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Abstract: The removal of impurities in molybdenum concentrate has become a new challenge for
enterprises due to the cancellation of pickling. Whether impurity minerals can be converted into
soluble ions during roasting is important for the impurity removal by current water washing. In this
work, the interaction between various impurity elements in the treatment process of molybdenum
concentrate was studied by process simulation experiments combined with X-ray fluorescence (XRF)
and X-ray diffraction (XRD), inductively coupled plasma-optical emission spectrometer (ICP-OES),
ion chromatography (IC), scanning electron microscope-energy dispersive spectrometry (SEM-EDS),
the use of FactSage7.0 modeling and the mineral liberation analyzer (MLA). The results show that
most of the impurity elements such as K, Si and Al exist in the form of alkaline minerals with large
molecular weight. In the roasting process of molybdenum concentrate, K-containing minerals, such
as muscovite and orthoclase, can be transformed into K+, Al3+ and other soluble ions, and then can
be removed by water washing. Humidification increased the conversion degree of orthoclase to
soluble ions, which was conducive to the removal of impurities by the washing process. The results of
MLA microscopic analysis confirmed that impurities such as FeS2, CaSO4, SiO2, and especially FeS2,
would form a high density mixture with MoO3 during the high temperature roasting process, and
thus reduced the leaching rate of Mo. Therefore, the humidification and control of the molybdenum
concentrate is an effective measure to remove impurities.

Keywords: impurity removal; molybdenum concentrate; thermodynamic; roasting; humidification

1. Introduction

Molybdenum is a metal with a high melting point, high wear resistance and good
electrical and thermal conductivity, which is widely used in alloys, electrodes, catalysts,
composite materials and other fields [1,2]. Impurity elements such as K, Si and Al have a
serious impact on the quality of molybdenum products. In recent years, enterprises have
paid more and more attentions to the content of impurities, especially K, in molybdenum
products. When the potassium content of industrial grade molybdenum trioxide exceeds
1000–1500 mg/kg, it is unsuitable for use in special raw materials such as catalysts and
reducing agents for petrochemical and organic synthesis. It is also ineffective for making
alkaloid reagents and organic synthesis intermediates directly [3–5]. Under high temper-
ature and high pressure, potassium impurities in the target material of very large scale
integration circuit (VLSI) and liquid crystal display (LCD) are easily broken down and
become defective pixels, affecting their service life [6–9].

The actual production process showed that in ammonium molybdate solution with
molybdenum content greater than 250 g/L, the quality of ammonium molybdate produced
by controlling potassium content to less than 60 mg/L was basically acceptable, but
potassium content in actual production was usually more than 100 mg/L [10–13]. In
addition, Ca, Fe, Si, Na and other impurity elements also affect the extraction of Mo and

Minerals 2023, 13, 35. https://doi.org/10.3390/min13010035 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min13010035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://doi.org/10.3390/min13010035
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min13010035?type=check_update&version=1


Minerals 2023, 13, 35 2 of 18

the content of K in the product during ammonium molybdate production. Therefore, it is
necessary to study the thermodynamic behavior and solubility changes of typical impurity
elements during ammonium molybdate production.

Pickling molybdenum calcine can effectively remove impurity elements such as K, Si,
Na etc., however the pickling liquid leads to Mo loss and is difficult to treat to prevent it
from causing environmental harm. Using this method to remove impurities in production
is currently prohibited in China [14–16]. Presently, the major method for removing impurity
elements during ammonium molybdate manufacturing is to wash calcined molybdenum
concentrate with water; this approach is good for the removal of soluble ions. Production
showed that impurities, especially K, in the ammonium molybdate product were mainly
released from the water-insoluble potassium minerals [17]. Therefore, being able to convert
impurity elements into water-soluble ionic forms in the roasting process is very important
for the production of low potassium and high purity molybdenum products [18–22].

