Investigation of Gold Recovery and Mercury Losses in Whole Ore Amalgamation: Artisanal Gold Mining in Nambija, Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Data Analysis
2.3. Determination of the Adequate Grinding Mesh Size
2.4. Reducing Mercury Inputs
2.5. Monitoring the Efficiency of the Gold Amalgamation
3. Results and Discussion
3.1. Adequate Grinding Mesh
3.2. Mercury Dosing in the Rod Mill
3.3. Monitoring and Optimization of the Use of Mercury in the Plant
3.3.1. Mercury Distillation in Retort
3.3.2. Recovery of Gold from the Amalgamation and Sedimentation Boxes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sana, A.; Christophe, D.B.; Hien, H. Knowledge and perceptions of health and environmental risks related to artisanal gold mining by the artisanal miners in Burkina Faso: A cross-sectional survey. Pan Afr. Med. J. 2017, 27, 280. [Google Scholar] [CrossRef] [PubMed]
- Mwandiringana, E.; Ye, J. Mining what is not mine: Artisanal gold mining in Gwanda, Zimbabwe. Extr. Ind. Soc. 2023, 13, 101217. [Google Scholar] [CrossRef]
- Vergara-Murillo, F.; González-Ospino, S.; Cepeda-Ortega, N.; Pomares-Herrera, F.; Johnson-Restrepo, B. Adverse Health Effects and Mercury Exposure in a Colombian Artisanal and Small-Scale Gold Mining Community. Toxics 2022, 10, 723. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, A.D.; Smith, N.M.; Holley, E.A. Capitals in artisanal and small-scale mining in Marmato, Colombia: Using the sustainable livelihoods framework to inform formalization. Extr. Ind. Soc. 2022, 12, 101157. [Google Scholar] [CrossRef]
- Jiménez-Oyola, S.; Chavez, E.; García-Martínez, M.-J.; Ortega, M.F.; Bolonio, D.; Guzmán-Martínez, F.; García-Garizabal, I.; Romero, P. Probabilistic multi-pathway human health risk assessment due to heavy metal(loid)s in a traditional gold mining area in Ecuador. Ecotoxicol. Environ. Saf. 2021, 224, 112629. [Google Scholar] [CrossRef]
- Bester, V. Towards a sustainable artisanal gold mining sector in South Africa: Proposed developmental initiatives. J. Rural Stud. 2023, 97, 375–384. [Google Scholar] [CrossRef]
- Veiga, M.M.; Gunson, A.J. Gravity Concentration in Artisanal Gold Mining. Minerals 2020, 10, 1026. [Google Scholar] [CrossRef]
- Manzila, A.N.; Moyo, T.; Petersen, J. A Study on the Applicability of Agitated Cyanide Leaching and Thiosulphate Leaching for Gold Extraction in Artisanal and Small-Scale Gold Mining. Minerals 2022, 12, 1291. [Google Scholar] [CrossRef]
- Jonkman, J.; de Theije, M. Amalgamation: Social, technological, and legal entanglements in small-scale gold-mining regions in Colombia and Suriname. Geoforum 2022, 128, 202–212. [Google Scholar] [CrossRef]
- Rodrigues, P.d.A.; Ferrari, R.G.; dos Santos, L.N.; Junior, C.A.C. Mercury in aquatic fauna contamination: A systematic review on its dynamics and potential health risks. J. Environ. Sci. 2019, 84, 205–218. [Google Scholar] [CrossRef]
- Jiménez-Oyola, S.; García-Martínez, M.-J.; Ortega, M.F.; Bolonio, D.; Rodríguez, C.; Esbrí, J.-M.; Llamas, J.F.; Higueras, P. Multi-pathway human exposure risk assessment using Bayesian modeling at the historically largest mercury mining district. Ecotoxicol. Environ. Saf. 2020, 201, 110833. [Google Scholar] [CrossRef]
- Torkaman, P.; Veiga, M.; Lima, L.d.A.; Oliveira, L.; Motta, J.; Jesus, J.; Lavkulich, L. Leaching gold with cassava: An option to eliminate mercury use in artisanal gold mining. J. Clean. Prod. 2021, 311, 127531. [Google Scholar] [CrossRef]
- Alfonso, P.; Anticoi, H.; Yubero, T.; Bascompta, M.; Henao, L.; Garcia-Valles, M.; Palacios, S.; Yáñez, J. The importance of mineralogical knowledge in the sustainability of artisanal gold mining: A Mid-South Peru case. Minerals 2019, 9, 345. [Google Scholar] [CrossRef]
