Comparison of Particle Shape, Surface Area, and Color Properties of the Calcite Particles Ground by Stirred and Ball Mill
Abstract
:1. Introduction
2. Theoretical Background: Aspect Ratio Parameters Based on Different Models Used in DIA
2.1. Elliptical Aspect Ratio (EAR)
2.2. Bounding Rectangular Aspect Ratio (BRAR)
2.3. Feret Aspect Ratio (FAR)
3. Materials and Methods
3.1. Sample
3.2. Grinding Procedure
3.2.1. Stirred Milling
3.2.2. Ball Milling
3.3. Particle Size Analysis
3.4. Dynamic Imaging of Particles
3.5. SEM Analysis
3.6. XRD Analysis
3.7. Color Analysis
4. Results and Discussion
4.1. DIA Results
4.2. ANOVA Results
4.3. SEM Results
4.4. Size and Surface Area Results
4.5. XRD Results
4.6. Color Analysis Results
5. Conclusions and Future Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Stirred Mill | 1. Measurement 2 | 2. Measurement | 3. Measurement | Average |
---|---|---|---|---|
ECAD Mean (μm) | 12.2 | 12.5 | 12.9 | |
Counted particles | 10,100 | 10,047 | 10,067 | |
Minimum | 1.000 | 1.000 | 1.000 | |
Maximum | 5.555 | 3.391 | 3.428 | |
Mean | 1.419 | 1.423 | 1.423 | 1.422 1 |
Std. dev. | 0.285 | 0.285 | 0.284 | |
Number percentiles 10.00% | 1.120 | 1.126 | 1.123 | |
Number percentiles 25.00% | 1.215 | 1.219 | 1.218 | |
Number percentiles 50.00% | 1.373 | 1.375 | 1.377 | |
Number percentiles 75.00% | 1.580 | 1.582 | 1.584 | |
Number percentiles 90.00% | 1.800 | 1.813 | 1.810 | |
Representative shape |
Stirred Mill | 1. Measurement | 2. Measurement | 3. Measurement | Average |
---|---|---|---|---|
ECAD Mean (μm) | 12.2 | 12.5 | 12.9 | |
Counted particles | 10,039 | 10,003 | 10,016 | |
Minimum | 1.000 | 1.000 | 1.000 | |
Maximum | 3.264 | 3.391 | 3.428 | |
Mean | 1.415 | 1.421 | 1.421 | 1.419 1 |
Std. dev. | 0.276 | 0.282 | 0.282 | |
Number percentiles 10.00% | 1.119 | 1.125 | 1.123 | |
Number percentiles 25.00% | 1.214 | 1.218 | 1.218 | |
Number percentiles 50.00% | 1.372 | 1.373 | 1.376 | |
Number percentiles 75.00% | 1.576 | 1.580 | 1.582 | |
Number percentiles 90.00% | 1.792 | 1.808 | 1.805 |
Stirred Mill | 1. Measurement | 2. Measurement | 3. Measurement | Average |
---|---|---|---|---|
ECAD Mean (μm) | 12.2 | 12.5 | 12.9 | |
Counted particles | 10,042 | 10,004 | 10,018 | |
Minimum | 1.000 | 1.000 | 1.000 | |
Maximum | 3.701 | 3.581 | 3.498 | |
Mean | 1.553 | 1.559 | 1.560 | 1.557 1 |
Std. dev. | 0.269 | 0.273 | 0.278 | |
Number percentiles 10.00% | 1.259 | 1.264 | 1.259 | |
Number percentiles 25.00% | 1.351 | 1.357 | 1.354 | |
Number percentiles 50.00% | 1.511 | 1.515 | 1.517 | |
Number percentiles 75.00% | 1.687 | 1.687 | 1.700 | |
Number percentiles 90.00% | 1.899 | 1.900 | 1.920 |
Ball Mill | 1. Measurement 2 | 2. Measurement | 3. Measurement | Average |
---|---|---|---|---|
ECAD Mean (μm) | 12.4 | 11.1 | 11.3 | |
Counted particles | 10,196 | 10,201 | 10,167 | |
Minimum | 1.000 | 1.000 | 1.000 | |
