.S.; Zhou, H.W.; Dong, X.F.; Du, X.; Chen, Z.D. Chronology of petrogenesis and mineralization of the Datongkeng porphyry W-Mo deposit in Western Zhejiang. Earth Sci. 2016, 41, 1435–1450, (In Chinese with English Abstract). [Google Scholar]
- Tang, Y.W.; Xie, Y.L.; Liu, L.; Lan, T.G.; Yang, J.L.; Sebastien, M.; Yin, R.C.; Liang, S.S.; Zhou, L.M. U–Pb, Re–Os and Ar–Ar dating of the Linghou polymetallic deposit, Southeastern China: Implications for metallogenesis of the Qingzhou–Hangzhou metallogenic belt. J. Asian Earth Sci. 2017, 137, 163–179. [Google Scholar] [CrossRef]
- Chen, T.L.; Ren, Z.; Li, K.X.; Liu, F.; Duan, F.H.; Leng, C.B. Distribution characteristics and influencing factors of rhenium concentrations in molybdenite from the porphyry Cu-systems: A review. Acta Petrol. Sin. 2021, 37, 2677–2690, (In Chinese with English Abstract). [Google Scholar]
- Tang, Y.W.; Xie, Y.L.; Li, Y.X.; Qiu, L.M.; Zhang, X.X.; Han, Y.D.; Jiang, Y.C. LA–ICP–MS U–Pb Ages, geochemical characteristics of the zircons from Wushanguan complex body in Anji mining area, Northwestern Zhejiang and their geological significances. Geol. Rev. 2013, 59, 702–715, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.B.; Feng, P.L.; Zhou, L.L.; Zeng, Q.D. Genetic links of porphyry Mo-epithermal Pb–Zn–Ag mineralization system: A case study of the Shipingchuan polymetallic deposit, South China. Acta Geochim. 2022, 41, 307–323. [Google Scholar] [CrossRef]
- Kerrich, R.; Goldfarb, R.J.; Richards, J.P. Metallogenic provinces in an evolving geodynamic framework. Econ. Geol. 2005, 100, 1097–1136. [Google Scholar]
- Chen, S.Q. Discussion on the Yanshan Epoch Rock Characteristics and Ore-Forming Background in Zhejiang Kaihua Region. Master’s Thesis, China University of Geosciences, Beijing, China, 2011; pp. 21–30. [Google Scholar]
- Jia, S.H.; Zhao, Y.Y.; Wang, Z.Q.; Wu, Y.D.; Wang, T.; Chen, L. Zircon U–Pb dating and geochemical characteristics of granodiorite-porphyry in the Linghou copper deposit, Western Zhejiang, and their geological significance. Acta Geol. Sin. 2014, 88, 2071–2085, (In Chinese with English Abstract). [Google Scholar]
- Xiong, X.L.; Adam, J.; Green, T.H. Trace element characteristics of partial melts produced by melting of metabasalt at high pressures: Constraints on the formation condition of adakitic melts. Sci. China Ser. D 2006, 49, 915–925. [Google Scholar] [CrossRef]