- Lydia, O.; Godwin, A.; Isaac, L. “We have done nothing wrong”: Youth miners’ perceptions of the environmental consequences of artisanal and small-scale mining (ASM) in Ghana. Extr. Ind. Soc. 2022, 12, 101179. [Google Scholar] [CrossRef]
- Sánchez-Vázquez, L.; Espinosa-Quezada, M.G.; Eguiguren-Riofrío, M.B. “Golden reality” or the “reality of gold”: Artisanal mining and socio-environmental conflict in Chinapintza, Ecuador. Extr. Ind. Soc. 2016, 3, 124–128. [Google Scholar] [CrossRef]
- Kosai, S.; Nakajima, K.; Yamasue, E. Mercury mitigation and unintended consequences in artisanal and small-scale gold mining. Resour. Conserv. Recycl. 2023, 188, 106708. [Google Scholar] [CrossRef]
- Mestanza-Ramón, C.; Mora-Silva, D.; D’orio, G.; Tapia-Segarra, E.; Gaibor, I.D.; Parra, J.F.E.; Velásquez, C.R.C.; Straface, S. Artisanal and Small-Scale Gold Mining (ASGM): Management and Socioenvironmental Impacts in the Northern Amazon of Ecuador. Sustainability 2022, 14, 6854. [Google Scholar] [CrossRef]
- Gonçalves, A.O.; Marshall, B.G.; Kaplan, R.J.; Moreno-Chavez, J.; Veiga, M.M. Evidence of reduced mercury loss and increased use of cyanidation at gold processing centers in southern Ecuador. J. Clean. Prod. 2017, 165, 836–845. [Google Scholar] [CrossRef]
- Morgan, V.L.; McLamore, E.S.; Correll, M.; Kiker, G.A. Emerging mercury mitigation solutions for artisanal small-scale gold mining communities evaluated through a multicriteria decision analysis approach. Environ. Syst. Decis. 2021, 41, 413–424. [Google Scholar] [CrossRef]
- Cruz, U.; Vega, E. Characterization of Environmental Pollution Associated with the Amalgamation Process Based on the Loss of Mercury. IOP Conf. Ser. Earth Environ. Sci. 2021, 835, 012010. [Google Scholar] [CrossRef]
- Torkaman, P.; Veiga, M. Comparing cyanidation with amalgamation of a Colombian artisanal gold mining sample: Suggestion of a simplified zinc precipitation process. Extr. Ind. Soc. 2023, 13, 101208. [Google Scholar] [CrossRef]
- Hinton, J.J.; Veiga, M.M.; Veiga, A.T.C. Clean artisanal gold mining: A utopian approach? J. Clean. Prod. 2003, 11, 99–115. [Google Scholar] [CrossRef]
- Parapari, P.S.; Parian, M.; Rosenkranz, J. Quantitative analysis of ore texture breakage characteristics affected by loading mechanism: Fragmentation and mineral liberation. Miner. Eng. 2022, 182, 107561. [Google Scholar] [CrossRef]
- Carling, G.T.; Diaz, X.; Ponce, M.; Perez, L.; Nasimba, L.; Pazmino, E.; Rudd, A.; Merugu, S.; Fernandez, D.P.; Gale, B.K.; et al. Particulate and dissolved trace element concentrations in three southern ecuador rivers impacted by artisanal gold mining. Water Air Soil Pollut. 2013, 224, 1415. [Google Scholar] [CrossRef]
- Appleton, J.D.; Williams, T.M.; Orbea, H.; Carrasco, M. Fluvial Contamination Associated with Artisanal Gold Mining in the Ponce Enríquez, Portovelo-Zaruma and Nambija Areas, Ecuador. Water Air Soil Pollut. 2001, 131, 19–39. [Google Scholar] [CrossRef]
- Requelme, M.R.; Ramos, J.; Angélica, R.; Brabo, E. Assessment of Hg-contamination in soils and stream sediments in the mineral district of Nambija, Ecuadorian Amazon (example of an impacted area affected by artisanal gold mining). Appl. Geochem. 2003, 18, 371–381. [Google Scholar] [CrossRef]
- MAE-PRAS Ministerio del Ambiente de Ecuador. Programa de Reparación Ambiental y Social—Diagnóstico Socioambiental de la Zona Minera Nambija; MAE-PRAS Ministerio del Ambiente de Ecuador: Quito, Ecuador, 2015. [Google Scholar]
- Ministerio de Energía y Minas. Reporte de Minería. 2016. Available online: https://www.mem.gob.do/index.php/consultas-publicas (accessed on 12 January 2020).
