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Abstract: The current hardware equipment used to detect the content of each element component in
the rare earth extraction process has a complex structure and high maintenance cost. A modeling
method for the soft measurement of rare earth multi-element component content is proposed to
address this issue. This method uses the Multi-LightVGG multi-tasking learning model and the Multi
Gradient Descent Algorithm based on Optimized Upper Bound (MGDA-OUB) to optimize the model
for each prediction task and find the Pareto optimal solution. After conducting several experiments,
the Multi-LightVGG model loaded with MGDA-OUB has lower MRE, RMSE for Pr, Nd prediction,
and MAX(|error|) for Nd prediction than the Multi-LightVGG model without MGDA-OUB by
0.3778%, 0.5208%, 0.0015, 0.0015, and 0.1985%, respectively; and the MRE and RMSE of the Multi-
LightVGG model for Pr and Nd prediction under the same optimization conditions are lower than
those of Multi-ResNet18 by 0.3297%, 0.5423%, 0.0019, and 0.002, respectively, thus indicating that
MGDA-OUB can effectively solve multiple task-specific Pareto solutions to avoid possible conflicts
between specific tasks, while the Multi-LightVGG model, compared to the Multi-Resnet18 model,
has a backbone network that can effectively capture the abstract representations in the images of the
rare earth-extraction mixed solution, which in turn improves the prediction accuracy of the content
of each elemental component.

Keywords: soft measurement; rare earth; multi-element component; multi-lightVGG

1. Introduction

Rare earths are essential strategic resources that are widely used in the electronics,
high-tech, national defense, and military industries. They are specifically utilized in manu-
facturing new energy vehicles, guided missiles, computers, and other related fields [1–3].
However, rare earth elements share similar physicochemical properties, and their neigh-
boring elements have small separation coefficients [4,5]. As a result, separating rare earth
elements with high purity is challenging. The tandem-stage extraction theory [6–8] has
been proposed to address this issue, which significantly enhances the purity and yield
of separated rare earths. In the rare earth industry, the theory of tandem extraction [9]
guides the establishment of a rare earth tandem extraction separation process. This process
comprises an n-stage extraction section and an m-stage washing section. The treated rare
earth raw material liquid is added from the n-th stage and then separated by stirring with a
motor. The easy-to-extract components are gradually distributed to the organic phase of the
extraction tanks at each stage, while the difficult-to-extract components are gradually de-
posited into the aqueous phase. After the multi-stage extraction tank, the difficult-to-extract
product with the component content of can be obtained from the 1st extraction tank, and
the easy-to-extract product with the component content of can be obtained from the n + m
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extraction tank, as shown in Figure 1. A monitoring point can be set up at the extraction
stage in the above separation process where the component content of the extraction section
and the washing section is sensitive to changes. This monitoring point provides the current
component content value of each element in the extraction tank, which can be used for
theoretical calculations to obtain the theoretical minimum extraction volume and minimum
washing volume required for the separation. This information can then be used to optimize
the extraction process to ensure a high purification of the separated product.
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Rare earth-extraction production sites currently use the offline assay method to de-
termine the component content value of the extraction tank. However, this method has
shortcomings and cannot provide real-time feedback on the effectiveness of extraction
and separation. Existing detection methods, such as X-ray fluorescence analysis and spec-
trophotometry, are not practical due to their complex hardware device structures and high
cost of use and maintenance. Therefore, it is essential to develop a non-contact rare earth
element component content soft measurement method that is simple to operate and has
low monitoring costs.

Current soft-measurement methods can predict the elemental component content of
the extraction tank individually [10–17], but they do not consider possible correlations
between the contents of multiple elemental components. With the rise of deep learning
methods in machine learning, many researchers have used deep learning methods for
image classification in various research fields and achieved excellent results [18–20]. Multi-
task learning methods [21–23] in deep learning methods, on the other hand, allow for the
joint training of multiple tasks, aiming to improve the generalization ability by exploiting
specific features contained in the training signals of the associated tasks. Compared to
single-task learning, multi-task learning has several advantages:

(1) Multiple tasks can share a shared layer network, significantly reducing memory footprint.
(2) Avoiding double-computation of features in the shared-layer network improves the

speed of model training.
(3) If related tasks share complementary information, it has the potential to improve the

overall performance of the model.