Wang et al. [23] studied the effect of impurity elements such as Ca, Fe, Al, etc., on
the sintering phenomenon of molybdenum concentrate during the roasting process. In
order to improve the quality of molybdenite, Tumen-Ulzii et al. [24] studied the selective
dissolution of copper and iron by acidic sodium nitrate for molybdenite concentrate con-
taining chalcopyrite and pyrite leached. Wang et al. [25] proposed that the agglomeration
of molybdenite is often accompanied by caking in the process of oxidation roasting, and
reducing the content of impurity elements such as Fe can effectively reduce the occurrence
of agglomeration. However, there is still no report on whether particle size affects the
removal of impurity elements or the Mo extraction. In addition, traditional methods such
as X-ray diffraction (XRD), scanning electron microscope-energy dispersive spectrometer
(SEM-EDS), X-ray photoelectron spectroscopy (XPS) etc., have been used in most studies
to analyze the effect of impurity elements on the Mo leaching process [26]. The impu-
rity elements mostly exist in the form of minerals such as muscovite, orthoclase, pyrite,
quartz, etc. This is actually not completely consistent with the geological survey results
of molybdenum ore, mainly because the content of potassium minerals in molybdenum
concentrate is very low (10−3~10−5), which cannot be quantitatively analyzed by these
analytical methods. Therefore, more advanced analytical methods are needed to analyze
the transformation mechanism of impurity minerals.

Mineral liberation analyzer (MLA) technology, which contains a high-speed auto-
matic mineral parameter analysis system, is mainly used for the quantitative analysis of
phases in geoscience, mining and other fields [27]. There is no report on the application
of MLA technology to the analysis of impurity minerals in the production process of am-
monium molybdate. Based on the combination of advanced MLA quantitative analysis
results and the Factsage software, this work analyzes the interaction and thermodynamic
behavior of impurity elements in the roasting process of molybdenum concentrate. The
results provide theoretical support for the production of low potassium and high purity
molybdenum products.

2. Experimental Method
2.1. Experiment of Roasting-Water Washing-Ammonia Leaching

The molybdenum concentrate used in this experiment came from a molybdenum
processing enterprise in Shaanxi, China. Molybdenum concentrate with different particle
sizes was processed by simulating the production process of ammonium molybdate (as
shown in Figure 1). The molybdenum concentrate was screened at 48 µm, 75 µm and
106 µm. The screened molybdenum concentrate was divided into coarse molybdenum
concentrate with size range 75~106 µm and fine molybdenum concentrate with size range
48~75 µm. Unscreened molybdenum concentrate, coarse molybdenum concentrate and
fine molybdenum concentrate of the same mass (100 g) were each roasted in a tube furnace
with atmosphere control.
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The heating rate was controlled at 10 ◦C/min in the simulation of the actual production
process. When the temperature reached 580 ◦C, it was kept for 4 h. After roasting, the
calcined samples were cooled by natural cooling. Then, the samples were soaked in distilled
water with liquid-solid ratio of 5:4 at room temperature for 1 h. After that, the samples were
collected on filter paper, and put into the electric blast air constant temperature drying oven
at 110 ◦C for 4 h. Finally, the ammonia leaching experiment was carried out on the dried
molybdenum calcine. Samples were taken from each of the dried products and placed
into beakers. Ammonia solution with a concentration of 28% (w/w) was added with a
liquid-solid ratio of 3:1, and the ammonia leaching residue was filtered after soaking for
250 min. The mass of samples before and after roasting, washing and ammonia leaching
was recorded.

The experiment to examine humidification of molybdenum concentrate during roast-
ing was also carried out in a tube furnace. The molybdenum concentrate sample was
heated at the rate of 10 ◦C/min; when the temperature reached 580 ◦C, it was kept for
3.5 h. Then the roasting temperature was set to 500 ◦C, water vapor and air were mixed
in a ratio of 1:2 and passed into the tube furnace. Finally, the samples were slowly cooled
and removed to be soaked in 200 mL deionized water for 5 h and then filtered and dried.
After drying, the contents of impurity elements and compounds were determined by X-ray
fluorescence spectrometry (XRF: ZSX100e, Rigaku Corporation, Akishima-shi, Japan) and
mineral liberation analyser (MLA, Bruker, Massachusetts, The United States of America).

2.2. Chemical Composition Analysis of Different Products

10 g of the molybdenum concentrate, molybdenum calcine, washed molybdenum
calcine and ammonia leaching residue produced as described in Section 2.1 were taken and
ground in a mortar to pass 75 µm. The ion contents of these samples were determined by
inductively coupled plasma-optical emission spectrometry (ICP-OES: Aglient 5110, Agilent
Technologies Inc., Santa Clara, CA, USA), ion chromatography (IC: ICS-1100, DIONEX,
Sunnyvale, CA, USA) and the chemical composition was analyzed by X-ray fluorescence
spectrometry (XRF: ZSX100e, Rigaku Corporation, Akishima-shi, Japan).

