Amp-TB2 Protocol and Its Application to Amphiboles from Recent, Historical and Pre-Historical Eruptions of the Bezymianny Volcano, Kamchatka
Abstract
:1. Introduction
2. Homogeneous vs. Heterogeneous Domains
2.1. Threshold between Heterogeneous and Homogeneous Compositions as Measured by EPMA
2.2. Intra-Crystal Analysis of Amp Composition and Related Physicochemical Parameters
3. Protocol on the Application of Amp-TB2
3.1. Perform Detailed EPMA Profile
3.2. Check the Quality of the Amp Composition
3.3. Identify and Quantify Homgeneous Domains with Amp-TB2.1
4. The Application of Amp-TB2.1 to the Bezymianny Amphiboles and Comparison with Seismic Tomography Results
4.1. On the Characteristics of the Recent Magma-Feeding System
4.2. On the Variation of the Magma-Feeding System through the Ages
5. Final Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ridolfi, F. Amp-TB2: An Updated Model for Calcic Amphibole Thermo-barometry. Minerals 2021, 11, 32A. [Google Scholar] [CrossRef]
- Ridolfi, F.; Puerini, M.; Renzulli, A.; Menna, M.; Toulkeridis, T. The magmatic feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by texture, mineralogy and thermobarometry of the 2002 erupted products. J. Volcanol. Geotherm. Res. 2008, 176, 94–106. [Google Scholar] [CrossRef]
- Ridolfi, F.; Renzulli, A.; Puerini, M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib. Mineral. Petrol. 2010, 160, 45–66. [Google Scholar] [CrossRef]
- Ridolfi, F.; Renzulli, A. Calcic amphiboles in calc-alkaline and alkaline magmas: Thermobarometric and chemometric empirical equations valid up to 1130 °C and 2.2 GPa. Contrib. Mineral. Petrol. 2012, 163, 877–895. [Google Scholar] [CrossRef]
- Ridolfi, F.; Renzulli, A.; Perugini, D.; Cesare, B.; Braga, R.; Del Moro, S. Unravelling the complex interaction between mantle and crustal magmas encoded in the lavas of San Vincenzo (Tuscany, Italy). Part I: Petrography and Thermobarometry. Lithos 2016, 244, 218–232. [Google Scholar] [CrossRef]
- Gorini, A.; Ridolfi, F.; Piscaglia, F.; Taussi, M.; Renzulli, A. Application and reliability of calcic amphibole thermobarometry as inferred from calc-alkaline products of active geothermal areas in the Andes. J. Volcanol. Geotherm. Res. 2018, 358, 58–76. [Google Scholar] [CrossRef]
- Ridolfi, F.; Zanetti, A.; Renzulli, A.; Perugini, D.; Holtz, F.; Oberti, R. AMFORM, a new mass-based model for the calculation of the unit formula of amphiboles from Electron Micro-Probe analyses. Am. Mineral. 2018, 103, 1112–1125. [Google Scholar] [CrossRef]
- Benz, H.M.; Chouet, B.A.; Dawson, P.B.; Lahr, J.C.; Page, R.A.; Hole, J.A. Three-dimensional P and S wave velocity structure ofRedoubt Volcano, Alaska. J. Geophys. Res. 1996, 101, 8111–8128. [Google Scholar] [CrossRef]
- Aspinal, W.P.; Miller, A.D.; Lynch, L.L.; Latchman, J.L.; Stewart, R.C.; White, R.A.; Power, J.A. Soufriére Hills eruption, Montserrat, 1995–1997: Volcanic earthquake locations and fault planesolutions. Geophys. Res. Lett. 1998, 25, 3397–3400. [Google Scholar] [CrossRef]
- Lees, J.M. Seismic tomography of magmatic systems. J. Volcanol. Geotherm. Res. 2007, 167, 37–56. [Google Scholar] [CrossRef]
- Moran, S.C.; Malone, S.D.; Qamar, A.I.; Thelen, W.; Wright, A.K.; Caplan-Auerbach, J. Seismicity associated with renewed domebuildingat Mount St. Helens, 2004–2005. In A Volcano Rekindled: The Renewederuption of Mount St. Helens, 2004–2006, 1st ed.; Sherrod, D.R., Scott, W.E., Stauffer, P.H., Eds.; U.S. Geological Survey Professional Paper; U.S. Geological Survey: Reston, VA, USA, 2008; Volume 1, Chapter 2; pp. 27–60. [Google Scholar]