There are different methods used for multi-task learning based on multi-task opti-
mization strategies. Gradient normalization, proposed by Chen et al. [24], balances the
gradient and rate of multi-task network training and encourages the network to learn all
tasks at an equal rate. However, the method may not work well when the magnitude
of different tasks varies. Uncertainty weighting, proposed by Kendall et al. [25], uses
the noise parameter σ to balance the weights among specific tasks by acting on the loss
function. In contrast, Désidéri et al. [26] viewed multi-task learning as a multi-objective
optimization problem. They proposed the Multiple Gradient Descent Algorithm (MGDA)
to reduce the value of the loss for any particular task without increasing the value of other
losses. This is achieved by finding the Pareto smoothing point among different tasks. Sener
et al. [27] built on the research of the multiple gradient descent algorithm by proposing the
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multi-objective loss upper bound. This method utilizes the upper-bound-based Multiple
Gradient Descent Algorithm (Multiple Gradient Descent Algorithm—Upper Bound) to
find the Pareto optimal solution among all tasks. It greatly reduces the training iteration
time and achieves similar or even better test performance than the original method through
a single inverse computation process without the need to explicitly specify the task-specific
gradient. Both the multi-task-based model structure and the multi-task-based optimization
strategy can be used together to improve the model’s overall performance.

The work of Zhou et al. [28] and Zhao et al. [29], involved the use of multiple gradient
descent algorithms in their respective research. Zhou et al. proposed an end-to-end license
plate recognition method while Zhao et al. achieved good prediction results in identifying
working conditions in the froth flotation process. Meanwhile, Zhang et al. established a
multi-task learning-based rare earth multi-element component content and concentration
prediction model. In their study, they explored the existence of a commonality between the
component content and concentration of rare earth elements, or between the component
contents. They proposed a multiple gradient descent algorithm based on the optimization
of the upper bound for optimizing the above model, and the experimental results demon-
strated that there is a good commonality between the component contents of the rare earth
elements. However, the previous studies only compared different multi-task optimization
methods and did not innovate the backbone network. Thus, we innovatively propose the
Multi-LightVGG model, based on the previous work, for training and predicting the compo-
nent content values of Pr/Nd. We also used MGDA-OUB to optimize the Multi-LightVGG
model. Our repeated experiments showed that MGDA-OUB can effectively improve the
accuracy of the rare earth multi-element component content prediction model for Pr/Nd
component content. We found that Multi-LightVGG has higher prediction accuracy than
Multi-Resnet18, which provides a new idea for the soft measurement method of rare earth
element component content.

In the Section 2, this paper introduces the basic architecture of the Multi-LightVGG
network and explains the optimization algorithm MGDA-OUB. The Section 3 provides a
detailed description of the process of creating an image dataset of Pr/Nd mixed solution.
The prediction results of the Multi-LightVGG model for the component contents of Pr and
Nd are then compared with those of other multi-tasking models, and the prediction error
evaluation indexes are presented in the form of charts and graphs. Finally, the conclusions
are drawn in the Section 4.

2. Rare Earth Multi-Element Component Content Prediction Model

In this chapter, the basic architecture of the Multi-LightVGG model and the definition
and algorithmic flow of MGDA-OUB are specifically introduced.

2.1. Multi-LightVGG Modeling

Due to the good commonality between the component contents of different rare earth
elements, they can promote each other in multi-task learning model training to improve
the overall prediction accuracy of the model, and the lightweight VGG model [30] is
outstanding in processing the images of mixed rare earth extraction solutions. Therefore,
this paper establishes a multi-task learning model based on lightweight VGG, named Multi-
LightVGG, in which the backbone network is used to extract the abstract representation of
the image to the shared-layer network, and branches out multiple specific network layers
for outputting the component content values of multiple specific elements to be measured.
The specific architecture of the model is shown in Figure 2.

The backbone network of the Multi-LightVGG model is LightVGG, and its specific
network parameters are shown in Table 1, which reduces the input image of the rare earth
mixed extraction solution with a size of 224 × 224 × 3 to a 7 × 7 × 512 digital matrix and
outputs it to its respective task-specific layers, where each task-specific layer establishes a
three-layer fully connected operation in which the number of fully connected hidden nodes
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in the first and second layers is 1024, and the number of fully connected hidden nodes in
the third layer is 121.
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Table 1. Multi-LightVGG backbone network parameters (minus end fully connected layers).