Maximum | 4.482 | 4.334 | 7.274 | |
Mean | 1.504 | 1.533 | 1.517 | 1.518 1 |
Std. dev. | 0.340 | 0.328 | 0.333 | |
Number percentiles 10.00% | 1.135 | 1.181 | 1.169 | |
Number percentiles 25.00% | 1.251 | 1.293 | 1.278 | |
Number percentiles 50.00% | 1.445 | 1.484 | 1.461 | |
Number percentiles 75.00% | 1.684 | 1.716 | 1.691 | |
Number percentiles 90.00% | 1.965 | 1.970 | 1.952 | |
Representative shape |
Ball Mill | 1. Measurement | 2. Measurement | 3. Measurement | Average |
---|---|---|---|---|
ECAD Mean (μm) | 11.1 | 11.3 | 12.4 | |
Counted particles | 10,016 | 10,006 | 10,065 | |
Minimum | 1.000 | 1.000 | 1.000 | |
Maximum | 4.334 | 3.574 | 3.549 | |
Mean | 1.523 | 1.508 | 1.497 | 1.509 1 |
Std. dev. | 0.319 | 0.319 | 0.332 | |
Number percentiles 10.00% | 1.180 | 1.168 | 1.134 | |
Number percentiles 25.00% | 1.290 | 1.275 | 1.249 | |
Number percentiles 50.00% | 1.477 | 1.455 | 1.440 | |
Number percentiles 75.00% | 1.700 | 1.676 | 1.673 | |
Number percentiles 90.00% | 1.946 | 1.927 | 1.946 |
Ball Mill | 1. Measurement | 2. Measurement | 3. Measurement | Average |
---|---|---|---|---|
ECAD Mean (μm) | 11.1 | 11.3 | 12.4 | |
Counted particles | 10,018 | 10,007 | 10,068 | |
Minimum | 1.000 | 1.023 | 1.000 | |
Maximum | 4.377 | 3.799 | 3.632 | |
Mean | 1.677 | 1.660 | 1.636 | 1.658 1 |
Std. dev. | 0.315 | 0.316 | 0.328 | |
Number percentiles 10.00% | 1.306 | 1.296 | 1.269 | |
Number percentiles 25.00% | 1.448 | 1.427 | 1.390 | |
Number percentiles 50.00% | 1.627 | 1.608 | 1.584 | |
Number percentiles 75.00% | 1.855 | 1.835 | 1.822 | |
Number percentiles 90.00% | 2.093 | 2.086 | 2.081 |
References
- Khumalo, N. The Application of the Attainable Region Analysis in Comminution. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2007. [Google Scholar]
- Jankovic, A. Variables Affecting the Fine Grinding of Minerals Using Stirred Mills. Miner. Eng. 2003, 16, 337–345. [Google Scholar] [CrossRef]
- Das, H. Food Processing Operation Analysis; Size Reduction (Chapter 1); Asian Books Private Limited: New Delhi, India, 2005; pp. 1–20. [Google Scholar]
- Mankosa, M.J.; Adel, G.T.; Yoon, R.H. Effect of Media Size in Stirred Ball Mill Grinding of Coal. Powder Technol. 1986, 49, 75–82. [Google Scholar] [CrossRef]
- Altun, O.; Benzer, H.; Enderle, U. Effects of Operating Parameters on the Efficiency of Dry Stirred Milling. Miner. Eng. 2013, 43–44, 58–66. [Google Scholar] [CrossRef]
- Radziszewski, P. Assessing the Stirred Mill Design Space. Miner. Eng. 2013, 41, 9–16. [Google Scholar] [CrossRef]
- Ouattara, S.; Frances, C. Grinding of Calcite Suspensions in a Stirred Media Mill: Effect of Operational Parameters on the Product Quality and the Specific Energy. Powder Technol. 2014, 255, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Kwade, A.; Schwedes, J. Wet Grinding in Stirred Media Mills. In Handbook of Powder Technology; Salman, A.D., Ghadiri, M., Hounslow, M.J., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2007; Chapter 6; Volume 12, pp. 251–382. [Google Scholar] [CrossRef]