2.3. Phase Analysis of Different Products

The phases present in the product samples were analyzed by XRD (X’Pert Pro MPD,
PANalytical B.V., Heracles Almelo, Almelo, The Netherlands), SEM-EDS (JSM-5610LV, JEOL,
Akishima-shi, Japan) and mineral liberation analyzer (MLA, Bruker, MA, USA). The working
distance of SEM-EDS was 4.94 µm, the test magnification was 10 kx, the measurement
was 10 µm, the voltage was 10 keV, and the field of view was 12.7 µm. The MLA system
was composed of scanning electron microscope (Sigma 300, Carl Zeiss AG, Oberkochen,
Germany), Bruker's energy spectrometer (Quantax 400, Bruker, Massachusetts, The United
States of America) and Bruker’s AMICS mineral analysis software (ESPRIT 1.9). The test
temperature was 24 ◦C, the voltage was 20 kV, and the scanning resolution was 1.12 µm.
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3. Results and Discussion
3.1. Main Elements in Molybdenum Concentrates with Different Particle Sizes

From the screening of concentrate as described in Section 2.1, the weight of finer
molybdenum concentrates from 48 µm to 75 µm accounts for about 70% of the material
in the 48 µm to 106 µm range. The contents of the main elements in the two samples are
shown in Figure 2.
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Figure 2. Distribution of elements in molybdenum concentrates with different particle sizes. (a) Con-
tent of Mo, S; (b) Content of Fe, Ru, Ca, Al; (c) Content of Pb, Cu, Mg; (d) Content of Si, K.

The main component of molybdenum concentrate is MoS2. According to the mass
fraction of molybdenum and sulfur in Figure 2, it can be seen that the ratio of sulfur
is still surplus after MoS2 is fully proportioned with molybdenum, which suggests the
presence of other sulfur-containing minerals. It can also be seen from Figure 2 that MoS2
in molybdenum concentrate mainly exists in the finer particle size fraction, and metal
impurities in fine molybdenum concentrate are significantly more, while potassium and
silicon contents in coarse molybdenum concentrate are slightly higher than those in fine
molybdenum concentrate.

3.2. Speciation and Phase Analysis of Impurity Elements

XRD analysis results for the whole molybdenum concentrate and molybdenum calcine
samples are shown in Figure 3.
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According to the XRD results in Figure 3a, MoS2 is the primary component of molyb-
denum concentrate, and the diffraction peaks of other impurities are not visible due to their
low contents, leaving only SiO2 and FeS2. After oxidative roasting, the main component
MoS2 in the molybdenum concentrate is oxidized to MoO3 as shown in Figure 3b.

The main elements in the whole molybdenum concentrate, and its molybdenum
calcine and ammonia leaching residue were analyzed by SEM-EDS. The semi-quantitative
analysis results of different impurity elements can be obtained by SEM-EDS as shown in
Figure 4 and Table 1. (Scatter plot 1, 2 and 3 are matched with the samples of molybdenum
concentrate, molybdenum calcine and ammonia leaching residue, respectively).
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Table 1. EDS analysis of main elements in different samples/%.

Element Molybdenum Concentrate Molybdenum Calcine Ammonia Leaching Residue

O 1.49 40.54 41.49
Al 0.13 0.14 2.79
S 40.67 1.07 0.86
K 0.13 0.15 0.08
Fe 0.46 0.48 20.17
Mo 56.44 56.91 12.24
Si 0.68 0.71 22.37

Table 1 shows that the main elements of molybdenum concentrate are Mo and S, and
the other main impurity elements are O, Al, K, etc. After high temperature roasting, the
main component MoS2 in molybdenum concentrate was oxidized to MoO3, which increases
the mass ratio of other impurity elements.

In order to further analyze the influence of impurity elements, the advanced mineral
liberation analyzer (MLA) was introduced to examine samples from the production process
of ammonium molybdate. This technology can quantitatively analyze the form and content
of impurity elements, allowing the associations of impurity elements to be identified.
Different samples including molybdenum concentrate, molybdenum calcine, water-washed
molybdenum calcine, ammonia leaching residue, etc., were analyzed by MLA, among
which the analysis results of molybdenum concentrate are shown in Table 2.

Table 2. Mineral phase and content of molybdenum concentrate determined by MLA.