Layers Layer Type Channel Number Filter Size Slide

1 Conv 64 3× 3 1× 1
2 Pool 64 2× 2 2× 1
3 Conv 64 3× 3 1× 1
4 Pool 64 2× 2 2× 1
5 Conv 64 3× 3 1× 1
6 Conv 64 3× 3 1× 1
7 Pool 64 2× 2 2× 1
8 Conv 64 3× 3 1× 1
9 Conv 64 3× 3 1× 1

10 Pool 64 2× 2 2× 1
11 Conv 512 3× 3 1× 1
12 Conv 512 3× 3 1× 1
13 Pool 512 2× 2 2× 1

In particular, in order to obtain a single accurate value of rare earth element component
content, this paper connects the output of the fully connected layer in the forward propaga-
tion process in the task-specific layer network to the Softmax function [31], and uses the
Softmax function to establish a regression model between the outputs of the probabilities
of each category of the task-specific categories and the true values of each category through
the linear regression loss function, and then back-propagates the value of the loss function
to optimize the network parameters. The loss functions commonly used in linear regression
models are L1Loss and L2Loss to compute the mean absolute error MAE (Equation (1)) and
the mean square error MSE (Equation (2)), respectively.

MAE =
∑n

i=1|yi − ŷi|
n

(1)

MSE =
∑n

i=1(yi − ŷi)
2

n
(2)

In the above equations, where yi is the model predicted value, ŷi is the true label value
of the task corresponding to the predicted data point, and n is the number of predicted data
points. Compared to L1Loss, the L2Loss loss function squares the error and exacerbates the
neglect of small errors. Therefore, we adopted L1Loss as the loss function for each model.

2.2. Multi-Objective Optimization Algorithm MGDA-OUB

During the process of training the Multi-LightVGG model for predicting the compo-
nent content of multiple rare earth element fractions, conflicts may occur between multiple
specific tasks, resulting in a situation where the parameters of the shared-layer network
are biased towards one specific task. MGDA-OUB is used to balance the competition
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between tasks by finding the Pareto [32] solution between multiple specific tasks, so that
the shared layer network parameters are not biased towards a specific task, thus improving
the accuracy of prediction for each specific task.

2.2.1. Multi-Objective Optimization Definition

Given that the input space X in the rare earth multi-element component content
prediction problem is the collected rare earth mixed extraction solution images,

{
Y t}

t∈[T]
is the space of the real values of the corresponding component contents in a set of rare
earth mixed extraction solution images, and the data points in the whole rare earth mixed
extraction solution image dataset are

{
xi, y1

i , . . . , yT
i
}

i∈[N], where T is the number of rare
earth element component content tasks to be predicted, N is the number of rare earth mixed
extraction solution image data points, and yt

i is the true value label of the i-th data point
corresponding to the t-th component content prediction task. Further, the parameterization
of each specific task is considered in the multi-task learning model, which is assumed
to be f t

(
x; θsh, θt

)
: X → Y t , where θsh is the shared-layer network parameters and θt is

the task-specific layer network parameters. Then, the empirical minimization formula
for all rare earth multi-element component content prediction tasks can be expressed as
Equation (3):

min
θsh,

θ1, . . . , θT

T

∑
t=1

ctL̂t(θsh, θt) (3)

where ct is the weight calculated for the particular task being measured; L̂t(θsh, θt) is the
empirical loss function for the tth prediction task, which can be specifically defined as:

L̂t(θsh, θt) ,
1
N ∑

i
L( f t

(
xi; θsh, θt

)
, yt

i) (4)

Assuming that there are two sets of parameter solutions θ and θ in Equation (3), the
following problem may arise in the condition that there are two specific tasks, t1 and

t2: L̂t1
(

θsh, θt1
)

< L̂t1
(

θ
sh

, θt1
)

and L̂t2
(

θsh, θt2
)

> L̂t2
(

θ
sh

, θt2
)