- Shi, F.; Morrison, R.; Cervellin, A.; Burns, F.; Musa, F. Comparison of Energy Efficiency between Ball Mills and Stirred Mills in Coarse Grinding. Miner. Eng. 2009, 22, 673–680. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, G.; Feng, Q.; Xiao, S.; Huang, L.; Zhao, X.; Li, Z. The Liberation Effect of Magnetite Fine Ground by Vertical Stirred Mill and Ball Mill. Miner. Eng. 2012, 34, 63–69. [Google Scholar] [CrossRef]
- Jankovic, A.; Valery, W.; Davis, E. Cement Grinding Optimisation. Miner. Eng. 2004, 17, 1075–1081. [Google Scholar] [CrossRef]
- Larsson, S.; Rodríguez Prieto, J.M.; Heiskari, H.; Jonsén, P. A Novel Particle-Based Approach for Modeling a Wet Vertical Stirred Media Mill. Minerals. 2021, 11, 55. [Google Scholar] [CrossRef]
- Grönfors, J. Use of Fillers in Paper and Paperboard Grades. Bachelor’s Thesis, Tampere University of Applied Sciences, International Pulp and Paper Technology, Tampere, Finland, 2010. [Google Scholar]
- Chauhan, V.S.; Bhardwaj, N.K. Efficacy of Dispersion of Magnesium Silicate (Talc) in Papermaking. Arab. J. Chem. 2017, 10, S1059–S1066. [Google Scholar] [CrossRef] [Green Version]
- Kezuka, Y.; Kawai, K.; Eguchi, K.; Tajika, M. Fabrication of Single-Crystalline Calcite Needle-Like Particles Using the Aragonite–Calcite Phase Transition. Minerals. 2017, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Calcite Powder, Silver Microns Pvt. Ltd. 2011. Available online: http://www.calcite.in/calcite-powder.asp (accessed on 8 December 2022).
- Chalkiopoulou, F.; Chatzipanagis, I.; Valta, K.; Christidis, C. Production of High Value Added Carbonate Fillers from the Treatment of White Calcitic Marble Waste: The Case of Eastern Macedonia and Thrace of Greece. In Proceedings of the 3rd International Conference on Sustainable Solid Waste Management, Tinos Island, Greece, 2–4 July 2015. [Google Scholar]
- Ciullo, P.A. Industrial Minerals and Their Uses: A Handbook and Formulary, 1st ed.; William Andrew: New York, NY, USA, 1996; Chapter 2; pp. 17–82. [Google Scholar]
- Uçurum, M. Coated Calcite Production and Product Features. J. Undergr. Resour. 2014, 6, 1–10. [Google Scholar]
- Roskill. GrGround & Precipitated Calcium Carbonate: Global Industry, Markets & Outlook, 2nd ed.; Roskill Information Services: London, UK, 2016. [Google Scholar]
- U.S. Geological Survey. Mineral Commodity Summaries; U.S. Geological Survey: Reston, VA, USA, 2019; p. 200. [CrossRef]
- Vanderbilt, R.T. Paints and Coatings, A Guide to Filler Properties and Uses, Technical Data, No. 703. Vanderbilt Minerals. 2013. Available online: https://www.vanderbiltminerals.com/resources/VR_703_Paint_Filler_Minerals_Reference_Web.pdf (accessed on 23 November 2022).