Name Chemical Formula Percentage of
Weight/%

Percentage of
Area/% Area/µm2 Number of

Mineral Particles

Iron Fe 0.02 0.01 479.27 1
Rutile TiO2 0.01 0.01 260.85 3
Calcite CaCO3 0.01 0.01 419.36 9

Chlorite Fe2+
3Mg1.5AlFe3+

0.5Si3AlO12(OH)6 0.02 0.04 1092.09 16
Hematite Fe2O3 0.04 0.03 999.73 18
Kaolinite Al2Si2O5(OH)4 0.04 0.06 1699.92 16

Illite K0.6(H3O)0.4Al1.3Mg0.3Fe2+
0.1Si3.5O10(OH) 0.02 0.04 1102.08 18

Fluorite CaF2 0.08 0.13 3774.28 19
Orthoclase KAlSi3O8 0.04 0.07 2045.65 20

Chalcopyrite CuFeS2 0.04 0.04 1253.1 20
Anandite Ba0.75K0.25Fe2+

2.25Mg0.75Si3Al0.7Fe3+
0.3O10S1.5(OH)0.5 0.04 0.04 1190.69 26

Minium Pb2PbO4 0.11 0.07 2020.69 58
Muscovite KAl3Si3O10(OH)1.8F0.2 0.36 0.63 18,799 102

Quartz SiO2 0.27 0.51 15,371.7 93
Anhydrite CaSO4 0.15 0.25 7366.33 144

Pyrite FeS2 1.23 0.21 36,359.88 297
Molybdenite MoS2 95.57 85.61 2,554,936.8 25,206

Unknown mineral 1.95 4.81 143,533.6 15,992

It can be seen from Table 2 that in addition to MoS2, sulfur in molybdenum concen-
trate also exists in the pyrite and chalcopyrite. The potassium minerals in molybdenum
concentrate are muscovite, orthoclase, anandite and illite, and the content of muscovite is
several times higher than that of the other three minerals. The MLA statistical deviations
(confidence degree for 95%) of these four minerals are about 20%, 40%, 60% and 60%. The
main iron-containing impurity is pyrite, and the main calcium-containing impurities are
anhydrite and fluorite.

3.3. Transformation Mechanism of Impurities during Roasting Process

In order to explore the changes in potassium mineralogy during the roasting process,
the mineral liberation analyzer was used to conduct phase analysis of each solid phase
product from the molybdenum concentrate in the normal production process. The mass
fractions of potassium-containing minerals in products from the roasting-washing stages
are shown in Figure 5.
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According to the results in Figure 5, it is necessary to calculate the mass changes
of potassium minerals during roasting and washing so that the changes of potassium
occurrence forms can be accurately analyzed:

Mi1 = M1 ·ωi1 −M2 ·ωi2 (1)

Mi2 = M2 ·ωi2 −M3 ·ωi3 (2)

where Mi1 is the mass change of a mineral during roasting, Mi2 is the mass change of
a mineral during washing, M1 is the mass of molybdenum concentrate, M2 is the mass
of molybdenum calcine in, M3 is the mass of washed molybdenum calcine in, ωi1 is
the mass fraction of a mineral in molybdenum concentrate, ωi2 is the mass fraction of
a mineral in molybdenum calcine, and ωi3 is the mass fraction of a mineral in washed
molybdenum concentrate.

Since roasting and washing are both processes causing mass loss, M1 > M2 > M3. As
can be seen from Figure 5, the molybdenum concentrate contains muscovite, orthoclase,
anandite and illite, and the mass fraction of muscovite and orthoclase decrease obviously
after roasting, while the mass fraction of anandite and illite change slightly. According
to the study of Tang et al. [20], high-temperature roasting can transform part of insoluble
potassium into soluble potassium. Combining with the results calculated from Equation (2),
it can be concluded that K-containing minerals are insoluble and not removed by washing,
while these minerals could react in the roasting process, so they are the main source of
soluble potassium in molybdenum calcine. Additionally, the contents of muscovite and
orthoclase change more during roasting. Two minerals are analyzed as examples.