, i.e., the parameter

solution θ is more biased towards task t1 while θ is more biased towards task t2. To solve
the problem, in this paper, we consider the learning of multiple prediction tasks together
as a multi-objective optimization problem and look for the Pareto solution that balances
the multiple tasks such that the network parameters are not biased towards any particular
task. Then, the above problem can be transformed into finding the parameter solution of
the following equation:

min
θsh,

θ1, . . . , θT

L(θsh, θ1, . . . , θT) = min
θsh,

θ1, . . . , θT

(L̂1
(

θsh, θ1
)

, . . . , L̂T(θsh, θT)) (5)

Equation (5) consists of a vector L, containing the loss functions corresponding to
the multiple tasks for rare earth element multicomponent content prediction, to seek a
Pareto solution that balances between multiple tasks. The definition of the Pareto solution
between multiple tasks in multi-objective optimization is given below:

Definition 1. For all tasks t with L̂t
(

θsh, θt
)
≤ L̂t

(
θ

sh
, θ

t
)

, ∀t ∈ (1, 2, . . . , T), and

L(θsh, θ1, . . . , θT) 6= L(θsh
, θ

1
, . . . , θ

T
), then the parametric solution θ is said to dominate θ.

Definition 2. A parametric solution θ∗ is said to be Pareto optimal if there exists no parametric
solution θ dominating θ∗.
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2.2.2. Flow of MGDA-OUB

MGDA-OUB is used to seek the Pareto optimal solution in the prediction of rare earth
multi-element component content, and the multi-objective optimization is accomplished
by gradient descent. In the following, multi-objective optimization is implemented us-
ing the Karush–Kuhn–Tucker (KKT) condition, which is also a necessary condition for
multi-objective optimization. The KKT conditions required for the shared layer network
parameters and task-specific layer network parameters in the rare earth multi-element
component content prediction model are expressed as follows:

(1) There exists α1, . . . , αT ≥ 0 with ∑T
t=1 αt = 1 and ∑T

t=1 αt∇θsh L̂t
(

θsh, θt
)
= 0;

(2) For any rare earth element component content prediction task t, ∇θt L̂t
(

θsh, θt
)
= 0.

Any solution that satisfies the above conditions is called a Pareto smooth point, where
the loss function used in this paper’s model in accomplishing the above optimization
conditions is L1Loss, which is mentioned in Section 2.2. Consider again the following
optimization problem:

min
α1,...,αT


∥∥∥∥∥ T

∑
t=1

αt∇θsh L̂t
(

θsh, θt
)∥∥∥∥∥

2

2

∣∣∣∣∣ T

∑
t=1

αt = 1 , αT ≥ 0 ∀t

 (6)

Désidéri et al. showed that the solution to this optimization problem satisfies the KKT
condition when the solution is 0; otherwise, the solution gives a descending direction that
optimizes the task of predicting the content of all rare earth element components. However,
the algorithm described in this problem requires the computation of∇θsh L̂t

(
θsh, θt

)
, which

requires backpropagation of the shared-layer network parameters associated with each
specific task, and thus the gradient computation for each specific task needs to be obtained
in T backpropagations before forward propagation.

In this regard, this paper proposes a multiple gradient descent algorithm based on
optimized upper bounds, which, unlike the multiple gradient descent algorithm, optimizes
the objective upper bounds and obtains all task-specific gradients in forward propagation
with only one backpropagation. Optimizing the upper bound requires combining a shared
representation function with a task-specific decision function, which can be defined by
defining the hypothesis class constraint as the following equation:

f t
(

x; θsh, θt
)
=
(

f t(·; θt) ◦ g
(
·; θsh

))
(x) = f t(g

(
x; θsh

)
; θt) (7)

where g is the representation function shared by all tasks and f t is the task-specific func-
tion that takes this representation as input. If this representation function is expressed as
Z = (Z1, . . . , ZN), where Zi = g

(
xi; θsh

)
, the upper bound can be expressed as the follow-

ing equation, which is a direct result of the chain rule:∥∥∥∥∥ T

∑
t=1

αt∇θsh L̂t
(

θsh, θt
)∥∥∥∥∥

2

2

≤
∥∥∥∥ ∂Z

∂θsh

∥∥∥∥2

2

∥∥∥∥∥ T

∑
t=1

αt∇ZL̂t
(

θsh, θt
)∥∥∥∥∥

2

2

(8)

where
∥∥∥ ∂Z

∂θsh

∥∥∥2

2
is the Jacobi matrix paradigm for Z equivalent to θsh. The two ideal properties

of this upper bound are:

