Revealing the Role of Coal Gangue-Biochar Composite for Removing SO42− from Water: Adsorption Mechanisms and Application Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Coal Gangue-Modified Biochar
2.3. Characterization of Adsorbent
2.4. Batch Adsorption Experiment
2.5. Pot Experiment
2.5.1. Experimental Design
2.5.2. Measurement of Physiological Indicators
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Adsorbents
3.2. Adsorption Experiments
3.3. Adsorption Kinetics
3.4. Adsorption Isotherms
3.5. Adsorption Mechanism
3.6. Pot Experiment
3.6.1. Effect of Modified Biochar on Chlorophyll Content of Reed under SO42− Stress
3.6.2. Effect of Modified Biochar on Antioxidant Enzyme Activity of Reed under SO42− Stress
3.6.3. Effect of Modified Biochar on MDA Content of Reed under SO42− Stress
3.6.4. Effect of Modified Biochar on SP Content of Reed under SO42− Stress
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Backer, L.C. Assessing the acute gastrointestinal effects of ingesting naturally occurring, high levels of sulfate in drinking water. Crit. Rev. Clin. Lab. Sci. 2000, 37, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Ao, H.T.; Cao, W.; Hong, Y.X.; Wu, J.; Wei, L. Adsorption of sulfate ion from water by zirconium oxide-modified biochar derived from pomelo peel. Sci. Total Environ. 2020, 708, 135092. [Google Scholar] [CrossRef] [PubMed]
- Runtti, H.; Tolonen, E.T.; Tuomikoski, S.; Luukkonen, T.; Lassi, U. How to tackle the stringent sulfate removal requirements in mine water treatment-A review of potential methods. Environ. Res. 2018, 167, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Mridha, D.; Ray, I.; Sarkar, J.; De, A.; Joardar, M.; Das, A. Effect of sulfate application on inhibition of arsenic bioaccumulation in rice (Oryza sativa L.) with consequent health risk assessment of cooked rice arsenic on human: A pot to plate study. Environ. Pollut. 2022, 293, 118561. [Google Scholar] [CrossRef]
- Qu, S.; Duan, L.M.; Shi, Z.M.; Liang, X.Y.; Lv, S.J.; Wang, G.C. Hydrochemical assessments and driving forces of groundwater quality and potential health risks of sulfate in a coalfield, northern Ordos Basin, China. Sci. Total Environ. 2022, 835, 155519. [Google Scholar] [CrossRef]
- Chen, Q.; Jia, R.; Qu, D.; Li, M. Changes and relations of photosynthesis and iron cycling in anoxic paddy soil amended with high concentrations of sulfate. Environ. Sci. Pollut. Res. 2017, 24, 11425–11434. [Google Scholar] [CrossRef]
- Ding, M.; Zeng, H. Multi-agent evolutionary game in the recycling utilization of sulfate-rich wastewater. Int. J. Environ. Res. Public Health 2022, 19, 8770. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, L.; Dong, X.; Jiang, C.L.; Wei, X.P. Sources and mixing of sulfate contamination in the water environment of a typical coal mining city, China: Evidence from stable isotope characteristics. Environ. Geochem. Health 2020, 42, 2865–2879. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, Y.; Gao, Z.; Ma, Y.Y.; Liu, J.T. Characteristics and the origins of the main chemical components in mine water in the Xishan mining area, North China. Environ. Earth Sci. 2022, 81, 240. [Google Scholar] [CrossRef]
