Formation of Noble Metal Phases (Pt, Pd, Rh, Ru, Ir, Au, Ag) in the Process of Fractional Crystallization of the CuFeS2 Melt
Abstract
:1. Introduction
- Iss intermediate solid solution (Cu, Fe)S1±x;
- Bnss bornite solid solution Cu5±xFe1±xS4±y;
- L sulfide liquid;
- Ls liquid rich in sulfur;
- Cpt Cu0.98Fe1.03S1.98 phase closed to tetragonal chalcopyrite;
- Isst low-temperature tetragonal intermediate solid solution;
- Chc chalcocite Cu2S;
- Bn bornite Cu5FeS4;
- Id idaite Cu5FeS6.
2. Experimental Section
2.1. Procedures
2.2. Characterization
2.2.1. SEM/EDS
2.2.2. Thermal Analysis
2.2.3. XRD
2.2.4. Raman Spectroscopy
3. Results and Discussion
3.1. Behavior of Macrocomponents
3.1.1. Chemical Composition
3.1.2. Crystallization Paths
3.1.3. Polythermal Section
3.1.4. Microstructure
3.2. Behavior of Microcomponents
3.2.1. Chemical Composition and Microstructure
3.2.2. Raman Spectra of Ru-Rh-Ir Sulfide
3.2.3. Features of the Behavior of Microcomponents
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schlegel, H.; Sehüller, A. Das Zustandebild Kupfer-Eisen-Schwefel. Z. Met. 1952, 43, 421–428. [Google Scholar]
- Greig, J.W.; Jensen, E.; Mervn, H.E. The system Cu-Fe-S. Carnegie Inst. Wash. Yearb. 1955, 54, 129–134. [Google Scholar]
- Kullerud, G.; Yund, R.A.; Moh, G.H. Phase relations in the Cu–Fe–S, Cu–Ni–S, and Fe–Ni–S systems magmatic ore deposits. Econ. Geol. Monogr. 1969, 4, 323–343. [Google Scholar]
- Tsujimura, T.; Kitakaze, A. New phase relations in the Cu-Fe-S system at 800 °C. Constraint of fractional crystallization of a sulfide liquid. Neues Jahrb. Für Mineral. 2004, 10, 433–444. [Google Scholar] [CrossRef]
- Kosyakov, V.I. Topological analysis of the melting diagram of the Cu-Fe-S system. Russ. J. Inorg. Chem. 2008, 53, 946–951. [Google Scholar] [CrossRef]
- Kitakaze, A. Phase relation of some sulfide systems-(4) Especially Cu-Fe-S system. Mem. Fac. Eng. Yamaguchi Univ. 2017, 68, 23–39. [Google Scholar]
- Kosyakov, V.I.; Sinyakova, E.F. Melt Crystallization of CuFe2S3 in the Cu–Fe–S system. J. Therm. Anal. Calorim. 2014, 115, 511–516. [Google Scholar] [CrossRef]
- Kosyakov, V.I.; Sinyakova, E.F. Study of crystallization of nonstoichiometric isocubanite Cu1.1Fe2.0S3.0 from melt in the system Cu–Fe–S. J. Therm. Anal. Calorim. 2017, 129, 623–628. [Google Scholar] [CrossRef]
- Sinyakova, E.F.; Kosyakov, V.I. Experimental modeling of zonality of copper-rich sulfide ores in copper–nickel deposits. Dokl. Earth Sci. 2009, 427, 787–792. [Google Scholar] [CrossRef]
- Cabri, L.J. New data on phase relations in the Cu-Fe-S system. Econ. Geol. 1973, 68, 443–454. [Google Scholar] [CrossRef]
- Naldrett, A.J. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration; Springer: Berlin, Germany, 2004; p. 727. [Google Scholar]
- Distler, V.V. Platinum mineralization of the Noril’sk deposits. In Geology and Genesis of Platinoid Deposits; Nauka: Moscow, Russia, 1994; pp. 7–35. (In Russian) [Google Scholar]