- Innocenti, S.; del Marmol, M.-A.; Voight, B.; Andreastuti, S.; Furman, T. Textural and mineral chemistry constraints on evolution of Merapi Volcano, Indonesia. J. Volcanol. Geotherm. Res. 2013, 261, 20–37. [Google Scholar] [CrossRef]
- Trua, T.; Marani, M.; Barca, D. Lower crustal differentiation processes beneath a back-arc spreading ridge (Marsili seamount, Southern Tyrrhenian Sea). Lithos 2014, 190–191, 349–362. [Google Scholar] [CrossRef]
- Burns, D.H.; de Silva, S.L.; Tepley, F., III; Schmitt, A.K.; Loewen, M.W. Recording the transition from flare-up to steady-state arc magmatism at the Purico–Chascon volcanic complex, northern Chile. Earth Plan. Sci. Lett. 2015, 422, 75–86. [Google Scholar] [CrossRef]
- Harangi, S.; Novák, A.; Kiss, B.; Seghedi, I.; Lukács, R.; Szarka, L.; Wesztergom, V.; Metwaly, M.; Gribovszki, K. Combined magnetotelluric and petrologic constrains for the nature of the magma storage system beneath the Late Pleistocene Ciomadul volcano (SE Carpathians). J. Volcanol. Geotherm. Res. 2015, 290, 82–96. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Simonov, V.A.; Koulakov, I.Y.; Kotlyarov, A.V. Migration of fluids and melts in subduction zones and general aspects of thermophysical modeling in geology. Rus. Geol. Geophys. 2017, 58, 571–585. [Google Scholar] [CrossRef]
- Mata, J.; Martins, S.; Mattielli, N.; Madeira, J.; Faria, B.; Ramalho, R.S.; Silva, P.; Moreira, M.; Caldeira, R.; Moreira, M. The 2014-15 eruption and the short-term geochemical evolution of the Fogo volcano (Cape Verde): Evidence for small-scale mantle heterogeneity. Lithos 2017, 288–289, 91–107. [Google Scholar] [CrossRef]
- Nagasaki, S.; Ishibashi, H.; Suwa, Y.; Yasuda, A.; Hokanishi, N.; Ohkura, T.; Takemura, K. Magma reservoir conditions beneath Tsurumi volcano, SW Japan: Evidence from amphibole thermobarometry and seismicity. Lithos 2017, 278–281, 153–165. [Google Scholar] [CrossRef]
- Stechern, A.; Just, T.; Holtz, F.; Blume-Oeste, M.; Namur, O. Decoding magma plumbing and geochemical evolution beneath the Lastarria volcanic complex (Northern Chile)—Evidence for multiple magma storage regions. J. Volcanol. Geotherm. Res. 2017, 338, 25–45. [Google Scholar] [CrossRef]
- Almeev, R.R.; Ariskin, A.A.; Ozerov, A.Y.; Kononkova, N.N. Problems of the stoichiometry and thermobarometry of magmatic amphiboles: An example of hornblende from the andesites of Bezymianny volcano, Eastern Kamchatka. Geochem. Int. 2002, 40, 723–738. [Google Scholar]
- Almeev, R.R.; Holtz, F.; Ariskin, A.A.; Limura, J.-I. Storage conditions of Bezymianny Volcano parental magmas: Results of phase equilibria experiments at 100 and 700 MPa. Contrib. Mineral. Petrol. 2013, 166, 1389–1414. [Google Scholar] [CrossRef]
- Turner, S.J.; Izbekov, P.; Langmuir, C. The magma plumbing system of Bezymianny Volcano: Insights from a 54 year time series of trace element whole-rock geochemistry and amphibole compositions. J. Volcanol. Geotherm. Res. 2013, 263, 108–121. [Google Scholar] [CrossRef]
- Koulakov, I.; Gordeev, E.I.; Dobretsov, N.L.; Vernikovsky, V.A.; Senyukov, S.; Jakovlev, A.; Jaxybulatov, K. Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time-dependent seismic tomography. J. Volcanol. Geotherm. Res. 2013, 263, 75–91. [Google Scholar] [CrossRef]
