Metamorphic Ages and PT Conditions of Amphibolites in the Diebusige and Bayanwulashan Complexes of the Alxa Block, North China Craton
Abstract
:1. Introduction
2. Geological Setting
2.1. The Western Alxa Block
2.2. The Eastern Alxa Block
3. Analytical Methods
4. Field Occurrence and Petrology
4.1. Field Occurrence
4.2. Petrology and Mineral Chemistry
4.2.1. Amphibolite Sample ALS2164
4.2.2. Amphibolite Sample ALS2166
4.2.3. Amphibolite Sample ALS2191
4.3. Mineral Assemblage Evolution
5. Calculation of Metamorphic Conditions
5.1. Phase Equilibrium Modelling
5.1.1. Amphibolite Sample ALS2164
5.1.2. Amphibolite Sample ALS2191
Whole Rock Compositions (wt.%) | |||||||||||||
Sample | SiO2 | TiO2 | Al2O3 | Fe2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | LOI | Total |
ALS2164 | 45.23 | 2.35 | 11.85 | 6.36 | 7.21 | 0.19 | 8.81 | 10.38 | 2.53 | 1.76 | 0.65 | 1.49 | 99.61 |
ALS2191 | 48.65 | 1.27 | 14.76 | 3.32 | 7.75 | 0.17 | 6.38 | 9.49 | 2.78 | 2.10 | 0.44 | 1.66 | 99.63 |
Normalized Molar Proportion Used for Phase Equilibria Modelling | |||||||||||||
Figures | H2O | SiO2 | Al2O3 | CaO | MgO | FeO | K2O | Na2O | TiO2 | O | |||
ALS2164 | Figure 7a | x = 0 | 0.00 | 48.07 | 7.42 | 10.84 | 13.96 | 11.49 | 1.19 | 2.61 | 1.88 | 2.54 | |
x = 1 | 5.00 | 45.66 | 7.05 | 10.30 | 13.26 | 10.92 | 1.13 | 2.48 | 1.78 | 2.41 | |||
Figure 7b,c | 3.25 | 46.51 | 7.18 | 10.49 | 13.50 | 11.12 | 1.15 | 2.52 | 1.82 | 2.46 | |||
ALS2191 | Figure 8a | x = 0 | 0.00 | 53.10 | 9.49 | 10.42 | 10.38 | 9.80 | 1.46 | 2.94 | 1.04 | 1.36 | |
x = 1 | 5.00 | 50.45 | 9.02 | 9.90 | 9.86 | 9.31 | 1.39 | 2.79 | 0.99 | 1.29 | |||
Figure 8b,c | 3.20 | 51.40 | 9.19 | 10.09 | 10.05 | 9.48 | 1.42 | 2.85 | 1.01 | 1.32 |
5.2. Conventional Thermobarometry
6. Zircon U–Pb Dating
6.1. Amphibolite Sample ALS2164
6.2. Amphibolite Sample ALS2166
6.3. Amphibolite Sample ALS2191
6.4. Amphibolite Sample ALS2156
7. Discussion
7.1. Age Interpretation of Amphibolites
7.2. Metamorphic Style and Tectonic Implications
8. Conclusions
- (1)
- LA-ICP-MS zircon U–Pb dating yielded the metamorphic ages of ca. 1901–1817 Ma for amphibolites in the Diebusige and Bayanwulashan Complexes, representing the timing of amphibolite-facies metamorphism.
- (2)
- Phase equilibrium modelling and conventional thermobarometries yielded a relatively large PT range for amphibolites in the Diebusige and Bayanwulashan Complexes, with a high geothermal gradient, which may correspond to an extensional setting following continental collision.