(1) ∇ZL̂t
(

θsh, θt
)

can compute all task-specific gradients in a single backpropagation;

(2)
∥∥∥ ∂Z

∂θsh

∥∥∥2

2
is not an equation with respect to αˆ1, . . ., αˆT and, hence, can be removed

when it is used as an optimization objective.
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In order to obtain the approximate optimization solution, considering the above two

ideal properties, the
∥∥∥∑T

t=1 αt∇θsh L̂t
(

θsh, θt
)∥∥∥2

2
in Equation (6) can be replaced by the

upper bound in Equation (8), and the term
∥∥∥ ∂Z

∂θsh

∥∥∥2

2
is deleted, and then the multi-tasking

optimization can be transformed into the solving of the following equation:

min
α1,...,αT


∥∥∥∥∥ T

∑
t=1

αt∇ZL̂t
(

θsh, θt
)∥∥∥∥∥

2

2

∣∣∣∣∣ T

∑
t=1

αt = 1 , αT ≥ 0 ∀t

 (9)

The algorithm for solving this equation is then called the multiple gradient descent
algorithm based on the optimization upper bound, and Sener proposes that one of the
following two conditions can be satisfied when ∂Z

∂θsh is of full rank and α1, . . . , αT is a solution
to Equation (9):

(1) ∑T
t=1 αt∇θsh L̂t

(
θsh, θt

)
= 0 and the current multitask learning model parameter is

Pareto smooth;
(2) ∑T

t=1 αt∇θsh L̂t
(

θsh, θt
)

is the direction of descent for all target tasks;

Then, the algorithm finds a Pareto smooth point with negligible computational overhead.
Equation (9) belongs to the class of convex quadratic problems with linear constraints,

and solving this optimization problem is equivalent to finding the minimum number of
paradigm points in the convex package of the input point set. We first consider the case
based on solving two tasks, the optimization problem can be defined as:

minα∈[0,1]

∥∥∥α∇ZL̂1
(

θsh, θ1
)
+ (1− α)∇ZL̂2

(
θsh, θ2

)∥∥∥2

2
(10)

This is a one-dimensional quadratic function with an analytic solution with respect to
α. In the following, we simplify ∇ZL̂1

(
θsh, θ1

)
to θ and ∇ZL̂2

(
θsh, θ2

)
to θ, and then the

derivation of Equation (10) is solved for the solution of Equation (11) below.

α =


0 , θTθ ≥ θ

T
θ

1 , θTθ ≥ θTθ(
θ − θ

)T
θ/
∥∥θ − θ

∥∥2
2 , θTθ < θ

T
θandθTθ < θTθ

(11)

Although Equation (11) is only applicable to the solution of two tasks, in this paper, we
will use the Frank–Wolfe algorithm proposed by Jaggi et al. [33] to use Equation (10) as a
sub-process of the linear search to solve the constrained optimization problem for two and
more tasks. The flow of the Frank–Wolfe algorithm is shown in Algorithm 1. The obtained
α1, . . . , αT is the solution of the multiple gradient descent algorithm based on the upper
bound of optimization, through which the descent direction of all specific tasks can be
optimized to find the Pareto optimum of the multi-objective of rare earth multi-elemental
component content prediction.
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Algorithm 1 FrankWolfeSolver

1: Procedure FankWolfeSolver
2: Initialize α =

(
α1, . . . , αT) = ( 1

T , . . . 1
T )

3: Precompute M st. Mi,j=
(
∇ZL̂i

(
θsh, θi

))T(
∇ZL̂i

(
θsh, θ j

))
4: repeat
5: t̂ = argminγ∑t αt Mγt
6: γ̂ = argminγ((1− γ)α + γet̂)

T M((1− γ)α + γet̂)
7: α = (1− γ̂)α + γ̂et̂
8: until γ̂ ∼ 0 or Number of Iterations Limit
9: return α1, . . . , αT