- Rácz, A. Reduction of Surface Roughness and Rounding of Limestone Particles in a Stirred Media Mill Chem. Eng. Technol. 2014, 37, 865–872. [Google Scholar] [CrossRef]
- Hubbe, M.; Gill, R.A. Fillers for Papermaking: A Review of their Properties, Usage Practices, and their Mechanistic Role. BioResources 2016, 11, 78–79. Available online: https://bioresources.cnr.ncsu.edu/BioRes_11/BioRes_11_1_2886_Review_Hubbe_Gill_Fillers_Papermaking_Props_Usage_Prac_Mechanistic_Role_8676.pdf (accessed on 23 November 2022). [CrossRef] [Green Version]
- Gaber, M.A.W. Characterizations of El Minia Limestone for Manufacturing Paper Filler and Coating. Egypt. J. Pet. 2018, 27, 437–443. [Google Scholar] [CrossRef]
- Domingo, C.; Loste, E.; Gómez-Morales, J.; García-Carmona, J.; Fraile, J. Calcite Precipitation by a High-Pressure CO2 Carbonation Route. J. Supercrit. Fluids. 2006, 36, 202–215. [Google Scholar] [CrossRef]
- Hagemeyer, R.W. Pigments for Paper: A Project of the Coating Pigments Committee of Tappi’s Coating & Graphic Arts Division; TAPPI Press: Atlanta, GA, USA, 1997. [Google Scholar]
- Alén, R. Papermaking Chemistry, 2nd ed.; Finnish Paper Engineers’ Association: Helsinki, Finland, 2007. [Google Scholar]
- VTT Products and production. Knowpap, version 11.0; VTT Products and Production: Espoo, Finland, 2009.
- Kumar, N.; Bhardwaj, N.K.; Chakrabarti, S.K. Influence of Particle Size Distribution of Calcium Carbonate Pigments on Coated Paper Whiteness. J. Coat. Technol. Res. 2011, 8, 613–618. [Google Scholar] [CrossRef]
- Olson, E. Particle Shape Factors and Their Use in Image Analysis Part 1: Theory. J. GXP Compliance 2011, 15, 85. [Google Scholar]
- Han, Y.-R.; Seo, Y.-B. Effect of Particle Shape and Size of Calcium Carbonate on Physical Properties of Paper. J. Korea TAPPI 1997, 29, 7–12. [Google Scholar]
- Roufail, R.A. The Effect of Stirred Mill Operatıon on Particles Breakage Mechanism and Their Morphological Features. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2011. [Google Scholar]
- Alex, T.C.; Kumar, R.; Roy, S.K.; Mehrotra, S.P. Stirred Bead Mill Grinding of Gibbsite: Surface and Morphological Changes. Adv. Powder Technol. 2008, 19, 483–491. [Google Scholar] [CrossRef]
- Little, L.; Mainza, A.N.; Becker, M.; Wiese, J. Fine grinding: How mill type affects particle shape characteristics and mineral liberation. Miner. Eng. 2017, 111, 148–157. [Google Scholar] [CrossRef]
- Christidis, G.E.; Makri, P.; Perdikatsis, V. Influence of Grinding on the Structure and Colour Properties of Talc, Bentonite and Calcite White Fillers. Clay Miner. 2004, 39, 163–175. [Google Scholar] [CrossRef]
- Miller, N.A.; Henderson, J.J. Quantifying Sand Particle Shape Complexity using a Dy-namic, Digital Imaging Technique. Agron. J. 2010, 102, 1407–1414. [Google Scholar] [CrossRef]
- Vision Analytical Inc. Why Particle Shape Is Important. 2022. Available online: https://particleshape.com/why-particle-shape-is-important, (accessed on 23 November 2022).
- Cayirli, S.; Gökçen, H.S. The Effect of Stirred Mill Orientation at Different Grinding Parameters. In Proceedings of the 16th International Mineral Processing Symposium, Antalya, Turkey, 23–25 October 2018. [Google Scholar]
- Cayirli, S. Influences of Operating Parameters on Dry Ball Mill Performance. Physicochem. Probl. Miner. Process. 2018, 54, 751–762. [Google Scholar] [CrossRef]
- Ipek, H. Effect of Grinding Media Shapes on Breakage Parameters. Part. Part. Syst. Char. 2007, 24, 229–235. [Google Scholar] [CrossRef]
- Malvern Instruments Ltd. Mastersizer 2000 User Manual, MANO384, Issue 1.0, March 2007, Worcestershire, UK. Available online: https://www.malvernpanalytical.com/en/assets/Mastersizer-2000-user-manual-English-MAN0384-1-0_tcm50-11674.pdf (accessed on 23 November 2022).