- Barnes, S.-J.; Ripley, E.M. Highly siderophile and strongly chalcophile elements in magmatic ore deposits. Rev. Mineral. Geochem. 2016, 81, 725–774. [Google Scholar] [CrossRef]
- Czamanske, G.K.; Kunilov, V.E.; Zientek, M.L.; Cabri, L.J.; Likchachev, A.P.; Calk, L.C.; Oscarson, R. A proton-microprobe study of magmatic sulfide ores from the Noril‘sk-Talnakh district, Siberia. Can. Mineral. 1992, 30, 249–287. [Google Scholar]
- Duran, C.J.; Barnes, S.-J.; Pleše, P.; Prašek, M.K.; Zientek, M.L.; Pagé, P. Fractional crystallization-induced variations in sulfides from the Noril’sk-Talnakh mining district (polar Siberia, Russia). Ore Geol. Rev. 2017, 90, 326–351. [Google Scholar] [CrossRef]
- Dare, S.A.S.; Barnes, S.-J.; Prichard, H.M.; Fisher, P.C. Mineralogy and geochemistry of Cu-Rich ores from the McCreedy East Ni-Cu-PGE deposit (Sudbury, Canada): Implications for the behavior of platinum group and chalcophile elements at the end of crystallization of a sulfide liquid. Econ. Geol. 2014, 109, 343–366. [Google Scholar] [CrossRef]
- Simon, G.; Kesler, S.E.; Essene, E.J. Gold in Porphyry Copper Deposits: Experimental Determination of the Distribution of Gold in the Cu-Fe-S System at 400 to 700 °C. Econ. Geol. 2000, 95, 259–270. [Google Scholar] [CrossRef]
- Peregoedova, A.; Ohnenstetter, M. Collectors of Pt, Pd and Rh in a S-poor Fe–Ni–Cu sulfide system at 760 °C: Experimental data and application to ore deposits. Can. Mineral. 2002, 40, 527–561. [Google Scholar] [CrossRef]
- Peregoedova, A.; Barnes, S.-J.; Baker, D.R. The formation of Pt–Ir alloys and Cu–Pd-rich sulfide melts by partial desulfurization of Fe–Ni–Cu sulfides: Results of experiments and implications for natural systems. Chem. Geol. 2004, 208, 247–264. [Google Scholar] [CrossRef]
- Helmy, H.M.; Ballhaus, C.; Fonseca, R.O.C.; Wirth, R.; Nagel, T.J.; Tredoux, M. Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulfide melts. Nat. Commun. 2013, 4, 2405. [Google Scholar] [CrossRef] [PubMed]
- Cafagna, F.; Jugo, P.J. An experimental study on the geochemical behavior of highly siderophile elements (HSE) and metalloids (As, Se, Sb, Te, Bi) in a mss-iss-pyrite system at 650 °C: A possible magmatic origin for Co-HSE-bearing pyrite and the role of metalloid-rich phases in the fractionation of HSE. Geochim. Cosmochim. Acta 2016, 178, 233–258. [Google Scholar]
- Distler, V.V.; Sinyakova, E.F.; Kosyakov, V.I. Behavior of noble metals upon fractional crystallization of copper-rich sulfide melts. Dokl. Earth Sci. 2016, 469, 811–814. [Google Scholar] [CrossRef]
- Sinyakova, E.; Kosyakov, V.; Distler, V.; Karmanov, N. Behavior of Pt, Pd, and Au during crystallization of Cu-rich magmatic sulfides. Can. Mineral. 2016, 54, 491–509. [Google Scholar] [CrossRef]
- Sinyakova, E.F.; Kosyakov, V.I.; Goryachev, N.A. Formation of drop-shaped inclusions based on Pt, Pd, Au, Ag, Bi, Sb, Te, and As under crystallization of an intermediate solid solution in the Cu–Fe–Ni–S system. Dokl. Earth Sci. 2019, 489, 1301–1305. [Google Scholar] [CrossRef]