- Guía de Buenas Prácticas de la Esmeralda Colombiana; Comisión Colombiana de Recursos y Reservas Minerales: Bogotá, Colombia, 2020.
- Diana Buitrón, O.; Diego Barona, D.; Francisco Iturra, M.; Johana León, F. Validación del método para la determinación de oro por ensayo al fuego combinado con espectrometría de absorción atómica en muestras geológicas mineras metalúrgicas. InfoAnalítica 2021, 9, 119–136. [Google Scholar] [CrossRef]
- Magalhães, F.B.; Carvalho, C.d.F.; Carvalho, E.L.C.N.; Yoshida, M.I.; Dos-Santos, C.G. Rendering wastes obtained from gold analysis by the lead-fusion fire-assay method non-hazardous. J. Environ. Manag. 2012, 110, 110–115. [Google Scholar] [CrossRef]
- Hajinia, A.; Heidari, T. Sensitive fluorometric determination of gold in geological samples using fire assay pre-concentration coupled with microfluidic paper-based analytical device. Microchem. J. 2021, 164, 105923. [Google Scholar] [CrossRef]
- Baena, O.J.R.; Aristizábal, G.; Pimentel, M.S.; Flórez, C.A.; Argumedo, C.E. Waste Management and the Elimination of Mercury in Tailings from Artisanal and Small-Scale Gold Mining in the Andes Municipality of Antioquia, Colombia. Mine Water Environ. 2021, 40, 250–256. [Google Scholar] [CrossRef]
- INEN-Instituto Ecuatoriano de Normalización. Norma Técnica Ecuatoriana-INEN 2169: 2013 Agua, Calidad del Agua, Muestreo, Manejo y Conservación de Muestras. 2013, p. 26. Available online: http://www.trabajo.gob.ec/wp-content/uploads/2012/10/nte-inen-2169-agua.-calidad-del-agua.-muestreo.-manejo-y-conservación-de-muestras.pdf (accessed on 12 January 2020).
- Pérez-García, E.; Bouchard, J.; Poulin, É. Integrating online mineral liberation data into process control and optimisation systems for grinding–separation plants. J. Process Control 2021, 105, 169–178. [Google Scholar] [CrossRef]
- Altun, O.; Altun, D. Estimation of mineral liberation distribution functions to be used in modelling of impact and attrition milling. Miner. Eng. 2021, 173, 107236. [Google Scholar] [CrossRef]
- Ministerio de Energía y Minas del Perú. Guía de Orientación del Uso Eficiente de la Energía y de Diagnóstico Energético. 2022, p. 112. Available online: https://www.sonami.cl/v2/informacion-de-la-mineria/mineria-metalica/ (accessed on 12 January 2020).