The temperature of roasted molybdenum concentrate is much lower than the melting
point of these minerals [28–30]. According to the existing research results [31–36], H2SO4
promotes the reaction of these K-containing minerals during roasting to destroy the lattice
structure, so that potassium and other valuable elements form soluble salts. MoS2 is
oxidized to generate a large amount of SO2 at high temperature. And there may be some
crystal H2O in the minerals and steam in the air. Therefore, SO2 reacts with O2 and H2O
to form gaseous H2SO4 during the roasting process of molybdenum concentrate. It is
proposed that muscovite and orthoclase react during roasting as follows:

2H2O(g) + 2SO2(g) + 8O2(g) = 2H2SO4(g) (3)

2KAl3Si3O10(OH)2+10H2SO4(g) = K2SO4 + 3Al2(SO4)3 + 6SiO2 + 12H2O(g) (4)

2KAlSi3O8 + 4H2SO4(g) = 6SiO2 + K2SO4 + Al2(SO4)3 + 4H2O(g) (5)
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The thermodynamic software Factsage7.0 was used to predict the feasibility of the
chemical reaction, and the Gibbs free energy of each reaction at various temperatures was
calculated by the following formula:

∆GΘ
T = ∆HΘ

T − T∆SΘ
T (6)

where ∆GΘ
T is standard molar Gibbs free energy for reaction at various temperatures,

MJ·mol−1; ∆HΘ
T is standard molar enthalpy of formation for reactions at various tempera-

tures, MJ·mol−1; T is thermodynamic temperature for reaction, K; ∆SΘ
T is standard molar

entropy for reactions at various temperatures, MJ·mol−1·K−1. Thermodynamic analysis
of Equations (3)–(5) was carried out by thermodynamic software Factsage7.0, and the
functional relationship between ∆GΘ

T and T of each reaction in the roasting process was
obtained after calculation. The results are as shown in Figure 6.
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As can be seen from Figure 6, the reaction of Equation (3) can occur spontaneously
below 824 K, respectively (∆GΘ

T = 0), so the specific mechanism of producing soluble
potassium in roasting process is as follows:

The SO2 produced by the oxidation of MoS2 can react with H2O to form gaseous
H2SO4. The K2O and Al2O3 components of muscovite and orthoclase react with H2SO4 to
produce soluble sulfates and release SiO2. Soluble sulfates which are Al2(SO4)3 and K2SO4
can be removed by washing with water. These reactions in reality may only occur to a
partial extent.

In order to verify the results of thermodynamic analysis, the contents of K+, Al3+ and
SO4

2− in the washing solution were determined by ICP and IC. The results are shown in
the Table 3.

Table 3. Ion contents in the washing solution.

Ion Name Washed Sample Concentration/(mmol·L−1)

K+ Molybdenite concentrate 0.0317
K+ Molybdenum calcine 0.2859

Al3+ Molybdenum calcine 0.7297
SO4

2− Molybdenum calcine 1.1049

It can be seen from Table 3 that soluble potassium is produced in the roasting process
of molybdenum concentrate. SO4

2− in the washing solution can be determined, and there
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is no SO3
2− in the washing solution. SO4

2− can be coordinated with K+ and Al3+ to
form K2SO4 and Al2(SO4)3. The mole of Al3+ is slightly below three times that of K+. It
indicates that muscovite and orthoclase could be decomposed by H2SO4 to produce soluble
potassium and aluminum salts during roasting. The backscattered electron (BSE) images of
the mineral liberation analyzer (MLA) were used to further predict whether muscovite and
orthoclase reacted during roasting. The enhanced backscattered electron (BSE) images of
muscovite and orthoclase in molybdenum concentrate, molybdenum calcine, and washed
molybdenum calcine are shown in Figure 7.
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Figure 7. Enhanced backscattered electron microscope images of molybdenum concentrate, molybde-
num calcine and washed molybdenum calcine. (a) Muscovite in molybdenum concentrate; (b) Or-
thoclase in molybdenum concentrate; (c) Muscovite in molybdenum calcine; (d) Orthoclase in
molybdenum calcine; (e) Muscovite in washed molybdenum calcine (f) Orthoclase in washed molyb-
denum calcine.

As shown in Figure 7a,b, there are no other substances or minerals around muscovite
and orthoclase in molybdenum concentrate before roasting. However, after roasting, all
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muscovite and orthoclase are surrounded by mixtures of MoO3 and SiO2 in molybdenum
calcine, and each example is shown in Figure 7c,d. Hence, these seemed to have partially
reacted to generate SiO2 during roasting. Furthermore, there are some unknown minerals
on the surface; one of which could be arcanite (K2SO4). Most of these minerals can be
removed after washing as shown Figure 7e,f. Therefore, it can be concluded that the
unknown minerals are K2SO4 and Al2(SO4)3 generated by the reaction of the muscovite
and orthoclase with gases during roasting leaving residual SiO2. Thus, the specific reactions
for producing soluble potassium in roasting process can be verified.