- Sinyakova, E.F.; Kosyakov, V.I.; Borisenko, A.S.; Karmanov, N.S. Behavior of noble metals during fractional crystallization of Cu–Fe–Ni–(Pt, Pd, Rh, Ir, Ru, Ag, Au, Te) sulfide melts. Russ. Geol. Geophys. 2019, 60, 642–651. [Google Scholar] [CrossRef]
- Sinyakova, E.; Kosyakov, V.; Palyanova, G.; Karmanov, N. Experimental modeling of noble and chalcophile elements fractionation during solidification of Cu-Fe-Ni-S melt. Minerals 2019, 9, 531. [Google Scholar] [CrossRef]
- Vaughan, D.J.; Craig, J.R. Mineral Chemistry of Metal Sulfides, Cambridge Earth Science Series; Cambridge University Press: Cambridge, UK, 1978; p. 493. [Google Scholar]
- Kosyakov, V.I.; Sinyakova, E.F. Directional crystallization of Fe–Ni sulfide melts within the crystallization field of monosulfide solid solution. Geochem. Int. 2005, 43, 372–385. [Google Scholar]
- Flemings, M.C. Solidification Processing; McGraw-Hill Book Company: New York, NY, USA, 1974; p. 423. [Google Scholar]
- Mackenzie, R.C. Basic principles and historical development. In Differential Thermal Analysis; Fundamental Aspects; Academic Press: London, UK; New York, NY, USA, 1970; pp. 3–30. [Google Scholar]
- Likhacheva, A.Y.; Goryainov, S.V.; Rashchenko, S.V.; Dementiev, S.N.; Safonov, O.G. In situ observation of chrysotile decomposition in the presence of NaCl-bearing aqueous fluid up to 5 GPa and 400 °C. Mineral. Petrol. 2021, 115, 213–222. [Google Scholar] [CrossRef]
- Bakker, R.J. Application of Combined Raman Spectroscopy and Electron Probe Microanalysis to Identify Platinum Group Minerals. Available online: https://fluids.unileoben.ac.at/Publications_files/Bakker_EMAS.pdf (accessed on 1 August 2020).
- Grishina, S.; Goryainov, S.; Oreshonkov, A.; Karmanov, N. Micro-Raman study of cesanite (Ca2Na3(OH)(SO4)3) in chloride segregations from Udachnaya-East kimberlites. J. Raman Spectrosc. 2021, 52, 497–507. [Google Scholar] [CrossRef]
- Goryainov, S.V.; Krylova, S.N.; Borodina, U.O.; Krylov, A.S. Dynamical immiscibility of aqueous carbonate fluid in the shortite–water system at high-pressure–temperature conditions. J. Phys. Chem. C 2021, 125, 18501–18509. [Google Scholar] [CrossRef]
- Model S506 Interactive Peak Fit User’s Manual. 2002. Available online: http://depni.sinp.msu.ru/~hatta/canberra/S506%20Interactive%20Peak%20Fit%20User%27s%20Manual.pdf (accessed on 1 August 2022).
- Hohenberg, P.; Kohn, W. Inhomogeneous electron. Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Oreshonkov, A.S. SI: Advances in density functional theory (DFT) studies of solids. Materials 2022, 15, 2099. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Für Krist. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- Srivastava, G.P.; Weaire, D. The theory of the cohesive energies of solids. Adv. Phys. 1987, 36, 463–517. [Google Scholar] [CrossRef]