- Koulakov, I.; Abkadyrov, I.; Al Arifi, N.; Deev, E.; Droznina, S.; Gordeev, E.I.; Jakovlev, A.; El Khrepy, S.; Kulakov, R.I.; Kugaenko, Y.; et al. Three different types of plumbing system beneath the neighboring active volcanoes of Tolbachik, Bezymianny, and Klyuchevskoy in Kamchatka. J. Geophys. Res. Solid Earth 2017, 122, 3852–3874. [Google Scholar] [CrossRef]
- Davydova, V.O.; Shcherbakov, V.D.; Plechov, P.Y.; Koulakov, I.Y. Petrological evidence of rapid evolution of the magma plumbing systemofBezymianny volcano in Kamchatka before the December 20th, 2017 eruption. J. Volcanol. Geotherm. Res. 2022, 421, 107422. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, W.; Zhang, C.; Bao, Z.; Wu, S.; Almeev, R.A.; Ridolfi, F.; Oberti, R. New Compositional and Structural Constraints on the Smithsonian Microanalytical Reference Materials: Amphiboles from Kakanui and Arenal. Geostand. Geoanal. Res. 2023, 47, 595–608. [Google Scholar] [CrossRef]
- Scaillet, B.; Evans, B.W. The 15 June 1991 eruption of Mount Pinatubo; I, Phase equilibria and pre-eruption P-T-fO2-fH2conditions of the dacite magmas. J. Petrol. 1999, 40, 381–411. [Google Scholar] [CrossRef]
- Chakraborty, S. Rates and mechanisms of Fe-Mg interdiffusion in olivine at 980°–1300° C. J. Geophys. Res. Solid Earth 1997, 103, 12317–12331. [Google Scholar] [CrossRef]
- Costa, F.; Chakraborty, S.; Dohmen, R. Diffusion coupling between trace and major elements and a model for calculation of magma residence times using plagioclase. Geochem. Cosmochem. Acta 2003, 67, 2189–2200. [Google Scholar] [CrossRef]
- Costa, F.; Dohmen, R.; Chakraborty, S. Time scales of magmatic processes from modeling the zoning patterns of crystals. Rev. Mineral. Geochem. 2008, 69, 545–594. [Google Scholar] [CrossRef]
- Costa, F.; Shea, T.; Ubide, T. Diffusion chronometry and the timescales of magmatic processes. Nature Rev. Earth Environ. 2020, 1, 201–214. [Google Scholar] [CrossRef]
- Zhang, C.; Koepke, J.; Wang, L.-X.; Wolff, P.E.; Wilke, S.; Stechern, A.; Almeev, R.A.; Holtz, F. A Practical Method for Accurate Measurement of Trace Level Fluorine in Mg- and Fe-Bearing Minerals and Glasses Using Electron Probe Microanalysis. Geostand. Geoanal. Res. 2016, 40, 351–363. [Google Scholar] [CrossRef]
- Thelen, W.; West, M.; Senyukov, S. Seismic characterization of the fall 2007 eruptive sequence at Bezymianny Volcano, Russia. J. Volcanol. Geotherm. Res. 2010, 194, 201–213. [Google Scholar] [CrossRef]
- William, B.F.; Shapiro, N.M.; Gusev, A.A. Progressive reactivation of the volcanic plumbing system beneath Tolbachik volcano (Kamchatka, Russia) revealed by long-period seismicity. Earth Plan. Sci. Lett. 2018, 493, 47–56. [Google Scholar]
- Bogoyavlenskaya, G.E.; Braitseva, O.A.; Melekestsev, I.V.; Maksimov, A.P.; Kiriyanov, V.X.; Dan Miller, C. Catastrophic eruptions of the directed-blast type at Mount St. Helens, Bezymianny and Shiveluch volcanoes. J. Geodyn. 1985, 3, 189–218. [Google Scholar] [CrossRef]
- Ozerov, A.A.; Ariskin, A.A.; Kyle, P.; Bogoyavlenskaya, G.E.; Karpenko, S.F. Petrological-geochemical model for genetic relationships between basaltic and andesitic magmatism of Klyuchevskoy and Bezymianny volcanoes, Kamchatka. Petrology 1997, 5, 550–569. [Google Scholar]
- Davydova, V.O.; Shcherbakov, V.D.; Plechov, P.X.; Perepelov, A.B. Petrology of mafic enclaves in the 2006–2012 eruptive products of Bezymianny Volcano, Kamchatka. Petrology 2017, 25, 592–614. [Google Scholar] [CrossRef]