- Badmus, S.O.; Oyehan, T.A.; Saleh, T.A. Synthesis of a novel polymer-assisted AlNiMn nanomaterial for efficient removal of sulfate ions from contaminated water. J. Polym. Environ. 2021, 29, 2840–2854. [Google Scholar] [CrossRef]
- Hassan, W.; Faisal, A.; Abed, E.; Al-Ansari, N.; Saleh, B. New composite sorbent for removal of sulfate ions from simulated and real groundwater in the batch and continuous tests. Molecules 2021, 26, 4356. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.H.; Wu, C.T.; Fu, X.L.; Su, Z.M.; Liu, M.L. Sulfate removal mechanism by internal circulation iron-carbon micro-electrolysis. Sep. Purif. Technol. 2021, 279, 119762. [Google Scholar] [CrossRef]
- Dolatabad, A.A.; Ganjidoust, H.; Ayati, B. Application of waste-derived activated red mud/base treated rice husk composite in sulfate adsorption from aqueous solution. Int. J. Environ. Res. 2022, 16, 2. [Google Scholar] [CrossRef]
- Huggins, T.M.; Haeger, A.; Biffinger, J.C.; Ren, Z.J. Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Res. 2016, 94, 225–232. [Google Scholar] [CrossRef]
- Chen, X.; Lin, J.; Wang, H.; Yang, Y.; Wang, C.; Sun, Q.; Shen, X.; Li, Y. Epoxy-functionalized polyethyleneimine modified epichlorohydrin-cross-linked cellulose aerogel as adsorbents for carbon dioxide capture. Carbohydr. Polym. 2023, 302, 120389. [Google Scholar] [CrossRef]
- Lu, M.; Fang, S.; Li, G.; Wang, W.; Tan, X.; Wu, W. Optimization of adsorption performance of cerium-loaded intercalated bentonite by CCD-RSM and GA-BPNN and its application in simultaneous removal of phosphorus and ammonia nitrogen. Chemosphere 2023, 336, 139241. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Yadav, A.; Debnath, N. Entomotoxic efficacy of aluminium oxide, titanium dioxide and zinc oxide nanoparticles against Sitophilus oryzae (L.): A comparative analysis. J. Stored Prod. Res. 2019, 83, 92–96. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.J.; Zhou, B.; Zhang, Z.; Liu, S.; Lei, S.; Xiao, R. Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment. J. Clean. Prod. 2017, 147, 96–107. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation; Routledge: London, UK, 2015. [Google Scholar]
- Srivastav, A.L.; Pham, T.D.; Izah, S.C.; Singh, N.; Singh, P.K. Biochar adsorbents for arsenic removal from water environment: A review. Bull. Environ. Contam. Toxicol. 2021, 108, 616–628. [Google Scholar] [CrossRef]
- Ayati, A.; Tanhaei, B.; Beiki, H.; Krivoshapkin, P.; Krivoshapkina, E.; Tracey, C. Insight into the adsorptive removal of ibuprofen using porous carbonaceous materials: A review. Chemosphere 2023, 323, 138241. [Google Scholar] [CrossRef]
- Bacelo, H.; Pintor, A.M.A.; Santos, S.C.R.; Boaventura, R.A.R.; Botelho, C.M.S. Performance and prospects of different adsorbents for phosphorus uptake and recovery from water. Chem. Eng. J. 2020, 381, 122566. [Google Scholar] [CrossRef]
- Qi, X.; Yin, H.; Zhu, M.; Yu, X.; Shao, P.; Dang, Z. MgO-loaded nitrogen and phosphorus self-doped biochar: High-efficient adsorption of aquatic Cu2+, Cd2+, and Pb2+ and its remediation efficiency on heavy metal contaminated soil. Chemosphere 2022, 294, 133733. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Zheng, J.; Feng, L.; Zhang, Q.; Zhang, C.; Ding, Y.; Han, J.; Jiang, S.; He, S. Pore engineering: Structure-capacitance correlations for biomass-derived porous carbon materials. Mater. Des. 2023, 229, 111904. [Google Scholar] [CrossRef]
