Accelerating the Consolidation of Thickened Tailings Using Sand Co-Disposal
Abstract
:1. Introduction
2. Methods and Materials
2.1. Materials
2.2. Solids Minerology
2.3. Hydraulic Conductivity
2.4. Coefficient of Commpressibility
2.5. Attergerg Limits of FFT–Sand Composites
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devenny, D.W. A Screening Study of Oil Sand Tailings Technologies and Practices. Revision I, March. Alberta Energy Research Institute, Prepared for the Government of Alberta. 2010. Available online: www.assembly.ab.ca>Iao>library>egovdoc>aleri (accessed on 30 May 2023).
- Boswell, J.E.S.; Gidley, I.D.C.; Jeeravipoolvarn, S.; Pellerin, K.D.O.; Vietti, A. Oil sands thickened tailings—Remedies from an international perspective. In Proceedings of the Tailings and Mine Waste Conference 2015, Vancouver, BC, Canada, 26–28 October 2015; Available online: https://open.library.ubc.ca/soa/cIRcle/collections/59368/items/1.0340520 (accessed on 8 August 2023).
- Jewell, R.J.; Fourie, A.B. Paste and Thickened Tailings: A Guide; Australian Centre for Geomechanics, The University of Western Australia: Crawley, Australia, 2006; ISBN 0-9756756-4-8. [Google Scholar]
- Demoz, A. Geotechnical properties determination of thickened fluid fine tailings. Geotech. Geol. Eng. 2022, 40, 1887–1898. [Google Scholar] [CrossRef]
- McKenna, G.; Mooder, B.; Burton, B.; Jamieson, A. Shear strength and density of oil sands fine tailings for reclamation to boreal forest landscape. In Proceedings of the 5th IOSTC International Oil Sands Tailings Conference, Lake Louise, AB, Canada, 4–7 December 2016; University of Alberta Geotechnical Group: Edmonton, AB, Canada, 2016. [Google Scholar]
- Rozina, E. Bearing Capacity of Multilayer-Deposited in-Line Flocculated Oil Sands Tailings. Master’s Thesis, Department of Civil and Environmental Engineering, Carlton University, Ottawa, ON, Canada, 2013. [Google Scholar]
- Yuan, X.S.; Wang, N.; Dunmola, A.; Curran, M.; Sharp, J.; Lanoue, A. Co-processing of fresh oil sand tailings. In Proceedings of the 25th International Conference on Paste and Filtered Tailings, Banff, AB, Canada, 29 April–3 May 2023. [Google Scholar]
- Burden, R. Using Co-Disposal Techniques to Achieve Stable “Dry-Stacked” Tailings: Geotechnical Properties of Blended Waste Rock and Tailings in Oil Sands and Metal Mining. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2021. [Google Scholar]
- Burden, R.; Wilson, G.W. Comingling of waste rock and tailings to improve “dry stack” performance: Desing and evaluation of mixtures. Minerals 2023, 13, 295. [Google Scholar] [CrossRef]
- Habte, K.; Bocking, K. Co-disposal practice in mine waste management. In Proceedings of the Tailings and Mine Waste ’17, Banff, AB, Canada, 5–8 November 2017. [Google Scholar]
- Wickland, B.E.; Wilson, G.W. Self-weight consolidation of mixtures of mine waste rock and tailings. Can. Geotech. J. 2005, 42, 327–339. [Google Scholar] [CrossRef]
- Degenhardt, D.; Dongena, A.V.; Schreiberb, S.G.; Bekele, A. Growth and survival of native upland and wetland species in shallow capped thickened tailings: A meso-scale greenhouse study. Can. J. Soil. Sci. 2023, 103. [Google Scholar] [CrossRef]
- Masliyah, J.H.; Zhou, Z.; Xu, Z.; Czarnecki, J.; Hamza, H.A. Understanding water-based bitumen extraction from Athabasca oil sands. Can. J. Chem. Eng. 2004, 82, 625–864. [Google Scholar] [CrossRef]
- Gray, M.; Xu, Z.; Masliya, J. Physics in the oil sands of Alberta. Phys. Today 2009, 62, 31–35. [Google Scholar] [CrossRef]
- Cossey, H.L.; Batycky, A.E.; Kaminsky, H.; Ulrich, A.C. Geochemical Stability of Oil Sands Tailings in Mine Closure Landforms. Minerals 2021, 11, 830. [Google Scholar] [CrossRef]
- Demoz, A. Impact of preflocculation on scroll decanter centrifuge separation performance. Can. J. Chem. Eng. 2018, 96, 265–269. [Google Scholar] [CrossRef]
- ASTM. Standard D2434—Permeability of Granular Soils (Constant Head). In ASTM Annual CDs of Standards; ASTM: West Conshohocken, PA, USA, 2011. [Google Scholar]
- Scarlett, N.V.Y.; Madsen, I.C. Quantification of phases with partial or no known crystal structures. Powder Diffr. 2006, 21, 278–284. [Google Scholar] [CrossRef]
- ASTM D2435-11; Standard Test Method for One Dimensional Consolidation Properties of Soils Using Incremental Loading. ASTM International: West Conshohocken, PA, USA, 2011.