- Baroni, S.; Gironcoli, S.; Corso, A.D.; Gianozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515–562. [Google Scholar] [CrossRef]
- Kosyakov, V.I.; Sinyakova, E.F. Physicochemical prerequisites for the formation of primary orebody zoning at copper-nickel sulfide deposits (by the example of the systems Fe–Ni–S and Cu–Fe–S). Russ. Geol. Geophys. 2012, 53, 861–882. [Google Scholar] [CrossRef]
- Sinyakova, E.F.; Kosyakov, V.I. The section of the Fe-Ni-S phase diagram constructed by directional crystallization and thermal analysis. J. Therm. Anal. Calorim. 2013, 111, 71–76. [Google Scholar] [CrossRef]
- Sinyakova, E.F.; Kosyakov, V.I. The polythermal section of the Cu–Fe–Ni–S phase diagram constructed using directional crystallization and thermal analysis. J. Therm. Anal. Calorim. 2014, 117, 1085–1089. [Google Scholar] [CrossRef]
- Kosyakov, V.I.; Sinyakova, E.F.; Kokh, K.A. Sequential crystallization of four phases from melt on the polythermal section of the Cu–Fe–Ni–S system. J. Therm. Anal. Calorim. 2020, 139, 3377–3382. [Google Scholar] [CrossRef]
- Sinyakova, E.F.; Komarov, V.Y.; Sopov, K.V.; Kosyakov, V.I.; Kokh, K.A. Crystallization of pyrrhotite from Fe-Ni-Cu-S-(Rh, Ru) melt. J. Cryst. Growth 2020, 548, 125822. [Google Scholar] [CrossRef]
- Berry, L.G.; Thompson, R.M. X-ray Powder Data for Ore Minerals: The Peacock Atlas; Geological Sociiety of America Memoir 85: New York, NY, USA, 1962; p. 281. [Google Scholar]
- Kolonin, G.R.; Fedorova, Z.N.; Kravchenko, T.A. Influence of the composition of phase associations of the Cu-Fe-S system on the mineral forms of rhodium (according to experimental data). Rep. Acad. Sci. 1994, 337, 104–107. [Google Scholar]
- Massalski, T.B.; Okamoto, H.; Subramanian, P.R.; Kacprzak, L. Binary Alloy Phase Diagrams, 2nd ed.; ASM International: Novelty, OH, USA, 1990; p. 3242. [Google Scholar]
- Cabri, L.J. The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 2002; Volume 54, pp. 13–129. [Google Scholar]
- Brenan, J.M.; Andrews, D. High-temperature stability of laurite and Ru–Os–Ir alloy and their role in PGE fractionation in mafic magmas. Can. Mineral. 2001, 39, 341–360. [Google Scholar] [CrossRef]
- Andrews, D.R.A.; Brenan, J.M. Phase-equilibrium constraints of the magmatic origin of laurite + Ru–Os–Ir alloy. Can. Mineral. 2002, 40, 1705–1716. [Google Scholar] [CrossRef]
- Kjekshus, A.; Rakke, T.; Andresen, A.F. Pyrite-like phases in the Rh-Te system. Acta Chem. Scand. 1978, A 32, 209–217. [Google Scholar] [CrossRef]
- Makovicky, E.; Makovicky, M.; Rose-Hansen, J. The system Fe–Rh–S at 900° and 500 °C. Can. Mineral. 2002, 40, 519–526. [Google Scholar] [CrossRef]
- Makovicky, E. Ternary and quaternary phase systems with PGE. In The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 2002; Volume 54, pp. 131–175. [Google Scholar]