- Zhao, D.; Qiu, S.; Li, M.; Luo, Y.; Zhang, L.; Feng, M.; Yuan, M.; Zhang, K.; Wang, F. Modified biochar improves the storage capacity and adsorption affinity of organic phosphorus in soil. Environ. Res. 2022, 205, 112455. [Google Scholar] [CrossRef]
- Lian, G.; Wang, B.; Lee, X.; Li, L.; Liu, T.Z.; Lyu, W.Q. Enhanced removal of hexavalent chromium by engineered biochar composite fabricated from phosphogypsum and distillers grains. Sci. Total Environ. 2019, 697, 134119. [Google Scholar] [CrossRef]
- Wang, B.; Lian, G.; Lee, X.; Gao, B.; Li, L.; Liu, T.; Zhang, X.; Zheng, Y. Phosphogypsum as a novel modifier for distillers grains biochar removal of phosphate from water. Chemosphere 2019, 238, 124684. [Google Scholar] [CrossRef]
- Li, F.; Cao, X.; Zhao, L.; Wang, J.; Ding, Z. Effects of mineral additives on biochar formation: Carbon retention, stability, and properties. Environ. Sci. Technol. 2014, 48, 11211–11217. [Google Scholar] [CrossRef]
- Maroušek, J.; Kolář, L.; Strunecký, O.; Kopecký, M.; Bartoš, P.; Maroušková, A.; Cudlínová, E.; Konvalina, P.; Šoch, M.; Moudrý, J., Jr. Modified biochars present an economic challenge to phosphate management in wastewater treatment plants. J. Clean. Prod. 2020, 272, 123015. [Google Scholar] [CrossRef]
- Bi, H.B.; Wang, C.X.; Lin, Q.Z.; Jiang, X.D.; Jiang, C.L.; Bao, L. Pyrolysis characteristics, artificial neural network modeling and environmental impact of coal gangue and biomass by TG-FTIR. Sci. Total Environ. 2020, 751, 142293. [Google Scholar] [CrossRef]
- Zhu, Q.; Hu, Z.Q.; Ruan, M.Y. Characteristics of sulfate-reducing bacteria and organic bactericides and their potential to mitigate pollution caused by coal gangue acidification. Environ. Technol. Inno 2022, 20, 101142. [Google Scholar] [CrossRef]
- Qiu, B.B.; Duan, F. Synthesis of industrial solid wastes/biochar composites and their use for adsorption of phosphate: From surface properties to sorption mechanism. Colloids Surf. A 2019, 571, 86–93. [Google Scholar] [CrossRef]
- Wang, B.; Ma, Y.; Lee, X.; Wu, P.; Liu, F.; Zhang, X.Y.; Li, L.; Chen, M. Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer. Sci. Total Environ. 2021, 758, 143664. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.; Jia, X.; Song, C.; Hao, S.T.; Zhang, D.; Ding, Y.Q. Investigation of co-pyrolysis characteristics of modified coal gangue and biomass. Thermochim. Acta 2021, 705, 179033. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, B.; Zhang, X.; Lee, X.Q.; Chen, M.; Feng, Q.W. Insights into Cr(VI) Removal Mechanism in Water by Facile One-Step Pyrolysis Prepared Coal Gangue-Biochar Composite. Chemosphere 2022, 299, 134334. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, R.; Sarkar, B.; Jat, H.S.; Sharma, P.C.; Bolan, N.S. Soil salinity under climate change: Challenges for sustainable agriculture and food security. J. Environ. Manag. 2021, 280, 111736. [Google Scholar] [CrossRef]
- Reddy, I.N.B.L.; Kim, B.K.; Yoon, I.S.; Kim, K.H.; Kwon, T.R. Salt tolerance in rice: Focus on mechanisms and approaches. Rice Sci. 2017, 24, 123–144. [Google Scholar] [CrossRef]