- (3)
- The HREE enrichment patterns of metamorphic zircons are consistent with that these amphibolites formed under PT conditions where garnet is not stable and at relatively shallower crust than the garnet-bearing mafic granulites in the Diebusige Complex.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barker, A.J. Introduction to Metamorphic Textures and Microstructures; Blackie: Glasgow, UK, 1990. [Google Scholar]
- Stowell, H.H.; Stein, E. The significance of plagioclase-dominant coronas on garnet, Wenatchee Block, northern Cascades, Washington, U. S.A. Can. Mineral. 2005, 43, 367–385. [Google Scholar] [CrossRef]
- Kohn, M.J.; Spear, F. Two new barometers for garnet amphibolites with applications to eastern Vermont. Am. Mineral. 1990, 75, 89–96. [Google Scholar]
- Surour, A.A. Medium- to high-pressure garnet-amphibolites from Gebel Zabara and Wadi Sikait, South Eastern Desert, Egypt. J. Afr. Earth Sci. 1995, 21, 443–457. [Google Scholar] [CrossRef]
- Liu, J.; Bohlen, S.R.; Ernst, W.G. Stability of hydrous phases in subducting oceanic crust. Earth Planet. Sci. Lett. 1996, 143, 161–171. [Google Scholar] [CrossRef]
- Dale, J.; Holland, T.; Powell, R. Hornblende–garnet–plagioclase thermobarometry: A natural assemblage calibration of the thermodynamics of hornblende. Contrib. Mineral. Petrol. 2000, 140, 353–362. [Google Scholar] [CrossRef]
- Lopez, S.V.; Gomez, P.M.Y.; Azor, A.; Fernandez, S.J.M. Phase diagram sections applied to amphibolites: A case study from the Ossa_morena/Central Iberian Variscan suture (Southwestern Iberian Massif). Lithos 2003, 68, 1–21. [Google Scholar]
- Winter, J.D. An Introduction to Igneous and Metamorphic Petrology, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010; pp. 1–702. [Google Scholar]
- Brown, M. The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geosci. Front. 2014, 5, 553–569. [Google Scholar] [CrossRef]
- Wei, C.J.; Guan, X.; Dong, J. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs. Acta Petrol. Sin. 2017, 33, 1381–1404. [Google Scholar]
- Zhang, B.T.; Ling, H.; Chen, P.; Hu, G.; Jiang, Y.; Yu, J. New recognition criteria for ortho and paraamphibolites: The Comparative study on mineral petrochemical characteristics of the precambrian orthoparaamphibolites from Xiangshan, Central Jiangxi Province. Contrib. Geol. Miner. Resour. Res. 2005, 20, 223–232. [Google Scholar]
- Zhao, G.C.; Cawood, P.A.; Lu, L.Z. Petrology and P-T history of the Wutai amphibolites: Implications for tectonic evolution of the Wutai complex, China. Precambrian Res. 1999, 93, 181–199. [Google Scholar] [CrossRef]
- Miyashiro, A. Metamorphic Petrology; UCL Press Limited: London, UK, 1994. [Google Scholar]
- Qian, J.H.; Wei, C.J. P–t–t evolution of garnet amphibolites in the wutai–hengshan area, north china craton: Insights from phase equilibria and geochronology. J. Metamorph. Geol. 2016, 34, 423–446. [Google Scholar] [CrossRef]
- Bader, T.; Zhang, L.F.; Li, X.W. Is the Songshugou Complex, Qinling Belt, China, an Eclogite Facies Neoproterozoic Ophiolite? J. Earth Sci. 2019, 30, 460–475. [Google Scholar] [CrossRef]
- Lou, Y.; Wei, C.; Liu, X.; Zhang, C.; Tian, Z.; Wang, W. Metamorphic evolution of garnet amphibolite in the western Dabieshan eclogite belt, Central China: Evidence from petrography and phase equilibria modeling. J. Asian Earth Sci. 2013, 63, 130–138. [Google Scholar] [CrossRef]
- Wang, Y.W.; Liu, L.; Liao, X.Y.; Gai, Y.S.; Yang, W.Q.; Kang, L. Multi-metamorphism of amphibolite in the Qinling complex,Qingyouhe area: Revelation from trace elements and mineral inclusions in zircons. Acta Petrol. Sin. 2016, 32, 1467–1492. [Google Scholar]