- Ryabchikov, I.D. Thermodynamic Analysis of the Behavior of Minor Elements during Crystallization of Silicate Melts; Nauka: Moscow, Russia, 1965; p. 120. (In Russian) [Google Scholar]
- Lutz, H.D.; Müller, B.; Schmidt, T.; Stingl, T. Structure refinement of pyrite-type ruthenium disulfide, RuS2, and ruthenium diselenide, RuSe2. Acta Crystallogr. Sect. C 1990, 46, 2003–2005. [Google Scholar] [CrossRef]
- Aroyo, M.I.; Perez-Mato, J.M.; Orobengoa, D.; Tasci, E.; de la Flor, G.; Kirov, A. Crystallography online: Bilbao Crystallographic Server. Bulg. Chem. Commun. 2011, 43, 183–197. [Google Scholar]
- Joshi, H.; Ram, M.; Limbu, N.; Rai, D.P.; Thapa, B.; Labar, K.; Laref, A.; Thapa, R.K.; Shankar, A. Modulation of optical absorption in m-Fe1−xRuxS2 and exploring stability in new m-RuS2. Sci. Rep. 2021, 11, 6601. [Google Scholar] [CrossRef] [PubMed]
- Hinuma, Y.; Pizzi, G.; Kumagai, Y.; Oba, F.; Tanaka, I. Band structure diagram paths based on crystallography. Comp. Mater. Sci. 2017, 128, 140–184. [Google Scholar] [CrossRef]
- Kosyakov, V.I.; Sinyakova, E.F. Peculiarities of behavior of trace elements during fractional crystallization of sulfide magmas. Dokl. Earth Sci. 2015, 460, 179–182. [Google Scholar] [CrossRef]
g | Composition of Iss (at. %) | Composition of Melt (at. %) | k (Iss/L) | ||||||
---|---|---|---|---|---|---|---|---|---|
Fe | S | Cu | Fe | S | Cu | Fe | S | Cu | |
0.04 | 29.07 | 48.87 | 22.06 | 24.83 | 50.05 | 25.12 | 1.17 | 0.98 | 0.88 |
0.06 | 28.93 | 48.32 | 22.75 | 24.74 | 50.08 | 25.17 | 1.17 | 0.96 | 0.90 |
0.09 | 28.73 | 48.73 | 22.54 | 24.61 | 50.13 | 25.26 | 1.17 | 0.97 | 0.89 |
0.13 | 28.24 | 49.08 | 22.68 | 24.44 | 50.18 | 25.38 | 1.16 | 0.98 | 0.89 |
0.16 | 28.69 | 48.41 | 22.90 | 24.29 | 50.24 | 25.47 | 1.18 | 0.96 | 0.90 |
0.19 | 28.38 | 48.63 | 22.99 | 24.14 | 50.30 | 25.56 | 1.18 | 0.97 | 0.90 |
0.22 | 28.36 | 48.64 | 23.00 | 23.98 | 50.36 | 25.66 | 1.18 | 0.97 | 0.90 |
0.32 | 28.09 | 48.43 | 23.48 | 23.37 | 50.68 | 25.95 | 1.20 | 0.96 | 0.90 |
0.37 | 28.06 | 48.54 | 23.40 | 23.00 | 50.85 | 26.15 | 1.22 | 0.95 | 0.89 |
0.46 | 27.85 | 47.82 | 24.33 | 22.19 | 51.36 | 26.45 | 1.26 | 0.93 | 0.92 |
0.53 | 26.84 | 48.79 | 24.37 | 21.45 | 51.74 | 26.81 | 1.25 | 0.94 | 0.91 |
0.56 | 26.92 | 48.02 | 25.06 | 21.07 | 52.00 | 26.93 | 1.28 | 0.92 | 0.93 |
0.59 | 26.49 | 48.10 | 25.41 | 20.68 | 52.28 | 27.04 | 1.28 | 0.92 | 0.94 |
0.73 | 25.83 | 47.91 | 26.26 | 17.70 | 54.56 | 27.74 | 1.46 | 0.88 | 0.95 |
0.77 | 25.41 | 47.58 | 27.01 | 16.36 | 55.77 | 27.87 | 1.55 | 0.85 | 0.97 |
Experimental Samples | PDF Card | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g = 0.09 | g = 0.21 | g = 0.37 | g = 0.49 | g = 0.73 | 270164, Isst | 090423, Cpt | |||||||
d(Å) | I/Io | d(Å) | I/Io | d(Å) | I/Io | d(Å) | I/Io | d(Å) | I/Io | d(Å) | I/Io | d(Å) | I/Io |
3.058 3.003 | 88 100 | 3.079 3.058 | 86 100 | 3.075 3.057 | 85 100 | 3.075 3.054 | 59 100 | 3.068 3.056 | 100 95 | 3.08 | 100 | 3.03 2.89 | 100 10 |
2.66 | 6 | 2.66 | 7 | 2.661 | 8 | 2.65 | 6 | 2.65 | 8 | 2.66 | 30 | 2.64 | 30 |