3.4. Effect of Humidification on the Removal of Impurity Elements

In order to further verify the mechanism proposed in Section 3.3 and to put forward
effective suggestions for removing impurity elements, the experiment on humidification
of molybdenum concentrate during roasting was carried out. It has been known that
molybdenum concentrate begins to oxidize at 450 ◦C and rapidly oxidizes above 500 ◦C [28].
Half an hour before the end of the roasting, the roasting temperature was set to 500 ◦C, and
water vapor and air were mixed in a ratio of 1:2 and passed into the tube furnace. After the
humidification and roasting, the cooled samples were washed with water three times. The
washed samples were then analyzed by XRF and MLA, respectively, and compared with
the normal non-humidified samples as shown in Tables 4 and 5.

Table 4. Effect of humidification on the content of impurity elements in washed molybdenum calcine/%.

Element Al K S Si Fe Mo Ca

Humidified 0.09 0.12 1.06 1.09 0.98 56.4 0.23
Non-humidified 0.14 0.15 1.08 1.12 1.04 56.7 0.25

Table 5. MLA analysis results of washed molybdenum calcine under different conditions/%.

Name Chemical Formula Percentage of Weight/%
(Humidified)

Percentage of Weight/%
(Non-Humidified)

Molybdenum Oxide MoO3 86.43 86.80
Orthoclase KAlSi3O8 0.03 0.17

Rutile TiO2 0.01 0.01
Corundum Al2O3 0.38 0.52
Hematite Fe2O3 0.29 0.48

Ferrotschermakite Ca2MgFe2Al3FeSi6O22(OH)2 0.01 0.07
Illite K0.6(H3O)0.4Al1.3Mg0.3Fe2+

0.1Si3.5O10(OH) 0.01 0.02
Fluorite CaF2 0.07 0.09

Ferrimolybdite Fe3+
2(MoO4)3·n(H2O) 0.75 1.11

Anandite Ba0.75K0.25Fe2+
2.25Mg0.75Si3Al0.7Fe3+

0.3O10S1.5(OH)0.5 0.44 0.46
Muscovite KAl3Si3O10(OH)1.8F0.2 0.05 0.10

Quartz SiO2 1.12 1.67
Molybdenite MoS2 0.03 0.02

Mixture of molybdenum oxide
and pyrite MoO3, FeS2 1.81 1.61

Mixture of molybdenum oxide
and anhydrite MoO3, CaSO4 0.95 0.83

Mixture of molybdenum oxide
and quartz MoO3, SiO2 1.66 1.53

Mixture of quartz and pyrite SiO2, FeS2 0.37 0.31

It can be seen from Table 4 that the contents of impurity elements Al and K in the
humidified sample have decreased significantly compared with the normal non-humidified
sample, which indicates that humidification may increase the conversion of impurity
minerals to soluble ions. To further explain the mechanism of humidification, advanced
MLA was again used to quantitatively analyze impurity minerals in different samples as
shown in Figure 8 and Table 5.
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Figure 8. MLA scan analysis images under different conditions. (a) MLA scan analysis image of hu-
midified molybdenum calcine; (b) MLA scan analysis image of Non-humidified molybdenum calcine.

It can be seen from the results in Table 5 that the orthoclase content of the humidified
sample is 0.03%, which is significantly lower than that of the normal sample without humid-
ification (0.17%). The main reason is that the humidification can facilitate more of the SO2
oxidized from molybdenum concentrate adhering to the surface of molybdenum concen-
trate particles in the form of H2SO4. Combined with the analysis results in Section 3.3, most
of the impurity elements in molybdenum concentrate exist in the form of alkaline minerals
or compounds. Therefore, the reaction degree of Equations (4) and (5) increases due to
the increase of H2SO4 content, that is, more alkaline minerals are converted into soluble
ions at high temperature, and then removed by water washing, resulting in a reduced
content of impurity elements. Therefore, the conversion of alkaline mineral impurities to
soluble ions can be increased by humidifying, which is beneficial to the production under
the current water washing process conditions. In addition, it can be seen from Table 5
that different sintering mixtures such as the mixture of MoO3 and FeS2, the mixture of
MoO3 and CaSO4, etc., were formed after roasting. This is consistent with Wang et al.’s
research [25].

3.5. Influence Mechanism of Impurities on Molybdenum Leaching

The phases of the ammonia leaching residue in Section 2.2 were analyzed by XRD,
and the results are shown in Figure 9.