- Vision Analytical, Principle of Operation. 2022. Available online: https://particleshape.com/principle-of-operation (accessed on 9 December 2022).
- Vision Analytical, Particle Insight Shape Module. 2022. Available online: https://particleshape.com/particle-insight-shape-module (accessed on 9 December 2022).
- Adams, J. Particle Size and Shape Effects in Materials Science: Examples from Polymer and Paper Systems. Clay Miner. 1993, 28, 509–530. [Google Scholar] [CrossRef]
- Datacolor Inc. ELREPHO Spectrophotometer. 2022. Available online: https://www.datacolor.com/business-solutions/product/datacolor-elrepho (accessed on 23 November 2022).
- Cayirli, S. Surface Modification of Calcite: Part II. Characterization Methods and Quality Control Processes. Sci. Min. J. 2020, 59, 65–78. [Google Scholar] [CrossRef]
- BS 3406:1963; Methods for Determination of Particle Size Distribution Guide to Powder Sampling. British Standards Institution: London, UK, 1963.
- Allen, T. Particle Size Measurement, 4th ed.; Powder Technol. Springer: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Ulusoy, U.; Yekeler, M. Dynamic Image Analysis of Calcite Particles Created by Different Mills. Int. J. Miner. Process. 2014, 133, 83–90. [Google Scholar] [CrossRef]
- Palaniandy, S.; Azizli, K.A.M.; Hussin, H.; Hashim, S.F.S. Effect of operational parameters on the breakage mechanism of silica in a jet mill. Miner. Eng. 2008, 21, 380–388. [Google Scholar] [CrossRef]
- Yamamoto, T.; Harada, Y.; Fukui, K.; Yoshida, H. Afm Investigation of the Surface Properties of Silica Particles Dispersed by Bead Milling. Colloids Surf. A Physicochem. Eng. Asp. 2010, 362, 97–101. [Google Scholar] [CrossRef]
- Allen, J. Advances in stirred milling—Improving profitability of copper ore processing. Bulk Solids Handl. 2011, 31, 144. [Google Scholar]
- Wang, C. Comparison of HPGR—Ball Mill and HPGR—Stirred Mill Circuits to the Existing AG/SAG Mill—Ball Mill Circuits. Master’s Thesis, University of Science and Technology Beijing, Beijing, China, 2009. [Google Scholar]
- Wang, Y.; Forssberg, E. Product Size Distribution in Stirred Media Mills. Miner. Eng. 2000, 13, 459–465. [Google Scholar] [CrossRef]
- Frances, C.; Le Bolay, N.; Belaroui, K.; Pons, M.N. Particle morphology of ground gibbsite in different grinding environments. Int. J. Miner. Process. 2001, 61, 41–56. [Google Scholar] [CrossRef]
- Shi, F. Comparison of Grinding Media—Cylpebs Versus Balls. Miner. Eng. 2004, 17, 1259–1268. [Google Scholar] [CrossRef]
- Lourenço, A.F.; Gamelas, J.A.; Sequeira, J.; Ferreira, P.J.; Velho, J.L. Improving Paper Mechanical Properties Using Silica-Modified Ground Calcium Carbonate as Filler. BioResources 2015, 10, 8312–8324. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Lei, M.; Yu, J.; Zhao, X. Preparation of Monodispersed Cubic Calcium Carbonate Particles Via Precipitation Reaction. Mater. Lett. 2004, 58, 1565–1570. [Google Scholar] [CrossRef]
- Lobato, E.M.C. Determination of Surface Free Energies and Aspect Ratio of Talc. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2004. [Google Scholar]