2.61 | 2 | 2.62 | 2 | 2.626 | 3 | 2.62 | 2 | 2.62 | 1 | 2.60 | 10 | ||
1.937 | 2 | 1.943 | 2 | 2.30 | 10 | ||||||||
1.876 | 39 | 1.883 1.879 | 44 44 | 1.878 1.876 | 45 39 | 1.886 1.875 | 36 47 | 1.873 | 53 | 1.88 1.870 | 80 20 | ||
1.862 | 32 | 1.866 1.862? | 31 25 | 1.863 | 34 | 1.863 | 37 | 1.859 | 26 | 1.852 1.867 | 80 40 | ||
1.602 1.596 | 17 22 | 1.555 1.550 | 20 21 | 1.602 1.598 | 15 16 | 1.602 1.596 | 17 23 | 1.593 | 18 | 1.610 1.590 | 60 10 | 1.590 | 60 |
N | Formula | Photo Evidence | Fe | Cu | Ag | Pt | Pd | Ru | Ir | Rh | S | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Figure 5a | ||||||||||||
1 | RuS2 | 5.17 | 2.57 | 0.39 | <LD 2 | <LD | 44.91 | 9.55 | 2.02 | 37.85 | 102.45 | |
5.06 | 2.21 | 0.20 | <LD | <LD | 24.27 | 2.71 | 1.07 | 64.48 | ||||
2 | RuS2 | 2.19 | 0.88 | <LD | <LD | <LD | 50.97 | 7.63 | 2.18 | 37.95 | 101.8 | |
2.18 | 0.77 | <LD | <LD | <LD | 27.99 | 2.20 | 1.18 | 65.69 | ||||
3 | RuS2 | 1.51 | 0.71 | <LD | <LD | 0.74 | 55.16 | 3.23 | 1.27 | 37.57 | 100.19 | |
1.51 | 0.62 | <LD | <LD | 0.39 | 30.46 | 0.94 | 0.69 | 65.4 | ||||
Figure 5b | ||||||||||||
4 | RuS2 | 4.83 | 3.39 | <LD | <LD | <LD | 44.72 | 9.08 | 1.9 | 37.09 | 101.01 | |
4.79 | 2.96 | <LD | <LD | <LD | 24.51 | 2.62 | 1.02 | 64.10 | ||||
5 | RuS2 | 2.96 | 1.37 | <LD | <LD | <LD | 53.10 | 4.56 | 1.46 | 37.91 | 101.36 | |
2.91 | 1.18 | <LD | <LD | <LD | 28.86 | 1.30 | 0.78 | 64.96 | ||||
Figure 5c | ||||||||||||
6 | RuS2+x | 3.67 | 1.88 | <LD | <LD | 0.61 | 31.88 | 20.05 | 5.94 | 37.76 | 101.79 | |
3.74 | 1.68 | <LD | <LD | 0.33 | 17.96 | 5.94 | 3.29 | 67.06 | ||||
7 | RuS2+x | 3.38 | 1.47 | <LD | <LD | <LD | 31.51 | 20.76 | 6.08 | 37.70 | 100.91 | |
3.48 | 1.33 | <LD | <LD | <LD | 17.93 | 6.21 | 3.40 | 67.64 | ||||
8 | RuS2+x | 3.19 | 1.42 | 0.38 | <LD | <LD | 31.40 | 21.39 | 6.43 | 37.83 | 102.04 | |
3.27 | 1.28 | 0.20 | <LD | <LD | 17.78 | 6.37 | 3.58 | 67.53 | ||||
9 | RuS2+x | 3.06 | 1.34 | 0.48 | <LD | <LD | 30.82 | 21.14 | 5.85 | 37.59 | 100.29 | |
3.18 | 1.22 | 0.26 | <LD | <LD | 17.68 | 6.38 | 3.30 | 67.99 | ||||
10 | RuS2+x | 3.12 | 1.45 | <LD | <LD | <LD | 31.16 | 21.74 | 5.97 | 38.10 | 101.53 | |
3.20 | 1.31 | <LD | <LD | <LD | 17.65 | 6.48 | 3.32 | 68.04 | ||||
11 | RuS2+x | 3.62 | 1.56 | <LD | <LD | <LD | 31.79 | 20.03 | 6.01 | 38.16 | 101.17 | |
3.69 | 1.4 | <LD | <LD | <LD | 17.90 | 5.93 | 3.32 | 67.75 | ||||
12 | RuS2+x | 2.09 | 1.20 | 0.43 | <LD | 0.57 | 53.25 | 4.30 | 1.46 | 37.88 | 101.18 | |
2.07 | 1.04 | 0.22 | <LD | 0.30 | 29.10 | 1.24 | 0.78 | 65.26 | ||||
13 | RuS2+x | 3.46 | 1.51 | <LD | <LD | <LD | 37.21 | 14.01 | 6.11 | 38.24 | 100.55 | |
3.48 | 1.34 | <LD | <LD | <LD | 20.7 | 4.10 | 3.34 | 67.05 | ||||
Figure 5e | ||||||||||||
14 | (Rh, Ir, Ru) 3S8 | 3.22 | 1.83 | <LD | <LD | <LD | 18.75 | 20.19 | 17.59 | 40.87 | 102.46 | |
3.16 | 1.58 | <LD | <LD | <LD | 10.18 | 5.76 | 9.38 | 69.94 | ||||