After ammonia leaching, there is still molybdenum in the solid phase, which cannot
be extracted into the ammonium molybdate solution, resulting in the loss of molybdenum.
XRD results show that the main minerals in ammonia leaching residue are MoO3, SiO2,
CaSO4, FeS2, orthoclase and muscovite, among which the content of MoO3 is relatively
high. In order to further analyze the reasons affecting the Mo extraction, the mineral
liberation analyzer (MLA) was used for the quantitative analysis of the phase composition
of ammonia leaching residue, and different forms and contents of molybdenum in ammonia
leaching residue were obtained, as shown in Figures 10 and 11.
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It can be seen from Figures 10 and 11 that MoO3 in ammonia leaching residue mostly
exists in the mixtures formed with FeS2, CaSO4 and SiO2. It has been known that pyrite
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is present in the concentrate. It is unclear how much CaF2 reacts during roasting to form
CaSO4. Additionally, we cannot be certain how much of the SiO2 encapsulation is due
to quartz or formed from the reaction of K-containing minerals. The content of MoO3
alone is low (3.13%), and the unoxidized MoS2 only accounts for 0.02%. In addition, the
proportions of the mixture of MoO3 and FeS2, CaSO4, SiO2 accounted for 31.6%, 7.33%,
12.3%, respectively. This indicates that the impurities FeS2, CaSO4 and SiO2 encapsulates
MoO3 and hinders the leaching of Mo, especially FeS2 which has the greatest influence on
the leaching of Mo.

Through the detection and analysis of the mineral liberation analyzer (MLA) as shown
in Table 5, it was found that the mixture containing MoO3 was formed in the process of
high-temperature roasting. According to the analysis results in Section 3.3, the specific
mechanism can be concluded as follows:

The main calcium substances in molybdenum concentrate are CaSO4 and CaF2. As the
temperature reached 673 K, MoS2 was oxidized to generate MoO3, which is an exothermic
reaction. A large amount of exothermic reaction increases the local surface temperature,
leading to the appearance of molten MoO3 [37]. The released SO2 and O2 could convert
CaF2 into CaSO4, which is an endothermic reaction. Therefore, a large amount of CaSO4
contacted with the surrounding molten MoO3 and formed a mixture after cooling. Part of
the MoO3 encapsulated in the interior is not easy to extract in the ammonia leaching process.

As the oxidation of FeS2 begins slowly at least above 673 K [38–40], the alkaline oxides
such as FeO, Fe3O4 and Fe2O3 which produce a thin layer on the surface of FeS2 can
undergo solid phase reaction with MoO3, and the generated sintered phase firmly connects
FeS2 and MoO3 [25]. The remaining FeS2 was encapsulated inside the particle before
oxidation, preventing the contact between FeS2 and O2, and explaining the formation
of a mixture of FeS2 and MoO3. In addition, during the roasting process, SiO2 will also
come into contact with locally melted MoO3 at high temperature and form dense sintered
particles after cooling, so that the MoO3 encapsulated in the sinter cannot be leached.

In summary, impurities such as CaSO4, FeS2 and SiO2 will be sintered with MoO3
in the roasting process. Then a solid sinter will be formed to encapsulate a portion of the
MoO3, which will hinder the leaching of MoO3, thus reducing the extraction of Mo.

3.6. Effect of Particle Size on Leaching of Molybdenum and Potassium

The changes of mass fractions of Mo and K in samples with different particle sizes
in the production process were obtained by the experimental method of Section 2.2. The
X-ray fluorescence spectrometry (XRF) test results were verified by ICP test results, and the
X-ray fluorescence spectrometry (XRF) test results were shown in Figure 12.
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According to the test results in Figure 12, the change of element mass in each process
is calculated respectively so that the influence of potassium and molybdenum content in
samples with different particle sizes during roasting, washing and ammonia leaching is
accurately analyzed:

mi1 = m1 ·ωi1
′ −m1

′ ·ωi2
′ (7)

mi2 = m2 ·ωi2
′ −m2

′ ·ωi3
′ (8)

mi3 = m3 ·ωi3
′ −m3

′ ·ωi4
′ (9)

where mi1, mi2 and mi3 are the mass loss of an element during roasting, water washing
and ammonia leaching respectively, g; m1 and m1

′ are, respectively, the mass of samples
before and after roasting in Section 2.1, g; m2 and m2

′ are, respectively, the mass of sample
before and after washing in Section 2.1, g; m3 and m3

′ are, respectively, the mass of sample
before and after ammonia leaching in Section 2.1, g; ωi1

′,ωi2
′,ωi3

′ and ωi4
′ are the mass

fractions of an element in the samples before roasting, after roasting, after washing and
after ammonia leaching, respectively.