- Braitseva, O.A.; Melekestsev, I.V.; Bogoyavlenskaya, G.E.; Maksimov, A.P. Bezymianny: Eruptive history and dynamics. Volcanol. Seismol. 1991, 12, 165–195. [Google Scholar]
- Shcherbakov, V.; Plechov, P.; Izbekov, P.; Shipman, J. Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka. Contrib. Mineral. Petrol. 2011, 162, 3–99. [Google Scholar] [CrossRef]
- Koloskov, A.V.; Ananyev, V.V. New Data on the Age, Material Composition, and Geological Structure of the Central Kamchatka Depression (CKD). Part 2. The Mineralogical Composition of Volcanic Rocks and Mantle Xenoliths. Toward a Petrologic Model. J. Volcanol. Seism. 2020, 14, 145–165. [Google Scholar] [CrossRef]
- Koulakov, I.; Plechov, P.; Mania, R.; Walter, T.R.; Smirnov, S.Z.; Abkadyrov, I.; Jakovlev, A.; Davydova, V.; Senyukov, S.; Bushenkova, N.; et al. Anatomy of the Bezymianny volcano merely before an explosive eruption on 20.12.2017. Sci. Rep. 2021, 11, 1758. [Google Scholar] [CrossRef]
- Maksimov, A.P.; Kadik, A.A.; Korovushkina, E.Y.; Ivanov, B.V. Crystallization of an andesite melt with a fixed water content at pressures up to 12 kbar. Geochem. Int. 1978, 15, 20–29. [Google Scholar]
- Plechov, P.; Tsai, A.; Shcherbakov, V.; Dirksen, O. Opacitization conditions of hornblende in Bezymyannyi volcano andesites (March 30, 1956 eruption). Petrology 2008, 16, 19–35. [Google Scholar] [CrossRef]
- Shcherbakov, V.D.; Neill, O.K.; Izbekov, P.E.; Plechov, P.Y. Phase equilibria constraints on pre-eruptive magma storage conditions for the 1956 eruption of Bezymianny Volcano, Kamchatka, Russia. J. Volcanol. Geotherm. Res. 2013, 263, 132–140. [Google Scholar] [CrossRef]
- Almeev, R.R.; Kimura, J.-I.; Ariskin, A.A.; Ozerov, A.Y. Decoding crystal fractionation in water-rich calc-alkaline magma from Bezymianny volcano, Kamchatka, Russia, using mineral and bulk rock chemistry. J. Volcanol. Geotherm. Res. 2013, 263, 141–171. [Google Scholar] [CrossRef]
- Kiss, B.; Harangi, S.; Ntaflos, T.; Mason, P.R.D.; Pál-Molnár, E. Amphibole perspective to unravel pre-eruptive processes and conditions in volcanic plumbing systems beneath intermediate arc volcanoes: A case study from Ciomadul volcano (SECarpathians). Contrib. Mineral. Petrol. 2014, 167, 986. [Google Scholar] [CrossRef]
- Shea, T.; Hammer, J.E. Kinetics of cooling and decompression-induced crystallizationin hydrous mafic-intermediate magmas. J. Volcanol. Geotherm. Res. 2013, 260, 127–145. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ridolfi, F.; Almeev, R.R.; Ozerov, A.Y.; Holtz, F. Amp-TB2 Protocol and Its Application to Amphiboles from Recent, Historical and Pre-Historical Eruptions of the Bezymianny Volcano, Kamchatka. Minerals 2023, 13, 1394. https://doi.org/10.3390/min13111394
Ridolfi F, Almeev RR, Ozerov AY, Holtz F. Amp-TB2 Protocol and Its Application to Amphiboles from Recent, Historical and Pre-Historical Eruptions of the Bezymianny Volcano, Kamchatka. Minerals. 2023; 13(11):1394. https://doi.org/10.3390/min13111394
Chicago/Turabian StyleRidolfi, Filippo, Renat R. Almeev, Alexey Yu Ozerov, and Francois Holtz. 2023. "Amp-TB2 Protocol and Its Application to Amphiboles from Recent, Historical and Pre-Historical Eruptions of the Bezymianny Volcano, Kamchatka" Minerals 13, no. 11: 1394. https://doi.org/10.3390/min13111394
APA StyleRidolfi, F., Almeev, R. R., Ozerov, A. Y., & Holtz, F. (2023). Amp-TB2 Protocol and Its Application to Amphiboles from Recent, Historical and Pre-Historical Eruptions of the Bezymianny Volcano, Kamchatka. Minerals, 13(11), 1394. https://doi.org/10.3390/min13111394