- Lohmander, S. Aspect ratios of pigment particles determined by different methods. Nord. Pulp Pap. Res. J. 2000, 15, 221–230. [Google Scholar] [CrossRef]
- Gupta, C.K. Chemical Metallurgy: Principles and Practice; WILEY-VCH Verlag GmbH & Co.: Weinheim, Germany, 2003; Chapter 2; pp. 119–121. [Google Scholar]
- Ulusoy, U. Application of Anova to Image Analysis Results of Talc Particles Produced by Different Milling. Powder Technol. 2008, 188, 133–138. [Google Scholar] [CrossRef]
- Jeong, S.-B.; Yang, Y.-C.; Chae, Y.-B.; Kim, B.-G. Characteristics of the Treated Ground Calcium Carbonate Powder with Stearic Acid Using the Dry Process Coating System. Mater. Trans. 2009, 50, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Toraman, O.; Çayirli, S.; Uçurum, M. The Grinding-Aids Effect of Moisture, Triethanolamine (Tea) and Ethylene Glycol (Eg) on Grinding Performance and Product Quality of Calcite. Int. J. Eng. Res. Sci. 2016, 2, 121–128. [Google Scholar]
- Lin, I.J.; Somasundaran, P. Alterations in Properties of Samples During Their Preparation by Grinding. Powder Technol. 1972, 6, 171–179. [Google Scholar] [CrossRef]
- Lin, I.; Nadiv, S.; Grodzian, D. Changes in the State of Solids and Mechano-Chemical Reactions in Prolonged Comminution Processes. Miner. Sci. Eng. 1975, 7, 313–336. [Google Scholar]
- Siesholtz, H.W.; Cohan, L.H. Calcium Carbonate Extender Pigments. Ind. Eng. Chem. 1949, 41, 390–395. [Google Scholar] [CrossRef]
- Wilson, I. Filler and Coating Pigments for Papermakers. In Industrial Minerals & Rocks; Kogel, J.E., Trivedi, N.C., Barker, J.M., Krukowski, T.S., Eds.; SME: Littleton, CO, USA, 2006; pp. 1287–1300. [Google Scholar]
- Ercan, M.; Koltka, S.; Sabah, E. The Production of Ground Calcium Carbonate (GCC) from Marble Wastes: Comparison of Wet and Dry Grinding Products. Sci. Min. J. 2018, 57, 35–43. [Google Scholar] [CrossRef]
- Inoue, M.; Hirasawa, I. The Relationship between Crystal Morphology and Xrd Peak Intensity on CaSO4·2H2O. J. Cryst. Growth. 2013, 380, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Holder, C.F.; Schaak, R.E. Tutorial on Powder X-Ray Diffraction for Characterizing Nanoscale Materials. ACS Nano. 2019, 13, 7359–7365. [Google Scholar] [CrossRef] [Green Version]
- Boke, J.W. Calcium Carbonate Particle Size Effects on Titanium Dioxide Light Scattering in Coatings. Master’s Thesis, Faculty of California Polytechnic State University, San Luis Obispo, CA, USA, 2013. [Google Scholar]
- Huo, C.; Shen, J.; Xia, Q. Preparation of Composite Ground Calcium Carbonate in Ca(OH)2–H2O–CO2 System and Characterization. In Advanced Materials Research; Trans Tech Publications Ltd.: Wallero, Switzerland, 2011; Volume 287–290, pp. 548–552. [Google Scholar] [CrossRef]
- Karakaş, F.; Çelik, M.S. Effect of Quantity and Size Distribution of Calcite Filler on the Quality of Water Borne Paints. Prog. Org. Coat. 2012, 74, 555–563. [Google Scholar] [CrossRef]
Compounds | CaCO3 | SiO2 | MgO | Fe2O3 | Al2O3 | SrO | P2O5 | SO3 | Cl | Na2O |