- Jackson, C.F.; Hedges, J.H. Metal-Mining Practice; U.S. Bureau of Mines: Washington, DC, USA, 1939. [Google Scholar]
- García, L.P.; Llópiz, Y.C.; Puyáns, L.R.G. Modelo Matemático Para Describir la Distribución Granulométrica de la Fase Dispersa de las Suspensiones de Laterita. Tecnología Química 2009, XXIX, 83–91. Available online: https://www.redalyc.org/articulo.oa?id=445543761010 (accessed on 4 May 2023).
- Pantoja-Barrios, G.K.; Molina-Ramírez, E.K.; Fuentes-Torres, S.N.; Ramírez, F.A.; Mojica, J.; Londoño-Escobar, J.I. Metodología geometalúrgica para mejorar el proceso de extracción de oro en pequeña escala de la mina Gualconda en Nariño—Colombia. Revista UIS Ingenierías 2020, 20, 143–152. [Google Scholar] [CrossRef]
- García, O.; Veiga, M.M.; Cordy, P.; Suescún, O.E.; Molina, J.M.; Roeser, M. Artisanal gold mining in Antioquia, Colombia: A successful case of mercury reduction. J. Clean. Prod. 2015, 90, 244–252. [Google Scholar] [CrossRef]
- Pantoja, T.F.; Álvarez, R.R.; Rodríguez, A.A.S. Methods to reduce mercury pollution in small gold mining operations. Rev. Metal. 2005, 194–203. [Google Scholar] [CrossRef]
- FMAM-Fondo para el Medio Ambiente Mundial; ONUDI; AGC-Artisanal Gold Council. Línea de Base Nacional Para la Minería Artesanal y en Pequeña Escala de Oro en Ecuador, Conforme la Convención de Minamata Sobre Mercurio; Ministerio del Ambiente, Agua y Transición Ecológica: Pichincha, Ecuador, 2020; pp. 8–89. [Google Scholar]
- del Ambiente, M.-M. Norma de calidad ambiental y de descarga de efluentes: Recurso agua. Quito 2015, 131, 35–40. [Google Scholar]
Test | Grinding Time (min) | d80 (µm) |
---|---|---|
S#1 | 80 | 465 |
S#2 | 100 | 240 |
S#3 | 120 | 180 |
S#4 | 140 | 120 |
S#5 | 120 | 180 |
Test | Grinding Time (min) | Gold Recovered (g) | Gold Recovered (g/t) | Au Lost with Tailings (g/t) | Gold Extracted (%) |
---|---|---|---|---|---|
S#1 | 80 | 0.067 | 1.22 | 6.12 | 16.60 |
S#2 | 100 | 0.153 | 2.78 | 4.56 | 37.90 |
S#3 | 120 | 0.219 | 3.98 | 3.36 | 54.25 |
S#4 | 140 | 0.124 | 2.25 | 5.09 | 30.72 |
S#5 | 120 | 0.221 | 4.02 | 3.32 | 54.74 |
Test | Grinding Time (min) | Hg Imput (g) | Au Recovered (g) | Gold Grade (g/t) | Lost with Tailings (g/t) | Efficiency (%) |
---|---|---|---|---|---|---|
S#3 | 120 | 454.0 | 0.219 | 3.98 | 3.36 | 54.25 |
S#5 | 120 | 454.0 | 0.221 | 4.02 | 3.32 | 54.74 |
S#6 | 120 | 340.5 | 0.228 | 4.15 | 3.19 | 56.48 |
S#7 | 120 | 227.0 | 0.183 | 3.33 | 4.01 | 45.33 |
S#8 | 120 | 340.5 | 0.232 | 4.22 | 3.12 | 57.47 |
Section 1 | ||||
---|---|---|---|---|
Test | Grinding Time (h) | Ore Processed (Tn) | Hg Fed (g) | Hg Recovered (%) |
1 | 157 | 226 | 3372.97 | 24.20 |