10: end procedure

2.2.3. Prediction Flow of Rare Earth Multi-Element Component Content Based
on MGDA-OUB

In the optimization process of multiple objectives for rare earth multi-element compo-
nent content prediction, this paper adopts the multiple gradient descent algorithm based
on the optimization upper bound to solve the gradient of each specific task in the model
training, which optimizes the multi-objective upper bound, so that all the task-specific
gradients can be obtained during forward propagation after only one back propagation.
Thereafter, the gradients of each specific task are substituted into the Frank–Wolfe algorithm
to find the multi-objective optimization solution, and the Pareto smooth points of multiple
tasks regarding the prediction of rare earth multi-element component content are obtained
to realize the multi-objective optimization. The detailed steps are described as follows:

Input: Input the standardized preprocessed images of rare earth mixed extraction
solution into the Multi-LightVGG model, and load the image samples corresponding to the
real label values. Initialize the shared-layer network parameters θsh and the task-specific
layer network parameters θt; set the loss function, maximum number of iterations, batch
size, optimizer, and learning rate η to solve the multi-objective optimization problem in the
shared-layer network.

Output: Predicted values of the content of each rare earth element component to be
measured are output at each specific task level.

Step 1: Initialize the multi-objective optimization upper bound ∇ZL̂t
(

θsh, θt
)

accord-
ing to Equation (9);

Step 2: Find the gradient ∇θt L̂t
(

θsh, θt
)

, (tεT) for each particular task under the
optimization upper bound;

Step 3: Substitute all task-specific gradients into the Frank–Wolfe algorithm for a
multi-objective optimization solution to obtain Pareto smooth points α1, . . . , αT for multiple
tasks regarding the prediction of rare earth multi-elemental component content;

Step 4: Update the shared layer network parameters θsh = θsh− η∑T
t=1 αt∇θsh L̂t

(
θsh, θt

)
using α1, . . . , αT ;

Step 5: Update the task-specific layer network parameters θt = θt − η∇θt L̂t
(

θsh, θt
)

,
(tεT) to optimize the descent direction for all specific tasks;

Step 6: Determine whether the maximum number of iterations is reached, if yes, go to
step 7, otherwise return to step 1;

Step 7: According to the optimized shared layer network parameters θsh and specific
layer network parameters θt, (tεT), the content of each elemental component in the image
of the mixed rare earth extraction solution to be detected is predicted.

The above steps are shown in Figure 3 below.
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3. Analog Simulation Experiment
3.1. Datasets

In this paper, the multi-elemental content prediction of rare earths based on the Multi-
LightVGG model is simulated with the mixed extraction solution of Pr (apple green) and Nd
(violet-red), which are two kinds of elements with ionic color characteristics, for example,
and the mixed extraction solution of Pr/Nd is obtained through the following ways:

(1) Measurement of the component content of the original solution: 1 L of 1.8275 mol/L
PrCL3 and 1 L of 2.063 mol/L NdCL3 were purchased from a rare earth company
in Ganzhou City, Jiangxi Province, China, with a purity of 99.9%, and the rare earth
concentrations and compositions were provided by China National Center for Super-
vision and Inspection of Tungsten and Rare Earth Product Quality.

(2) Solution dilution: the concentrations of the original solution of the two elements were
diluted into to 11 different concentrations of 0.01 mol/L to 0.50 mol/L each with good
light transmission of the pure solutions of rare earth extraction.

(3) Solution mixing: 50 mL of each of the two rare earth element solutions with different
concentrations were mixed with each other to obtain a total of 121 groups of Pr/Nd
mixed extraction solutions with different component contents and concentrations.

From the above steps, 121 groups of rare earth mixed extraction solutions were ob-
tained with the content of each elemental component of Pr/Nd varying from 1.96% to
98.04% and the concentration varying from 0.005 mol/L to 0.25 mol/L. The rare earth
mixed extraction solutions with different component content and concentration of each
component were poured into a collection dish and sealed for storage, and some of the image
examples are shown in Figure 4. As the laboratory-prepared rare earth mixed extraction
solution has the actual characteristics of presenting certain reflectivity and refractivity to
the light, the light transmittance is better, which meets the optical imaging conditions of the
soft measurement of the component content of rare earth elements based on the machine
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vision experiment. At the same time, the “ion color band” formed in the container filled
with the rare earth mixture solution provides a feasible way to adopt fast, accurate, and
continuously detectable image recognition technology.
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Figure 4. Images of some mixed solutions of Pr/Nd with different component contents and concentrations.