- Wu, K.K.; Zhao, G.; Sun, M.; Yin, C.; He, Y.; Tam, P.Y. Metamorphism of the northern Liaoning Complex: Implications for the tectonic evolution of Neoarchean basement of the Eastern Block, North China Craton. Geosci. Front. 2013, 4, 305–320. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, C.J.; Chu, H. High-T and low-P metamorphism in the xilingol complex of central inner mongolia, China: An indicator of extension in a previous orogeny. J. Metamorph. Geol. 2018, 36, 393–417. [Google Scholar] [CrossRef]
- Ge, X.H.; Liu, J.L. Broken “Western China Craton”. Acta Petrol. Sin. 2000, 16, 59–66, (In Chinese with English Abstract). [Google Scholar]
- Li, X.H.; Su, L.; Song, B.; Liu, D.Y. SHRIMP U-Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance. Chin. Sci. Bull. 2004, 49, 420–422. [Google Scholar] [CrossRef]
- Zhao, G.C.; Sun, M.; Wilde, S.A.; Li, S.Z. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res. 2005, 136, 177–202. [Google Scholar] [CrossRef]
- Zhao, G.C. Metamorphic evolution of major tectonic units in the basement of the north China craton: Key issues and discussion. Acta Petrol. Sin. 2009, 25, 1772–1792. [Google Scholar]
- Dan, W.; Li, X.H.; Wang, Q.; Wang, X.C.; Wyman, D.A.; Liu, Y. Phanerozoic amalgamation of the Alxa block and North China Craton: Evidence from Paleozoic granitoids, U-Pb geochronology and Sr-Nd-Pb-Hf-O isotope geochemistry. Gondwana Res. 2016, 32, 105–121. [Google Scholar] [CrossRef]
- Yuan, W.; Yang, Z.Y. The Alashan terrane was not part of north China by the late Devonian: Evidence from detrital zircon U-Pb geochronology and Hf isotopes. Gondwana Res. 2015, 27, 1270–1282. [Google Scholar] [CrossRef]
- Liu, S.J.; Tsunogae, T.; Li, W.; Shimizu, H.; Santosh, M.; Wan, Y.S.; Li, J.H. Paleoproterozoic granulites from Heling’er: Implications for regional ultrahigh temperature metamorphism in the north China craton. Lithos 2012, 148, 54–70. [Google Scholar] [CrossRef]
- Zhang, J.X.; Gong, J.H.; Yu, S.; Li, H.; Hou, K. Neoarchean–Paleoproterozoic multiple tectonothermal events in the western Alxa block, North China Craton and their geological implication: Evidence from zircon U–Pb ages and Hf isotopic composition. Precambrian Res. 2013, 235, 36–57. [Google Scholar] [CrossRef]
- Dong, C.; Liu, D.Y.; Li, J.J.; Wang, Y.S.; Zhou, H.Y.; Li, C.D.; Yang, Y.H.; Xie, L.W. Palaeoproterozoic Khondalite Belt in the western North China Craton: New evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helan Mountains area. Chin. Sci. Bull. 2007, 52, 2984–2994, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Geng, Y.S.; Wang, X.S.; Wu, C.M.; Zhou, X.W. Late-Paleoproterozoic tectonothermal events of the metamorphic basement in Alxa area: Evidence from geochronology. Acta Petrol. Sin. 2010, 26, 1159–1170, (In Chinese with English Abstract). [Google Scholar]
- Zhang, J.X.; Gong, J.H. Revisiting the nature and affinity of the Alxa Block. Acta Petrol. Sin. 2018, 34, 940–962, (In Chinese with English Abstract). [Google Scholar]
- Gong, J.H.; Zhang, J.X.; Yu, S.Y. The origin of Longshoushan Group and associated rocks in the southern part of the Alxa block: Constraint from LA-ICP-MS U-Pb zircon dating. Acta Petrol. Mineral. 2011, 30, 795–818, (In Chinese with English Abstract). [Google Scholar]
- Zou, L.; Liu, P.H.; Liu, L.S.; Wang, W.; Tian, Z.H. Diagenetic and Metamorphic Timing of the Diebusige Complex, the Eastern Alxa Block: New Evidence from Zircon LA-ICP-MS U-Pb Dating of Biotite-Plagioclase Gneiss. Earth Sci. 2020, 45, 3313–3329, (In Chinese with English Abstract). [Google Scholar]
- Zou, L.; Guo, J.H.; Liu, L.S.; Ji, L.; Liu, P.H. Palaeoproterozoic granulite-facies metamorphism in the eastern Alxa block: New petrological and geochronological evidence from the diebusige complex. Precambrian Res. 2021, 354, 106051. [Google Scholar] [CrossRef]
- Zou, L.; Guo, J.H.; Jiao, S.J.; Huang, G.Y.; Tian, Z.H.; Liu, P.H. Paleoproterozoic ultrahigh-temperature metamorphism in the Alxa Block, the Khondalite Belt, North China Craton: Petrology and phase equilibria of quartz-absent corundum-bearing pelitic granulites. J. Metamorph. Geol. 2022, 40, 1159–1187. [Google Scholar] [CrossRef]