2 | 160 | 250 | 2800.20 | 35.63 |
3 | 154 | 250 | 2800.09 | 35.11 |
4 | 157 | 250 | 2800.05 | 33.61 |
Section 2 | ||||
1 | 150 | 215 | 3455.38 | 29.08 |
2 | 161 | 250 | 2800.15 | 34.81 |
3 | 156 | 250 | 2800.07 | 36.48 |
4 | 153 | 250 | 2800.13 | 35.52 |
Section 1 | ||||
---|---|---|---|---|
Test | Amalgam (g) | Au Recovered (%) | Hg Recovered (%) | Hg Lost (%) |
1 | 1342.36 | 21.57 | 88.03 | 11.97 |
2 | 1411.02 | 28.91 | 89.23 | 10.77 |
3 | 1274.37 | 27.85 | 93.98 | 6.02 |
4 | 1357.94 | 29.34 | 93.09 | 6.91 |
Section 2 | ||||
1 | 1257.21 | 32.05 | 93.65 | 6.35 |
2 | 1309.5 | 29.61 | 97.5 | 2.5 |
3 | 1475.64 | 29.59 | 97.92 | 2.08 |
4 | 1339.24 | 31.78 | 97.34 | 2.66 |
Section 1 | ||||
---|---|---|---|---|
Test | Gold Recovery (Sluice) (g) | Hg Recovery (Sluice) (%) | Gold Recovery (Sand Tank) (g) | Hg Recovery (Sand Tank) (%) |
1 | 8.76 | 10.08 | 3.17 | 8.74 |
2 | 10.28 | 12.78 | 4.53 | 10.2 |
3 | 14.51 | 11.95 | 5.21 | 10.59 |
4 | 13.96 | 13.01 | 5.38 | 10.75 |
Section 2 | ||||
1 | 6.41 | 10.46 | 4.09 | 8.53 |
2 | 8.59 | 15.75 | 5.26 | 9.13 |
3 | 9.16 | 12.83 | 6.07 | 8.57 |
4 | 11.87 | 13.22 | 7.52 | 12.18 |
Section 1 | ||||
---|---|---|---|---|
Test | Total Hg Recovered from the Process (g) | Hg Recovered (%) | Total Hg Lost in the Process (g) | Hg Lost % |
1 | 2343.28 | 69.47 | 1029.69 | 30.53 |
2 | 2492.25 | 89.00 | 307.95 | 11.00 |
3 | 2457.02 | 87.75 | 343.07 | 12.25 |
4 | 2472.07 | 88.29 | 327.98 | 11.71 |
Section 2 | ||||
1 | 2435.62 | 70.49 | 1019.76 | 29.51 |
2 | 2560.64 | 91.45 | 239.51 | 8.55 |
3 | 2628.87 | 93.89 | 171.20 | 6.11 |
4 | 2583.82 | 92.28 | 216.31 | 7.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Vásquez, R.; García-Martínez, M.J.; Bolonio, D. Investigation of Gold Recovery and Mercury Losses in Whole Ore Amalgamation: Artisanal Gold Mining in Nambija, Ecuador. Minerals 2023, 13, 1396. https://doi.org/10.3390/min13111396
González-Vásquez R, García-Martínez MJ, Bolonio D. Investigation of Gold Recovery and Mercury Losses in Whole Ore Amalgamation: Artisanal Gold Mining in Nambija, Ecuador. Minerals. 2023; 13(11):1396. https://doi.org/10.3390/min13111396
Chicago/Turabian StyleGonzález-Vásquez, Richard, María Jesús García-Martínez, and David Bolonio. 2023. "Investigation of Gold Recovery and Mercury Losses in Whole Ore Amalgamation: Artisanal Gold Mining in Nambija, Ecuador" Minerals 13, no. 11: 1396. https://doi.org/10.3390/min13111396
APA StyleGonzález-Vásquez, R., García-Martínez, M. J., & Bolonio, D. (2023). Investigation of Gold Recovery and Mercury Losses in Whole Ore Amalgamation: Artisanal Gold Mining in Nambija, Ecuador. Minerals, 13(11), 1396. https://doi.org/10.3390/min13111396