- Kaloterakis, N.; Delden, S.H.; Hartley, S.; De Deyn, G.B. Silicon application and plant growth promoting rhizobacteria consisting of six pure Bacillus species alleviate salinity stress in cucumber (Cucumis sativus L.). Sci. Hortic. 2021, 288, 110383. [Google Scholar] [CrossRef]
- Xue, F.; Liu, W.; Cao, H.; Song, L.; Ji, S.; Tong, L.; Ding, R. Stomatal conductance of tomato leaves is regulated by both abscisic acid and leaf water potential under combined water and salt stress. Physiol. Plant. 2021, 172, 2070–2078. [Google Scholar] [CrossRef]
- Ping, Q.; Zhang, B.; Zhang, Z.; Lu, K.; Li, Y. Speciation analysis and formation mechanism of iron-phosphorus compounds during chemical phosphorus removal process. Chemosphere 2023, 310, 136852. [Google Scholar] [CrossRef]
- Li, P.; Luo, S.; Wang, J.; Wang, Y.; Wang, Q.; Zhang, Y.; Liu, X.; Gao, D.; Lv, F.; Mu, W.; et al. Extraction and separation of Fe and Ti from extracted vanadium residue by enhanced ammonium sulfate leaching and synthesis of LiFePO4/C for lithium-ion batteries. Sep. Purif. Technol. 2022, 282, 120065. [Google Scholar] [CrossRef]
- Khalid, W.; Cheng, C.K.; Liu, P.; Tang, J.; Liu, X.; Ali, A.; Shahab, A.; Wang, X. Fabrication and characterization of a novel Ba2+-loaded sawdust biochar doped with iron oxide for the super-adsorption of SO42− from wastewater. Chemosphere 2022, 303, 135233. [Google Scholar] [CrossRef]
- Li, P.; Luo, S.; Zhang, L.; Wang, Q.; Huang, X.; Zhang, Y.; Liu, X.; Liang, J.; Duan, X. Study on preparation and performance of iron tailings-based porous ceramsite filter materials for water treatment. Sep. Purif. Technol. 2021, 276, 119380. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, L.L.; Li, J.; He, X.J.; Cai, J.C. Bioaccumulation and tolerance characteristics of a submerged plant (Ceratophyllum demersum L.) exposed to toxic metal lead. Ecotox. Environ. Safe 2015, 122, 313–321. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Civello, P.M.; Martinez, G.A.; Chaves, A.R.; Anon, M.C. Peroxidase from strawberry fruit (Fragaria ananassa Duch): Partial purification and determination of some properties. J. Agric. Food Chem. 1995, 43, 2596–2601. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzym. 1984, 105, 121–126. [Google Scholar]
- Rajinder, S.D.; Dhindsa, P.P.; Thorpe, T.A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar]
- Krauspe, R.; Scheer, A. Coomassie brilliant blue G-250 dye-binding technique for determination of autolytic protein breakdown in Euglena gracilis and comparison to other methods of autolysis measurement. Anal. Biochem. 1986, 153, 242–250. [Google Scholar] [CrossRef]
- Zhao, W.; Yan, B.; Chen, D.; Chen, J.; Zhang, Q.; Jiang, L.; Lan, T.; Zhang, C.; Yang, W.; He, S. Free-standing carbon network with enhanced capacitive performance synthesized via green H2O2 activation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 668, 131425. [Google Scholar] [CrossRef]
- Obey, G.; Adelaide, M.; Ramaraj, R. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J. Bioresour. Bioprod. 2022, 7, 109–115. [Google Scholar] [CrossRef]