---|---|---|---|---|---|---|---|---|---|---|
% | 98.824 | 0.489 | 0.388 | 0.100 | 0.065 | 0.052 | 0.022 | 0.025 | 0.020 | 0.015 |
Parameters | Stirred Mill | Ball Mill |
---|---|---|
Stirrer speed (rpm) | 2250 | - |
Mill Speed (% of critical speed; Nc) | - | 70 * |
Ball filling ratio (J) | 0.60 ** | 0.35 *** |
Interstitial filling (U) | 1.00 **** | 1.00 ***** |
Media type | alumina-spherical | steel-cylpebs |
Media size (mm) | 4 | 40 (10%), 32 (10%), 20, (40%) 12 (40%) |
Media density (g/cm3) | 3.60 | 7.65 |
Grinding aid dosage (g/t) | 700 | 2000 |
Grinding time (min) | 0.78 | 60 |
Descriptives | ||||||||
---|---|---|---|---|---|---|---|---|
BRAR | ||||||||
N | Mean | Std. Deviation | Std. Error | 95% Confidence Interval for Mean | ||||
Lower Bound | Upper Bound | Minimum | Maximum | |||||
Stirred mill | 10,039 | 1.4192 | 0.31126 | 0.00311 | 1.4131 | 1.4252 | 1.00 | 5.56 |
Ball mill | 10,016 | 1.5042 | 0.33519 | 0.00335 | 1.4976 | 1.5107 | 1.00 | 4.33 |
Total | 20,055 | 1.4616 | 0.32620 | 0.00230 | 1.4571 | 1.4661 | 1.00 | 5.56 |
Test of Homogeneity of Variances | ||||||||
Levene Statistic | df1 | df2 | Sig. | |||||
66,651 | 1 | 20,053 | ||||||
ANOVA | ||||||||
Sum of Squares | df | Mean Square | F | Sig. | Sum of Squares | df | ||
Between Groups | 36.231 | 1 | 36.231 | 346.356 | Between Groups | 36.231 | 1 | |
Within Groups | 2097.679 | 20,053 | 0.105 | Within Groups | 2097.679 | 20,053 | ||
Total | 2133.910 | 20,054 | Total | 2133.910 | 20,054 |
Calcite | d10 (μm) | d50 (μm) | d97 (μm) | d100 (μm) | Surface Area (m2/g) | Aspect Ratio | Thickness |
---|---|---|---|---|---|---|---|
Stirred milled | 1.07 | 7.58 | 50.64 | 106 | 3 | 1.16 | 6.53 |
Ball milled | 1.87 | 11.45 | 50.15 | 90 | 2.11 | 1.31 | 8.74 |
Sample | Ry | R547 | DIN 6167 Yellowness | E313 Whiteness | E313 Yellowness | L | a | b |
---|---|---|---|---|---|---|---|---|
Stirred milled | 95.46 | 94.21 | 1.82 | 91.33 | 1.82 | 98.22 | 0.09 | 0.94 |
Ball milled | 91.33 | 89.6 | 1.98 | 86.52 | 1.98 | 96.55 | −0.08 | 1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulusoy, U.; Çayirli, S.; Bayar, G.; Gokcen, H.S. Comparison of Particle Shape, Surface Area, and Color Properties of the Calcite Particles Ground by Stirred and Ball Mill. Minerals 2023, 13, 99. https://doi.org/10.3390/min13010099
Ulusoy U, Çayirli S, Bayar G, Gokcen HS. Comparison of Particle Shape, Surface Area, and Color Properties of the Calcite Particles Ground by Stirred and Ball Mill. Minerals. 2023; 13(1):99. https://doi.org/10.3390/min13010099
Chicago/Turabian StyleUlusoy, Ugur, Serkan Çayirli, Guler Bayar, and Hasan Serkan Gokcen. 2023. "Comparison of Particle Shape, Surface Area, and Color Properties of the Calcite Particles Ground by Stirred and Ball Mill" Minerals 13, no. 1: 99. https://doi.org/10.3390/min13010099
APA StyleUlusoy, U., Çayirli, S., Bayar, G., & Gokcen, H. S. (2023). Comparison of Particle Shape, Surface Area, and Color Properties of the Calcite Particles Ground by Stirred and Ball Mill. Minerals, 13(1), 99. https://doi.org/10.3390/min13010099