According to the results of Figure 12 and the calculation of Equations (7) and (8), Mo
has little mass loss during roasting and washing. The mass loss of K in the roasting process
is very small, but the mass loss in the washing process is very large, mainly because soluble
K+ is removed in the washing process.

Using the data from Figure 12 and calculations using Equation (9), the change in solid
phase masses of Mo and K that are during the ammonia leaching process can be calculated.
In order to fully express the extraction efficiency of molybdenum and potassium for the
two samples in the ammonia leaching process, 10 g each of washed molybdenum calcine
were taken for ammonia leaching, and mass changes of the solids, and contents of Mo and
K were calculated and shown in Figure 13.
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As shown in Figure 13, elements in the coarse sample are more conducive to extracting
into ammonia solution. The extraction of molybdenum in the fine samples is slightly higher
than that in the coarse sample. Potassium in the fine sample is more difficult to extract into
ammonia solution. Therefore, the particle size of the molybdenum concentrate sample has
noticeable impact on the extraction of molybdenum and potassium. The extractions can be
calculated by the following formula:

µi =
m3 ·ωi3

′ −m3
′ ·ωi4

′

m3 ·ωi3
′ · 100% (10)

where µi is the extraction of an element in the sample during ammonia leaching, %. The
extractions of molybdenum and potassium are 86.7% and 10.3%, respectively, in the coarse
sample, and 82.8% and 8.35% respectively in the fine sample.

Production experience shows that molybdenum concentrate roasting is usually ac-
companied by sintering. After roasting and washing, most MoO3 can be leached into
ammonia leaching solution, while the remaining small amount of MoO3 is not contacted by
ammonia water because it forms the three mixtures analyzed in Section 3.5 with impurities
during roasting (as shown in Figure 11). Based on the properties and characteristics of the
products formed after roasting of molybdenum concentrate with different particle sizes
in the above simulation experiment, and verified by the analysis of microstructure solid
phase structure of BSE, the influence mechanism of sintered particles which forms from
molybdenum concentrate with different particle sizes during roasting on the ammonia
leaching effect can be obtained, and its schematic diagram is shown in Figure 14.
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As can be seen from Figure 14, sintering necks can be formed between some adjacent
substances, and part of MoO3 and K-containing minerals are encapsulated in the particles
and cannot contact with the liquid phase. Compared with coarse particle size molybdenum
concentrate, the sintered products generated by fine particle size molybdenum concentrate
have higher density and smaller pore area. This reduces the contact area between the
leachable components and ammonia water, thereby reducing the extractions of Mo and K.
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4. Conclusions

(1) Typical impurity elements are mainly present in molybdenum concentrates in the
form of large molecular weight potassium minerals and other minerals that include FeS2,
CaSO4, SiO2, etc. FeS2, CaSO4, SiO2 and other impurities significantly promoted the for-
mation of sintered aggregates during roasting process, and the sintered aggregates further
hindered the extraction of Mo and K. Humidification during roasting was conducive to
improving the conversion of impurity silicate minerals to soluble ions. Roasting fine molyb-
denum concentrate was helpful to reduce the impurity content in molybdenum products.

(2) The results of experimental and thermodynamic analysis show that K in molyb-
denum concentrate mainly comes from muscovite and orthoclase. During the roasting
process, the H2SO4 formed by the contact between the water formed by the dehydration of
minerals and the roasted gas product SO2 can promote the transformation of potassium
minerals into soluble ions. Therefore, the amount of H2SO4 generated on the particle
surface can be increased by increasing the dehydration rate of minerals or humidification,
thus increasing the conversion of impurity minerals to soluble ions. This is conducive to
improving the purity of ammonium molybdate products.

(3) The particle size of molybdenum concentrate impacts the extraction of Mo and K.
Compared with coarse molybdenum concentrate, fine molybdenum concentrate was easier
to form compact sintered particles with impurities such as FeS2, CaSO4, SiO2. MoO3 is
encapsulated in the sintered agglomerates and cannot contact with ammonia water, hence
only MoO3 on the outside of the sintered agglomerates can be dissolved in ammonia water,
thus reducing the extraction of Mo.
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