15 | (Rh, Ir, Ru) 3S8 | 3.07 | 1.81 | <LD | <LD | <LD | 18.4 | 20.39 | 17.8 | 40.33 | 101.79 | |
3.05 | 1.58 | <LD | <LD | <LD | 10.1 | 5.89 | 9.60 | 69.79 | ||||
16 | (Rh, Ir, Ru) 3S8 | 3.49 | 2.99 | 0.46 | <LD | <LD | 12.61 | 18.22 | 23.6 | 41.49 | 102.85 | |
3.37 | 2.53 | 0.23 | <LD | <LD | 6.72 | 5.11 | 12.35 | 69.70 | ||||
17 | (Rh, Ir, Ru) 3S8 | 3.10 | 2.24 | <LD | <LD | <LD | 14.13 | 19.65 | 21.56 | 40.77 | 101.45 | |
3.06 | 1.94 | <LD | <LD | <LD | 7.71 | 5.64 | 11.55 | 70.10 | ||||
18 | (Rh, Ir, Ru) 3S8 | 3.20 | 2.63 | <LD | <LD | <LD | 13.65 | 19.18 | 21.71 | 40.63 | 101.00 | |
3.16 | 2.28 | <LD | <LD | <LD | 7.45 | 5.51 | 11.64 | 69.95 | ||||
Figure 5f | ||||||||||||
19 | (Rh, Ir, Ru) 3S8 | 2.77 | 3.10 | <LD | <LD | <LD | 6.71 | 19.02 | 29.25 | 41.12 | 101.96 | |
2.71 | 2.66 | <LD | <LD | <LD | 3.63 | 5.41 | 15.53 | 70.07 | ||||
20 | (Rh, Ir, Ru) 3S8 | 3.72 | 3.92 | <LD | <LD | <LD | 3.20 | 15.23 | 32.20 | 41.81 | 100.08 | |
3.59 | 3.32 | <LD | <LD | <LD | 1.71 | 4.27 | 16.86 | 70.26 | ||||
Figure 5g | ||||||||||||
21 | (Rh, Ir, Ru) 3S8 | 2.59 | 5.76 | <LD | <LD | <LD | <LD | 4.09 | 43.66 | 43.78 | 99.89 | |
2.38 | 4.65 | <LD | <LD | <LD | <LD | 1.09 | 21.78 | 70.10 | ||||
Figure 5h | ||||||||||||
22 | CuxRhS~3 | 2.64 | 5.70 | <LD | <LD | <LD | <LD | 4.09 | 43.97 | 43.12 | 99.54 | |
2.45 | 4.65 | <LD | <LD | <LD | <LD | 1.10 | 22.13 | 69.67 | ||||
23 | (Cu, Fe)~2(Pt, Rh)1S~5 | 5.04 | 20.28 | <LD | 33.09 | 1.09 | <LD | <LD | 2.28 | 33.10 | 94.87 | |
5.49 | 19.41 | <LD | 10.32 | 0.62 | <LD | <LD | 1.35 | 62.81 | ||||
24 | (Cu, Fe)~2(Pt, Rh)1S~5 | 4.13 | 17.14 | <LD | 39.10 | <LD | <LD | <LD | 2.95 | 30.56 | 93.88 | |
4.85 | 17.68 | <LD | 13.13 | <LD | <LD | <LD | 1.88 | 62.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinyakova, E.F.; Vasilyeva, I.G.; Oreshonkov, A.S.; Goryainov, S.V.; Karmanov, N.S. Formation of Noble Metal Phases (Pt, Pd, Rh, Ru, Ir, Au, Ag) in the Process of Fractional Crystallization of the CuFeS2 Melt. Minerals 2022, 12, 1136. https://doi.org/10.3390/min12091136
Sinyakova EF, Vasilyeva IG, Oreshonkov AS, Goryainov SV, Karmanov NS. Formation of Noble Metal Phases (Pt, Pd, Rh, Ru, Ir, Au, Ag) in the Process of Fractional Crystallization of the CuFeS2 Melt. Minerals. 2022; 12(9):1136. https://doi.org/10.3390/min12091136
Chicago/Turabian StyleSinyakova, Elena Fedorovna, Inga Grigorievna Vasilyeva, Aleksandr Sergeevich Oreshonkov, Sergey Vladimirovich Goryainov, and Nikolay Semenovich Karmanov. 2022. "Formation of Noble Metal Phases (Pt, Pd, Rh, Ru, Ir, Au, Ag) in the Process of Fractional Crystallization of the CuFeS2 Melt" Minerals 12, no. 9: 1136. https://doi.org/10.3390/min12091136
APA StyleSinyakova, E. F., Vasilyeva, I. G., Oreshonkov, A. S., Goryainov, S. V., & Karmanov, N. S. (2022). Formation of Noble Metal Phases (Pt, Pd, Rh, Ru, Ir, Au, Ag) in the Process of Fractional Crystallization of the CuFeS2 Melt. Minerals, 12(9), 1136. https://doi.org/10.3390/min12091136