- Wang, Y.; Ge, R.; Si, Y. Late Paleoproterozoic ultrahigh-temperature mafic granulite from the eastern Alxa Block, North China Craton. Precambrian Res. 2023, 397, 107172. [Google Scholar] [CrossRef]
- Dan, W.; Li, X.H.; Guo, J.; Liu, Y.; Wang, X.C. Paleoproterozoic evolution of the eastern Alxa Block, westernmost North China: Evidence from in situ zircon U–Pb dating and Hf–O isotopes. Gondwana Res. 2012, 21, 838–864. [Google Scholar] [CrossRef]
- Wu, S.; Hu, J.; Ren, M.; Gong, W.; Liu, Y.; Yan, J. Petrography and zircon U–Pb isotopic study of the Bayanwulashan Complex: Constrains on the Paleoproterozoic evolution of the Alxa Block, westernmost North China Craton. J. Asian Earth Sci. 2014, 94, 226–239. [Google Scholar] [CrossRef]
- BGMRIM (Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region). Regional Geology of Inner Mongol Autonomous Region; Geological Publishing House: Beijing, China, 1991. (In Chinese) [Google Scholar]
- Gong, J.H.; Zhang, J.X.; Yu, S.Y.; Li, H.K.; Hou, K.J. Ca. 2.5 Ga TTG rocks in the western Alxa Block and their implications. Chin. Sci. Bull. 2012, 57, 4064–4076, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Gong, J.H.; Zhang, J.X.; Yu, S.Y. Redefinition of the” Longshoushan Group” outcropped in the eastern segment of Longshoushan on the southern margin of Alxa block: Evidence from detrital zircon U-Pb dating results. Acta Petrol. Mineral. 2013, 32, 1–22, (In Chinese with English Abstract). [Google Scholar]
- Geng, Y.S.; Wang, X.S.; Shen, Q.H.; Wu, C.M. Redefinition of the Alxa Group-complex (Precambrian metamorphic basement) in the Alxa area, Inner Mongolia. Geol. China 2006, 33, 138–145. [Google Scholar]
- Geng, Y.S.; Wan, X.S.; Shen, Q.H.; Wu, C.M. Chronology of the Precambrian metamorphic series in the Alxa area, Inner Mongolia. Geol. China 2007, 34, 251–261, (In Chinese with English Abstract). [Google Scholar]
- Xiu, Q.; Yu, H.; Li, Q.; Zuo, G.; Li, J.; Cao, C. Discussion on the petrogenic time of Longshoushan Group, Gansu Province. Acta Geol. Sin. 2004, 78, 366–373, (In Chinese with English Abstract). [Google Scholar]
- Liu, Y. Characteristics and Their Geological Significance of Paleoproterozoic Granite in Jinchuan, Gansu Province. Master’s Thesis, University of Geosciences, Beijing, China, 2008. (In Chinese with English Summary). [Google Scholar]
- Gong, J.; Zhang, J.; Wang, Z.; Yu, S.; Li, H.; Li, Y. Origin of the Alxa Block, western China: New evidence from zircon U–Pb geochronology and Hf isotopes of the Longshoushan Complex. Gondwana Res. 2016, 36, 359–375. [Google Scholar] [CrossRef]
- Liu, J.; Yin, C.; Zhang, J.; Qian, J.; Li, S.; Xu, K.; Wu, S.; Xia, Y. Tectonic evolution of the Alxa Block and its affinity: Evidence from the U-Pb geochronology and Lu-Hf isotopes of detrital zircons from the Longshoushan Belt. Precambrian Res. 2020, 344, 105733. [Google Scholar] [CrossRef]
- Zeng, R.; Lai, J.; Mao, X.; Li, B.; Zhang, J.; Bayless, R.C.; Yang, L. Paleoproterozoic multiple Tectonothermal events in the Longshoushan Area, Western North China Craton and their geological implication: Evidence from geochemistry, Zircon U–Pb geochronology and Hf Isotopes. Minerals 2018, 8, 361. [Google Scholar] [CrossRef]
- Shen, Q.H.; Geng, Y.S.; Wang, X.S.; Wu, C.M. Petrology, geochemistry, formation environment and ages of Precambrian amphibolites in Alxa region. Acta Petrol. Mineral. 2005, 24, 21–31, (In Chinese with English Abstract). [Google Scholar]
- Zhou, H.Y.; Mo, X.X.; Li, J.J.; Li, H.M. The U-Pb isotopic dating age of single zircon from biotite plagioclase gneiss in the Qinggele area, Alashan, western Inner Mongolia. Bull. Mineral. Petrol. Geochem. 2007, 26, 221–223, (In Chinese with English Abstract). [Google Scholar]
- Li, J.J.; Shen, B.F.; Li, H.M.; Zhou, H.Y.; Guo, L.J.; Li, C.Y. Single-zircon U–Pb age of granodioritic gneiss in the Bayan Ul area, western Inner Mongolia. Geol. Bull. China 2004, 23, 1243–1245, (In Chinese with English Abstract). [Google Scholar]