The experimental images were acquired by pouring the rare earth mixed extraction
solution into a quartz container with a length, width, and height of 150 × 5 × 170 mm until
the solution filled the container. The container was then placed in a 60 CM studio. In the
studio, two LED light sources were set up, with an output voltage of 24 V, power of 48 W,
and maximum lumen of 15,000 LM; the background was pure white; the image acquisition
equipment was a NIKON D700 camera; and the final image was captured as a JPG image
with a resolution of 4256 × 2832.

Since the Pr/Nd mixed extraction solution images obtained contain non-solution
parts outside the edge of the quartz container and uneven color parts inside the edge,
the color-filled parts of the captured images were cropped, and 10 pictures were cropped
in the order of top-to-bottom and left-to-right for each group of solution images, and a
total of 1210 images of rare earth mixed extraction solutions with uniform colors were
obtained. The images of the rare earth mixed extraction solutions were categorized into
121 categories according to the component content and concentration of each element of
Pr and Nd, and each category was labeled with the real label values of the component
content and concentration of Pr and Nd, respectively. Then, 70% of them were divided
into a training set, 20% into a validation set, and 10% into a test set, which was prepared
into a complete dataset to be used for the multi-element component content of rare earth
multi-element extraction solution modeling based on the Multi-LightVGG model for rare
earth multi-element component content prediction.

3.2. Comparative Experiments

In order to verify the effectiveness of the multi-objective optimization algorithm
MGDA-OUB and the multi-task learning model with LightVGG as the backbone network
proposed in this paper, firstly, the Multi-LightVGG model loaded with and unloaded with
MGDA-OUB was compared, which was used to validate the effectiveness of MGDA-OUB.
Thereafter, the multi-task learning models with LightVGG and ResNet18 as the backbone
network were both loaded with MGDA-OUB and compared to validate the superiority of
the Multi-LightVGG model proposed in this paper for the soft measurements of the content
of rare earth multi-element components.

In order to carry out the above comparison experiments, this paper randomly selected
10 images of the test set of mixed rare earth extraction solutions, and used the above model
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to predict the Pr and Nd component content values of each of the 10 image samples, then
compared the predicted values with the real values of MRE (mean relative error), RMSE
(root mean square error), and MAX(|error|) (the maximum absolute value of relative
error) as evaluation indexes to compare the models. The above formulae are shown in
Equations (12)–(14):

MRE =
1
n

n

∑
i=1

(
|yi − ŷi|

ŷi

)
, (i = 1, 2, . . . n) (12)

RMSE =

√
1
n
×

n

∑
i=1

(yi − ŷi)
2 (13)

MAX(|error|) = max
∣∣∣∣yi − ŷi

ŷi

∣∣∣∣ (14)

where yi is the model predicted value, ŷi is the true label value of the task corresponding to
the predicted data point, and n is the number of predicted data points.

Uniform hyperparameters were used in the training process of each model, and the
specific settings are shown in Table 2. All model training and prediction experiments were
realized in the following experimental environments: the hardware environment was the
Windows 10 operating system, CPU Intel Core i7-12700F (12 cores), and GPU RTX3080
(with 10 G of RAM); and the software environment was the PyChram used on the PyTorch
deep learning framework.

Table 2. Hyperparameters during training of each model.

Main Parameters Parameter Settings

Number of Iterations 300
Batch Size 32
Optimizer Adam

Learning Rate Initially 1 × 10−3, halved every 30 iterations

The Multi-LightVGG models loaded and unloaded with MGDA-OUB were first com-
pared and the experimental results are shown by Figure 5 and Table 3.

Table 3. Error evaluation index values for Pr and Nd prediction by the Multi-LightVGG model
loaded and unloaded with MGDA-OUB.