- Wu, F.Y.; Ji, W.Q.; Sun, D.H.; Yang, Y.H.; Li, X.H. Zircon U–Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China. Lithos 2012, 150, 6–25. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jiang, S.Y.; Dai, B.Z.; Liao, S.Y.; Zhao, K.D.; Ling, H.F. Middle to late Jurassic felsic and mafic magmatism in southern Hunan province, southeast China: Implications for a continental arc to rifting. Lithos 2009, 107, 185–204. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subduction lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Yang, S.Y.; Jiang, S.Y.; Zhao, K.D.; Jiang, Y.H.; Ling, H.F.; Luo, L. Geochronology, geochemistry and tectonic significance of two Early Cretaceous A-type granites in the Gan-Hang Belt, Southeast China. Lithos 2012, 150, 155–170. [Google Scholar] [CrossRef]
- Li, Z.L.; Zhou, J.; Mao, J.R.; Santosh, M.; Yu, M.G.; Li, Y.Q.; Hu, Y.Z.; Langmuir, C.H.; Chen, Z.X.; Cai, X.X.; et al. Zircon U–Pb geochronology and geochemistry of two episodes of granitoids from the northwestern Zhejiang province, SE China: Implication for magmatic evolution and tectonic transition. Lithos 2013, 179, 334–352. [Google Scholar] [CrossRef]
- Li, Y.J.; Wei, J.H.; Yao, C.L.; Yan, Y.F.; Tan, J.; Fu, L.B.; Pan, J.B.; Li, W. Zircon U–Pb dating and tectonic significance of the Shipingchuan granite in Southeastern Zhejiang province, SE China. Geol. Rev. 2009, 55, 673–683, (In Chinese with English Abstract). [Google Scholar]
- Liu, Q.; Yu, J.H.; Wang, Q.; Su, B.; Zhou, M.F.; Xu, H.; Cui, X. Ages and geochemistry of granites in the Pingtan–Dongshan Metamorphic Belt, Coastal South China: New constraints on late Mesozoic magmatic evolution. Lithos 2012, 150, 268–286. [Google Scholar] [CrossRef]
- Li, J.H.; Zhang, Y.Q.; Dong, S.W.; Johnston, S.T. Cretaceous tectonic evolution of South China: A preliminary synthesis. Earth Sci. Rev. 2014, 134, 98–136. [Google Scholar] [CrossRef]
- Rapp, R.P.; Shimizu, N.; Norman, M.D.; Applegate, G.S. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem. Geol. 1999, 160, 335–356. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Zhao, P.; Zhou, Q.; Liao, S.Y.; Jin, G.D. Petrogenesis and tectonic implications of Early Cretaceous S- and A-type granites in the northwest of the Gan-Hang rift, SE China. Lithos 2011, 121, 55–73. [Google Scholar] [CrossRef]
Sample | Th/ppm | U/ppm | Th/U | f206Pb (%) | Isotopic Ratios | Age (Ma) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
207Pb/206Pb | ±σ (%) | 207Pb/235U | ±σ (%) | 206Pb/238U | ±σ (%) | t207/206 | ±σ | t207/235 | ±σ | t206/238 | ±σ | |||||
XL-1-1 | 119 | 238 | 0.5 | 0.00 | 0.04745 | 2.78 | 0.15450 | 3.17 | 0.0236 | 1.54 | 72.1 | 64.7 | 145.9 | 4.3 | 150.5 | 2.3 |
XL-1-2 | 99 | 235 | 0.4 | 0.20 | 0.04866 | 3.10 | 0.15798 | 3.48 | 0.0235 | 1.60 | 131.5 | 71.2 | 148.9 | 4.8 | 150.0 | 2.4 |
XL-1-3 | 91 | 237 | 0.4 | 0.00 | 0.04669 | 2.56 | 0.15166 | 3.00 | 0.0236 | 1.56 | 33.1 | 60.2 | 143.4 | 4.0 | 150.1 | 2.3 |
XL-1-4 | 102 | 233 | 0.4 | 0.15 | 0.04982 | 3.06 | 0.15956 | 3.45 | 0.0232 | 1.59 | 186.4 | 69.8 | 150.3 | 4.8 | 148.0 | 2.3 |