- Bao, C.; Chen, Y.L.; Li, D.P. LA-MC-ICP-MS zircons U-Pb dating and Hf isotopic compositions of the Paleoproterozoic amphibolite in Bayan Ul area, Inner Mongolia. Geol. Bull. China 2013, 32, 1513–1524. [Google Scholar]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Leake, B.E.; Woolley, A.R.; Arps CE, S.; Birch, W.D.; Gilbert, M.C.; Grice, J.D.; Guo, Y.Z. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can. Mineral. 1997, 35, 219–246. [Google Scholar]
- Anderson, E.D.; Moecher, D.P. Omphacite breakdown reactions and relation to eclogite exhumation rates. Contrib. Mineral. Petrol. 2007, 154, 253–277. [Google Scholar] [CrossRef]
- Gayk, T.; Kleinschrodt, R.; Langosch, A.; Seidel, E. Quartz exsolution in clinopyroxene of high-pressure granulite from the Munchberg Massif. Eur. J. Mineral. 1995, 7, 1217–1220. [Google Scholar] [CrossRef]
- Nakano, N.; Osanai, Y.; Owada, M. Multiple breakdown and chemical equilibrium of silicic clinopyroxene under extreme metamorphic conditions in the Kontum Massif, central Vietnam. Am. Mineral. 2007, 92, 1844–1855. [Google Scholar] [CrossRef]
- Page, F.Z.; Essene, E.J.; Mukasa, S.B. Prograde and retrograde history of eclogites from the Eastern Blue Ridge, North Carolina, USA. J. Metamorph. Geol. 2003, 21, 685–698. [Google Scholar] [CrossRef]
- Page, F.Z.; Essene, E.J.; Mukasa, S.B. Quartz exsolution in clinopyroxene is not proof of ultrahigh pressures: Evidence from eclogites from the Eastern Blue Ridge, Southern Appalachians, USA. Am. Mineral. 2005, 90, 1092–1099. [Google Scholar] [CrossRef]
- Proyer, A.; Krenn, K.; Hoinkes, G. Orientated precipitates of quartz and amphibole in clinopyroxene of metabasites from the Greek Rhodope: A product of open system precipitation during eclogite-granulite-amphibolite transition. J. Metamorph. Geol. 2009, 27, 639–654. [Google Scholar] [CrossRef]
- Faryad, S.W.; Fisera, M. Olivine-bearing symplectites in fractured garnet from eclogite Moldanubian zone (Bohemian massif)—A short-lived, granulite facies event. J. Metamorph. Geol. 2015, 33, 597–612. [Google Scholar] [CrossRef]
- De Capitani, C.; Petrakakis, K. The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am. Mineral. 2010, 95, 1006–1016. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 1998, 16, 309–343. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 2011, 29, 333–383. [Google Scholar] [CrossRef]
- Green, E.C.R.; White, R.W.; Diener, J.F.A.; Powell, R.; Holland, T.J.B.; Palin, R.M. Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. J. Metamorph. Geol. 2016, 34, 845–869. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland, T.J.B.; Johnson, T.E.; Green, E.C.R. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J. Metamorph. Geol. 2014, 32, 261–286. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. Activity–composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contrib. Mineral. Petrol. 2003, 145, 492–501. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Clarke, G.L. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: Constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J. Metamorph. Geol. 2002, 20, 41–55. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland TJ, B.; Worley, B.A. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J. Metamorph. Geol. 2000, 18, 497–511. [Google Scholar] [CrossRef]
- Korhonen, F.J.; Brown, M.; Clark, C.; Bhattacharya, S. Osumilite–melt interactions in ultrahigh temperature granulites: Phase equilibria modelling and implications for the P–T–t evolution of the Eastern Ghats Province, India. J. Metamorph. Geol. 2013, 31, 881–907. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Blundy, J.D. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Mineral. Petrol. 1994, 116, 433–447. [Google Scholar]