- Li, L.; Lai, C.; Huang, F.; Cheng, M.; Zeng, G.; Huang, D. Degradation of naphthalene with magnetic bio-char activate hydrogen peroxide: Synergism of bio-char and Fe-Mn binary oxides. Water. Res. 2019, 160, 238–248. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Liu, Y.; Li, G.; Xia, G.; Wang, M. Ectopic expression of a wheat superoxide dismutase gene TaSOD5 enhances salt and oxidative stress tolerance in Arabidopsis. Biol. Plant. 2021, 65, 19–26. [Google Scholar] [CrossRef]
- Yadav, N.; Maddheshiaya, D.N.; Rawat, S.; Singh, J. Adsorption and equilibrium studies of phenol and para-nitrophenol by magnetic activated carbon synthesised from cauliflower waste. Environ. Eng. Res. 2020, 25, 742–752. [Google Scholar] [CrossRef]
- Huang, F.; Gao, L.Y.; Wu, R.R.; Wang, H.; Xiao, R.B. Qualitative and quantitative characterization of adsorption mechanisms for Cd2+ by silicon-rich biochar. Sci. Total Environ. 2020, 731, 139163. [Google Scholar] [CrossRef] [PubMed]
- Jha, V.K.; Hayashi, S. Modification on natural clinoptilolite zeolite for its NH4+ retention capacity. J. Hazar. Mater. 2009, 169, 29–35. [Google Scholar] [CrossRef]
- Hassan, M.M.; Mohamed, M.H.; Udoetok, I.A.; Steiger, B.G.K.; Wilson, L.D. Sequestration of Sulfate Anions from Groundwater by Biopolymer-Metal Composite Materials. Polymers 2020, 12, 1502. [Google Scholar] [CrossRef]
- Alagha, O.; Manzar, M.S.; Zubair, M.; Anil, I.; Mu’azu, N.D.; Qureshi, A. Comparative adsorptive removal of phosphate and nitrate from wastewater using biochar-MgAl LDH nanocomposites: Coexisting anions effect and mechanistic studies. Nanomaterials 2020, 10, 336. [Google Scholar] [CrossRef]
- Liu, T.; Xu, S.R.; Lu, S.Y.; Qin, P.; Bi, B.; Ding, H.D. A review on removal of organophosphorus pesticides in constructed wetland: Performance, mechanism and influencing factors. Sci. Total Environ. 2019, 651, 2247–2268. [Google Scholar] [CrossRef]
- Jung, K.W.; Ahn, K.H. Fabrication of porosity-enhanced MgO/biochar for removal of phosphate from aqueous solution: Application of a novel combined electrochemical modification method. Bioresour. Technol. 2016, 200, 1029–1032. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Shakoor, M.B.; Shakoor, M.B.; Jilani, A.; Anjum, R. High sorption efficiency for As(III) and As(V) from aqueous solutions using novel almond shell biochar. Chemosphere 2020, 243, 125330. [Google Scholar] [CrossRef]
- Li, R.; Wang, B.; Wu, P.; Zhang, J.; Zhang, X.; Chen, M.; Cao, X.; Feng, Q. Revealing the role of calcium alginate-biochar composite for simultaneous removing SO42− and Fe3+ in AMD: Adsorption mechanisms and application effects. Environ. Pollut. 2023, 329, 121702. [Google Scholar] [CrossRef]
- Runtti, H.; Tuomikoski, S.; Kangas, T.; Kuokkanen, T.; Rämö, J.; Lassi, U. Sulphate Removal from Water by Carbon Residue from Biomass Gasification: Effect of Chemical Modification Methods on Sulphate Removal Efficiency. BioResources 2016, 11, 3136–3152. [Google Scholar] [CrossRef]
- Jiang, W.; Jiang, Y.; Li, P.; Liu, D.; Ren, Y.; Li, D.; Liu, Z.; Chen, Y.; Ye, Y. Reuse of phosphogypsum and phosphorus ore flotation tailings as adsorbent: The adsorption performance and mechanism of phosphate. J. Phys. Chem. Solids 2023, 178, 111313. [Google Scholar] [CrossRef]