- Znidarcic, D.; Abu-Hejleh, A.N.; Fairbanks, T.; Robertson, A. Consolidation Characteristics Determination for Phosphatic Clays. Vol 1: Seepage Induced Consolidation Tests Equipment Description and User Manual; University of Colorado: Boulder, CO, USA, 1994. [Google Scholar]
- Scott, J.D.; Jeeravipoolvarn, S.; Chalaturnyk, R.J. Tests for wide range of compressibility and hydraulic conductivity of flocculated tailings. In Proceedings of the 61st Canadian Geotechnical Conference, Edmonton, AB, Canada, 22–24 September 2018; pp. 738–745. [Google Scholar]
- Head, K.H.; Epps, R.J. Manual of Soil Laboratory Testing, 3rd ed.; Whittles Publishing: Caithness, UK, 2011; Volume 2, Chapters 10 and 14. [Google Scholar]
- Whitlow, R. Basic Soil Mechanics, 4th ed.; Prentice Hall: Dorchester, UK, 2001. [Google Scholar]
- ASTM D4318-10; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM: West Conshohocken, PA, USA, 2017.
- ASTM D3441-16; Standard Test Methods for Cone Penetration Testing of Soils. ASTM: West Conshohocken, PA, USA, 2017.
- Suthaker, N.N.; Scott, J.D. Consolidation behaviour of oil sand fine tailings. In Proceedings of the America Society of Mining and Reclamation National Meeting, Pittsburgh, PA, USA, 24–29 April 1994; Volume 4, pp. 399–406. [Google Scholar]
- Das, B.M. Principles of Geotechnical Engineering, 4th ed.; PWS Publishing Company: Boston, MA, USA, 1998. [Google Scholar]
- Holtz, R.D.; Kovacs, W.D.; Sheahan, T.C. An Introduction to Geotechnical Engineering, 2nd ed.; Pearson: Noida, India, 2010. [Google Scholar]
- Khan, F.S.; Azaam, S. Determination of consolidation behaviour of clay slurries. Int. J. Min. Sci. Technol. 2016, 26, 277–283. [Google Scholar] [CrossRef]
- Terzaghi, K.; Peak, R.B.; Mesri, G. Soil Mechanics in Engineering Practice; John Wiley & Sons Inc.: New York, NY, USA, 1996. [Google Scholar]
- Ahmed, M.; Beier, N.A.; Kaminsky, H. A Comprehensive Review of Large Strain Consolidation Testing for Application in Oil Sands Mine Tailings. Mining 2023, 3, 121–150. [Google Scholar] [CrossRef]
- Pollock, G.W. Large Strain Consolidation of Oil Sands Tailings Sludge. Master’s Thesis, Department of Civil Engineering, University of Alberta, Edmonton, AB, Canada, 1988. [Google Scholar]
- Gibson, R.E.; England, G.L.; Hussey, M.J.L. The theory of one-dimensional consolidation of saturated clays. Géotechnique 1967, 17, 261–273. [Google Scholar] [CrossRef]
- Gibson, R.E.; Schiffman, R.L.; Cargill, K.W. The theory of one-dimensional consolidation of saturated clays, II. finite non-linear consolidation of thick homogeneous layers. Can. Geotech. J. 1981, 18, 280–293. [Google Scholar] [CrossRef]
- Tito, A.A. Numerical Evaluation of One-Dimensional Large-Strain Consolidation of Mine Tailings. Master’s Thesis, Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA, 2015. [Google Scholar]
- Scott, J.D.; Cymerman, G.J. Prediction of viable tailings disposal methods. In Sedimentation Consolidation Models: Prediction and Validation: Proceedings of a Symposium; ASCE: New York, NY, USA; San Francesco, CA, USA, 1984; pp. 522–544. [Google Scholar]
- Azam, S.; Scott, J.D. Revisiting the ternary diagram for tailings characterization and management. Geotech. News 2005, 23, 43–46. [Google Scholar]
- Alberta Energy Regulator. ST98: Alberta’s Energy Reserves & Supply/Demand Outlook. 2013. Available online: http://www.aer.ca/data-and-publications/statistical-reports/st98 (accessed on 7 August 2023).