XL-1-5 | 126 | 318 | 0.4 | 0.19 | 0.04864 | 2.91 | 0.15700 | 3.28 | 0.0234 | 1.51 | 130.5 | 67.1 | 148.1 | 4.5 | 149.2 | 2.2 |
XL-1-6 | 111 | 253 | 0.4 | 0.00 | 0.04978 | 2.41 | 0.16165 | 2.87 | 0.0235 | 1.56 | 184.9 | 55.2 | 152.1 | 4.1 | 150.1 | 2.3 |
XL-1-7 | 80 | 208 | 0.4 | 0.17 | 0.04797 | 2.70 | 0.15837 | 3.11 | 0.0239 | 1.55 | 97.8 | 62.7 | 149.3 | 4.3 | 152.5 | 2.3 |
XL-1-8 | 139 | 254 | 0.5 | 0.35 | 0.04720 | 2.48 | 0.15443 | 2.90 | 0.0237 | 1.51 | 59.5 | 58.1 | 145.8 | 4.0 | 151.2 | 2.3 |
XL-1-9 | 140 | 256 | 0.5 | 0.05 | 0.04899 | 2.58 | 0.15652 | 3.00 | 0.0232 | 1.52 | 147.2 | 59.5 | 147.7 | 4.1 | 147.7 | 2.2 |
XL-1-10 | 90 | 224 | 0.4 | 0.32 | 0.04912 | 2.55 | 0.16017 | 2.97 | 0.0237 | 1.52 | 153.3 | 58.7 | 150.9 | 4.2 | 150.7 | 2.3 |
XL-1-11 | 46 | 109 | 0.4 | 0.34 | 0.04795 | 5.04 | 0.15452 | 5.27 | 0.0234 | 1.52 | 96.9 | 115.3 | 145.9 | 7.2 | 148.9 | 2.2 |
XL-1-12 | 133 | 209 | 0.6 | 0.17 | 0.04861 | 4.02 | 0.15964 | 4.30 | 0.0238 | 1.52 | 128.9 | 92.0 | 150.4 | 6.0 | 151.8 | 2.3 |
XL-1-13 | 39 | 170 | 0.2 | 0.00 | 0.04923 | 3.55 | 0.15989 | 3.87 | 0.0236 | 1.53 | 158.7 | 81.1 | 150.6 | 5.4 | 150.1 | 2.3 |
XL-1-14 | 66 | 146 | 0.4 | 0.00 | 0.04788 | 4.12 | 0.16061 | 4.40 | 0.0243 | 1.53 | 93.5 | 94.8 | 151.2 | 6.2 | 154.9 | 2.3 |
XL-1-15 | 131 | 282 | 0.5 | 0.08 | 0.04858 | 2.79 | 0.15811 | 3.17 | 0.0236 | 1.51 | 127.4 | 64.3 | 149.0 | 4.4 | 150.4 | 2.2 |
XL-1-16 | 130 | 251 | 0.5 | 0.20 | 0.04760 | 3.03 | 0.15644 | 3.39 | 0.0238 | 1.52 | 79.6 | 70.4 | 147.6 | 4.7 | 151.8 | 2.3 |
XL-1-17 | 65 | 183 | 0.4 | 0.00 | 0.04897 | 2.88 | 0.16493 | 3.26 | 0.0244 | 1.52 | 146.3 | 66.2 | 155.0 | 4.7 | 155.6 | 2.3 |
XL-1-18 | 116 | 240 | 0.5 | 0.00 | 0.05171 | 2.42 | 0.17000 | 2.85 | 0.0238 | 1.52 | 272.6 | 54.4 | 159.4 | 4.2 | 151.9 | 2.3 |
Sample | Brief Sample Description | Weight (g) | Re (μg/g) | 187Re (μg/g) | 187Os (ng/g) | Model Age (Ma) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Measured | 2σ | Measured | 2σ | Measured | 2σ | Measured | 2σ | |||
XL-2 | Molybdenite-quartz vein | 0.01018 | 128.90 | 1.00 | 81.00 | 0.60 | 202.99 | 1.75 | 150.2 | 2.1 |
XL-3 | Molybdenite-quartz vein | 0.01048 | 147.00 | 1.40 | 92.40 | 0.88 | 230.91 | 1.90 | 149.8 | 2.2 |
XL-4 | Molybdenite-quartz vein | 0.01016 | 141.90 | 1.10 | 89.18 | 0.68 | 221.98 | 1.75 | 149.2 | 2.0 |
XL-6 | Molybdenite-quartz vein | 0.01046 | 155.70 | 1.20 | 97.85 | 0.77 | 243.80 | 2.40 | 149.4 | 2.2 |
XL-8 | Molybdenite-quartz vein | 0.01038 | 142.50 | 1.20 | 89.56 | 0.73 | 222.71 | 1.77 | 149.1 | 2.1 |
XL-11 | Molybdenite-quartz vein | 0.01046 | 144.80 | 1.30 | 90.99 | 0.84 | 228.13 | 1.87 | 150.3 | 2.2 |