- Bhadra, S.; Bhattacharya, A. The barometer tremolite + tschermakite + 2 albite = 2 pargasite + 8 quartz: Constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages. Am. Mineral. 2007, 92, 491–502. [Google Scholar] [CrossRef]
- Liao, Y.; Wei, C.J.; Rehman, H.U. Titanium in calcium amphibole: Behavior and thermometry. Am. Mineral. 2021, 106, 180–191. [Google Scholar]
- Ferry, J.M.; Watson, E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 2007, 154, 429–443. [Google Scholar] [CrossRef]
- Gao, X.Y.; Zheng, Y.F. On the Zr-in-rutile and Ti-in-zircon geothermometers. Acta Petrol. Sin. 2011, 27, 417–432, (In Chinese with English Abstract). [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Guevara, V.E.; Caddick, M.J. Shooting at a moving target: Phase equilibria modelling of high-temperature metamorphism. J. Metamorph. Geol. 2016, 34, 209–235. [Google Scholar]
- Palin, R.M.; Weller, O.M.; Waters, D.J.; Dyck, B. Quantifying geological uncertainty in metamorphic phase equilibria modelling: A Monte Carlo assessment and implications for tectonic interpretations. Geosci. Front. 2016, 7, 591–607. [Google Scholar]
- Zhao, G.C.; Cawood, P.A.; Li, S.Z.; Wilde, S.A.; Sun, M.; Zhang, J.; He, Y.H.; Yin, C.Y. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Res. 2012, 222–223, 56–76. [Google Scholar]
- Yin, C.Q.; Zhao, G.C.; Wei, C.J.; Sun, M.; Guo, J.H.; Zhou, X.W. Metamorphism and partial melting of high-pressure pelitic granulites from the Qianlishan Complex: Constraints on the tectonic evolution of the Khondalite Belt in the North China Craton. Precambrian Res. 2014, 242, 172–186. [Google Scholar]
- Santosh, M.; Wilde, S.; Li, J. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: Evidence from SHRIMP U-Pb zircon geochronology. Precambr. Res. 2007, 159, 178–196. [Google Scholar] [CrossRef]
- Gou, L.L.; Zi, J.W.; Dong, Y.P.; Liu, X.M.; Li, Z.H.; Xu, X.F.; Zhang, C.L.; Liu, L.; Long, X.P.; Zhao, Y.H. Timing of two separate granulite-facies metamorphic events in the Helanshan complex, North China Craton: Constraints from monazite and zircon U-Pb dating of pelitic granulites. Lithos 2019, 350–351, 105216. [Google Scholar]
- Jiao, S.J.; Fitzsimons, I.C.W.; Guo, J.H. Paleoproterozoic UHT metamorphism in the Daqingshan Terrane, North China Craton: New constraints from phase equilibria modeling and SIMS U-Pb zircon dating. Precambrian Res. 2017, 303, 208–227. [Google Scholar]
- Zheng, Y.F.; Zhao, G.C. Two styles of plate tectonics in Earth’s history. Sci. Bull. 2020, 65, 329–334. [Google Scholar] [CrossRef]
- Sizova, E.; Gerya, T.; Brown, M. Contrasting styles of Phanerozoic and Precambrian continental collision. Gondwana Res. 2014, 25, 522–545. [Google Scholar]
- Thompson, A.B.; England, P.C. Pressure–temperature–time paths of regional metamorphism II. Their inference and interpretation using mineral assemblages in metamorphic rocks. J. Petrol. 1984, 25, 929–955. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, F.; Gou, L.; Xu, X.; Tian, Z. Metamorphic Ages and PT Conditions of Amphibolites in the Diebusige and Bayanwulashan Complexes of the Alxa Block, North China Craton. Minerals 2023, 13, 1426. https://doi.org/10.3390/min13111426
Zhou F, Gou L, Xu X, Tian Z. Metamorphic Ages and PT Conditions of Amphibolites in the Diebusige and Bayanwulashan Complexes of the Alxa Block, North China Craton. Minerals. 2023; 13(11):1426. https://doi.org/10.3390/min13111426
Chicago/Turabian StyleZhou, Feng, Longlong Gou, Xiaofei Xu, and Zhibo Tian. 2023. "Metamorphic Ages and PT Conditions of Amphibolites in the Diebusige and Bayanwulashan Complexes of the Alxa Block, North China Craton" Minerals 13, no. 11: 1426. https://doi.org/10.3390/min13111426
APA StyleZhou, F., Gou, L., Xu, X., & Tian, Z. (2023). Metamorphic Ages and PT Conditions of Amphibolites in the Diebusige and Bayanwulashan Complexes of the Alxa Block, North China Craton. Minerals, 13(11), 1426. https://doi.org/10.3390/min13111426