Name of the Model
MRE/% RMSE MAX(|Error|)/%

Pr Nd Pr Nd Pr Nd

Unloaded
MGDA-OUB 1.8656 2.1729 0.0104 0.0105 3.0300 4.8249

Load MGDA-OUB 1.4878 1.6521 0.0089 0.0090 3.4287 4.6264

From Figure 5 and Table 3, it can be seen that the Multi-LightVGG model loaded with
MGDA-OUB has a lower MRE, RMSE for Pr, Nd prediction, and MAX(|error|) for Nd
prediction than the Multi-LightVGG model without MGDA-OUB by 0.3778%, 0.5208%,
0.0015, 0.0015 and 0.1985%, respectively, which proves that MGDA-OUB can optimize the
Multi-task Learning. This proves that MGDA-OUB can effectively optimize the multi-task
learning model to seek Pareto solutions for multiple specific tasks, thus avoiding possible
conflicts between specific tasks, and improving the prediction accuracy of each specific
task in multi-task joint training. In the following, Multi-ResNet18 and Multi-LightVGG,
both loaded with MGDA-OUB, were compared, and the experimental results are shown in
Figure 6 and Table 4.
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Figure 5. Absolute values of relative errors of the Multi-LightVGG model loaded and unloaded with
MGDA-OUB for the prediction of the elemental component contents of Pr and Nd for 10 samples of
the test set.

Table 4. Error evaluation index values for Pr and Nd prediction by Multi-ResNet18 and Multi-
LightVGG models.

Name of the Model
MRE/% RMSE MAX(|Error|)/%

Pr Nd Pr Nd Pr Nd

Multi-ResNet18 1.8175 2.1944 0.0108 0.0110 3.2346 4.2536
Multi-LightVGG 1.4878 1.6521 0.0089 0.0090 3.4287 4.6264

As can be seen from Figure 6 and Table 4, the MRE and RMSE of Pr and Nd predicted
by the Multi-LightVGG model under the same optimization conditions were 0.3297%,
0.5423%, 0.0019, and 0.002 lower than that of Multi-ResNet18, respectively, while the slightly
higher MAX(|error|) of the Multi-LightVGG model than that of the Multi-ResNet18
model was due to the poor prediction results of very few samples. This suggests that
the Multi-LightVGG model can effectively improve the prediction accuracy for each rare
earth element, wherein the backbone network LightVGG is more capable of adequately
capturing abstract representations in the images of the extracted rare earth mixed solutions
compared to ResNet18. Therefore, the Multi-LightVGG model loaded with MGDA-OUB is
more suitable for the soft measurement of rare earth element component contents than the
above model.
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Figure 6. Absolute values of the relative errors of the Multi-LightVGG model loaded with MGDA-
OUB and the Multi-ResNet18 model for the prediction of the elemental component contents of Pr
and Nd for 10 samples of the test set.

The MAX(|error|) of all the above models for rare earth multi-element component
content prediction is within ±5%, which is within the maximum relative error of the rare
earth extraction process for elemental component content prediction [34], meeting the
requirements of actual extraction production.

4. Conclusions

We have developed a soft measurement method that can accurately and easily detect
the component contents of multiple rare earth elements. This is in response to the current
issue in the rare earth extraction process, where detecting the component contents of each
element requires complex and expensive hardware equipment. Our method involves
collecting images of mixed Pr/Nd extraction solutions, building a dataset, and constructing
the Multi-LightVGG model based on the color characteristics of Pr and Nd elements.
Additionally, we optimized the multi-task learning model through MGDA-OUB. After
conducting multiple sets of experiments, we have reached the following conclusions:

The Multi-LightVGG model loaded with MGDA-OUB has a lower MRE, RMSE for Pr,
Nd prediction, and MAX(|error|) for Nd prediction than the Multi-LightVGG model with-
out MGDA-OUB by 0.3778%, 0.5208%, 0.0015, 0.0015 and 0.1985%, respectively, indicating
that MGDA-OUB can effectively find Pareto solutions for multiple specific tasks and avoid
possible conflicts between specific tasks, so as to optimize the rare earth multi-element
component content prediction model and improve the prediction accuracy of the model for
each elemental component content. The MRE and RMSE of the Multi-LightVGG model
for the respective prediction of Pr and Nd under the same optimization conditions are
0.3297%, 0.5423%, 0.0019, and 0.002 lower than that of Multi-ResNet18, respectively, which
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indicates that the Multi-LightVGG model is better than the Multi-Resnet18 model in terms
of the backbone network being able to effectively capture the abstract representations in
the images of rare earth extraction mixed solutions. This in turn improves the prediction
accuracy of the content of each elemental component.

Our proposed method has practical impacts on the extraction process of rare earths as
it meets the accuracy for predicting the component content of each rare earth element. It
provides a new way of thinking about the soft measurement of the component content of
rare earth elements.
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