Deposit | Metal Association | Deposit Type | Ore Minerals | Gangue Minerals | Ore-Forming Intrusion | Mineralization Age | Re (μg/g) | References |
---|---|---|---|---|---|---|---|---|
Tongcun | Mo-Cu | Porphyry-skarn | Mo, Ccp, Py | Qtz, Ser, Cal, Grt, Ep, Chl | Granite porphyry (169.7Ma) | 163.9Ma | 36.6–121.7 | [10] |
Linghou | Mo-PbZn-Cu | Porphyry-skarn | Py, Ccp, Mo, Sp, Gn, Po | Qtz, Chl, Fl, Kao | Granodiorite porphyry (160.6Ma) | 162.2Ma | 195.4–226.3 | [35] |
Xianlin | Mo(Cu)-Fe | Porphyry-skarn | Mag, Py, Mo | Grt, Qtz, Ser, Cal | Granodiorite (147.2Ma) | 149.6Ma | 128.9–155.7 | This study |
Lizhe | Mo-Fe | Porphyry-skarn | Mag, Py, Mo | Grt, Qtz, Ser, Cal | Granite (150.1Ma) | 149.3Ma | [33] | |
Datongkeng | W-Mo | Porphyry-skarn | Py, Mo, Sch, Ccp, Mag, Sp, Gn | Qtz, Ser, Ch, Cal, Di, | Granite (148.3Ma) | 146.5Ma | 9.7–116.7 | [34] |
Anjigangkou | W-Mo-PbZn | Porphyry-skarn | Py, Mo, Sch, Sp, Gn | Grt, Qtz, Ser, Cal | Granodiorite (141.0Ma) | 138.5Ma | [37] | |
Maoduan | Mo-PbZn | Porphyry | Py, Mo, Sp, Gn, Po | Qtz, Chl, Fl, Kao | Monzogranite (140Ma) | 137.7Ma | 3.1–7.9 | [25] |
Zhilingtou | Mo-PbZn-AuAg | Porphyry | Py, Mo, Sp, Gn | Qtz, Ser, Fl, Cal, Chl | Granite porphyry (113.6Ma) | 113Ma | 14.5–58.6 | [20] |
Sanzhishu | Mo | Porphyry | Mo, Py | Qtz, Ser, Fl, Cal, Chl | Monzogranite (112.3Ma) | 112Ma | 15.7–25.7 | [12] |
Lufeng | Mo | Porphyry | Mo, Py | Kf, Qtz, Ser, Cal | Granite porphyry (108.4Ma) | 108Ma | 4–10.7 | [19] |
Shipingchuan | Mo-PbZn | Porphyry | Mo, Py | Qtz, Ser, Fl | Syenogranite (107.5Ma) | 104.7Ma | 1.3–45.6 | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, Y.; Wang, X.; Cai, J.; Guo, Y.; Lin, S. Re Variation Triggered from the Paleo-Pacific Plate Evolution: Constrains from Mo Polymetallic Deposits in Zhejiang Province, South China Mo Province. Minerals 2022, 12, 1129. https://doi.org/10.3390/min12091129
Li X, Wang Y, Wang X, Cai J, Guo Y, Lin S. Re Variation Triggered from the Paleo-Pacific Plate Evolution: Constrains from Mo Polymetallic Deposits in Zhejiang Province, South China Mo Province. Minerals. 2022; 12(9):1129. https://doi.org/10.3390/min12091129
Chicago/Turabian StyleLi, Xiangcai, Yongbin Wang, Xuance Wang, Jiaqi Cai, Yunkang Guo, and Song Lin. 2022. "Re Variation Triggered from the Paleo-Pacific Plate Evolution: Constrains from Mo Polymetallic Deposits in Zhejiang Province, South China Mo Province" Minerals 12, no. 9: 1129. https://doi.org/10.3390/min12091129
APA StyleLi, X., Wang, Y., Wang, X., Cai, J., Guo, Y., & Lin, S. (2022). Re Variation Triggered from the Paleo-Pacific Plate Evolution: Constrains from Mo Polymetallic Deposits in Zhejiang Province, South China Mo Province. Minerals, 12(9), 1129. https://doi.org/10.3390/min12091129