- Lee, N.; Hong, S.H.; Lee, C.G.; Jilani, A.; Anjum, R. Conversion of cattle manure into functional material to remove selenate from wastewater. Chemosphere 2020, 278, 130398. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, R.; Chen, Q.; Mo, Y.; Zhang, Y. Biochar-supported starch/chitosan-stabilized nano-iron sulfide composites for the removal of lead ions and nitrogen from aqueous solutions. Bioresour. Technol. 2022, 347, 126700. [Google Scholar] [CrossRef]
- Mallik, S.; Nayak, M.; Sahu, B.B.; Panigrahi, A.K.; Shaw, B.P. Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants. Biol. Plant. 2011, 55, 191–195. [Google Scholar] [CrossRef]
- Medina, J.J.M.; Naso, L.G.; Perez, A.L.; Rizzi, A.L.; Okulik, N.B.; Ferrer, E.G. Apigenin oxidovanadium(IV) cation interactions. Synthesis, spectral, bovine serum albumin binding, antioxidant and anticancer studies. J. Photochem. Photobiol. A 2017, 344, 84–100. [Google Scholar] [CrossRef]
- Irshad, M.K.; Noman, A.; Alhaithloul, H.A.S.; Adeel, M.; Rui, Y.K.; Shah, T.; Zhu, S.; Shang, J. Goethite-modified biochar ameliorates the growth of rice (Oryza sativa L.) plants by suppressing cd and as-induced oxidative stress in cd and as co-contaminated paddy soil. Sci. Total Environ. 2020, 717, 137086. [Google Scholar] [CrossRef]
- Farhangi-Abriz, S.; Torabian, S. Biochar increased plant growth-promoting hormones and helped to alleviates salt stress in common bean seedlings. J. Plant. Growth Regul. 2018, 37, 591–601. [Google Scholar] [CrossRef]
Adsorbent | Concentration Range (mg/L) | pH | Adsorption Capacity (mg/g) | Refs. |
---|---|---|---|---|
CA-MB | 10–250 mg/L | 2–10 | 10.16 mg·g−1 | [62] |
ZrBC | 5–300 mg/L | 2–12 | 35.21 mg·g−1 | [2] |
Fe-(Ba-BC) | 1500 mg/L | 2–11 | 226.80 mg·g−1 | [42] |
Carbon residue | 50–1000 mg/L | 2–8 | 19.50 mg·g−1 | [63] |
MBC | 60–600 mg·L-1 | 2–12 | 49.56 mg·g−1 | This study |
Sample | The Quasi-First-Order Kinetic Parameters | The Quasi-Second-Order Kinetics Parameters | ||||
---|---|---|---|---|---|---|
qe/(mg·g−1) | k1 | R2 | qe/(mg·g−1) | k2 | R2 | |
MBC | 49.153 | 2.157 | 0.957 | 55.522 | 0.056 | 0.977 |
Sample | Langmuir Parameters | Freundlich Parameters | ||||
---|---|---|---|---|---|---|
qe/(mg·g−1) | KL/(L·mg−1) | R2 | qe/(mg·g−1)(mg·L−1)−1/n | 1/n | R2 | |
MBC | 74.564 | 0.013 | 0.968 | 12.687 | 0.264 | 0.858 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Tang, Z.; Li, G.; Zhang, J.; Xie, F.; Zheng, L. Revealing the Role of Coal Gangue-Biochar Composite for Removing SO42− from Water: Adsorption Mechanisms and Application Effects. Minerals 2023, 13, 1290. https://doi.org/10.3390/min13101290
Chen X, Tang Z, Li G, Zhang J, Xie F, Zheng L. Revealing the Role of Coal Gangue-Biochar Composite for Removing SO42− from Water: Adsorption Mechanisms and Application Effects. Minerals. 2023; 13(10):1290. https://doi.org/10.3390/min13101290
Chicago/Turabian StyleChen, Xing, Zhi Tang, Guolian Li, Jiamei Zhang, Fazhi Xie, and Liugen Zheng. 2023. "Revealing the Role of Coal Gangue-Biochar Composite for Removing SO42− from Water: Adsorption Mechanisms and Application Effects" Minerals 13, no. 10: 1290. https://doi.org/10.3390/min13101290
APA StyleChen, X., Tang, Z., Li, G., Zhang, J., Xie, F., & Zheng, L. (2023). Revealing the Role of Coal Gangue-Biochar Composite for Removing SO42− from Water: Adsorption Mechanisms and Application Effects. Minerals, 13(10), 1290. https://doi.org/10.3390/min13101290