- COSIA. Technical Guide for Fluid Fine Tailings Management. 2012. Available online: https://cosia.ca/node/57 (accessed on 19 July 2023).
- Imperial Oil Resources Limited. Kearl Oil Sands Mine: Fluid Tailings Management Report for 2019. 2020. Available online: https://static.aer.ca/prd/documents/reports/2020-State-Fluid-Tailings-Management-Mineable-OilSands.pdf (accessed on 19 July 2023).
Weight % Passing (D%) | Fine Tailings mm | Coarse Tailings mm | SFR 1 mm | SFR 2 mm | SFR 3 mm | SFR 4 mm |
---|---|---|---|---|---|---|
90 | 17.37 | 363.08 | 201.74 | 204.30 | 286.96 | 291.62 |
60 | 6.60 | 213.53 | 22.91 | 60.26 | 142.95 | 150.99 |
50 | 5.01 | 186.74 | 13.25 | 31.94 | 107.00 | 118.24 |
30 | 3.08 | 138.04 | 5.30 | 8.71 | 17.38 | 22.91 |
10 | 1.49 | 79.43 | 1.7 | 2.17 | 3.11 | 3.51 |
Cu * | NA | 2.69 | 13.48 | 27.77 | 45.96 | 43.02 |
Mineral | Ideal Formula | Weight % | |
---|---|---|---|
Clays | Illite—Muscovite | ~K0.65Al2.0(Al0.65Si3.35O10)(OH)2–KAl2(AlSi3O10)(OH)2 | 10.1 |
Illite—Smectite (mixed layer) | ~K0.65Al2.0(Al0.65Si3.35O10)(OH)2–(Na,Ca)0.3(Al,Mg)2Si4O10(OH)2∙nH2O | 15.3 | |
Kaolinite | Al2Si2O5(OH)4 | 27.6 | |
Quartz | Quartz | SiO2 | 25.0 |
Carbonates | Ankerite—Dolomite | Ca(Fe2+,Mg,Mn)(CO3)2–CaMg(CO3)2 | 0.2 |
Siderite | Fe2+CO3 | 4.0 | |
Calcite | CaCO3 | 0.2 | |
Fieldspars | K-feldspar (microcline) | KAlSi3O8 | 2.1 |
Pyrite | Pyrite | FeS2 | 0.8 |
Titanium oxides | Anatase | TiO2 | 1.0 |
Rutile | TiO2 | 0.5 | |
Amorphous | 13.2 | ||
Total % Clay | 53 |
SFR | Permeability | Volume Compressibility | |||||
---|---|---|---|---|---|---|---|
a Coeff. (m/s) | a Power | a Initial solids% (w/w) | b Coeff. (Pa) | b Power | c Cc | § Cc | |
0.03 | 1.23 × 10−10 | 3.40 | 57.5 | 9.09 | −0.197 | 0.45 | 0.46 |
1 | 2.06 × 10−9 | 3.53 | 74 | 4.090 | −0.177 | 0.242 | 0.18 |
2 | 3.0 × 10−9 | 3.06 | 80 | 1.825 | −0.13 | 0.134 | 0.10 |
3 | 2.30 × 10−8 | 4.40 | 85 | 0.444 | −0.071 | 0.057 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demoz, A. Accelerating the Consolidation of Thickened Tailings Using Sand Co-Disposal. Minerals 2023, 13, 1277. https://doi.org/10.3390/min13101277
Demoz A. Accelerating the Consolidation of Thickened Tailings Using Sand Co-Disposal. Minerals. 2023; 13(10):1277. https://doi.org/10.3390/min13101277
Chicago/Turabian StyleDemoz, Alebachew. 2023. "Accelerating the Consolidation of Thickened Tailings Using Sand Co-Disposal" Minerals 13, no. 10: 1277. https://doi.org/10.3390/min13101277
APA StyleDemoz, A. (2023). Accelerating the Consolidation of Thickened Tailings Using Sand Co-Disposal. Minerals, 13(10), 1277. https://doi.org/10.3390/min13101277