Provenance of Volcanogenic Deposits from the Shanxi Formation of the Daniudi Gas Field, Ordos Basin, and Its Tectonic Implications
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
4. Results
4.1. Petrological Characteristics
4.2. Volcanogenic Components
4.2.1. Quartz
4.2.2. Lava Fragments
4.2.3. Tuff Fragments
4.2.4. Tuffaceous Matrix
4.2.5. Volcanic Ash Layers
4.3. Trace Elements
4.4. Rare Earth Elements
5. Discussion
5.1. Contradiction between the Main Provenance of Shanxi Formation and Those Volcanogenic Components
5.2. Provenance and Transportation of the Volcanogenic Components in the Shanxi Formation
5.2.1. Tectonic Framework and Sediment Routing System
5.2.2. Provenance of the Volcanogenic Components
5.2.3. Transportation of the Volcanogenic Components
5.3. Tectonic Implications of High Content Volcanogenic Components in the Shanxi Formation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Z.; He, S.; Zou, C.N.; Li, Q.Y.; Chen, Z.Y. Coupling relationship between reservoir diagenesis and natural gas accumulation of Daniudi Gas Field in North Ordos Basin. Acta Pet. Sin. 2010, 31, 373–378, 385. [Google Scholar]
- Wang, Z.; Zheng, M. Potash-forming regularity of the Ordovician marine northern Shaanxi salt basin: Insight from review and prospect of the deep geology of the Ordos basin. Acta Geol. Sin. 2018, 92, 1627–1644. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhao, Y.; Song, B.; Yang, Z.Y.; Hu, J.M.; Wu, H. Carboniferous granitic plutons from the northern margin of the North China block: Implications for a late Paleozoic active continental margin. J. Geol. Soc. 2007, 164, 451–463. [Google Scholar] [CrossRef]
- Li, Z.H.; Qu, H.J.; Gong, W.B. Late Mesozoic basin development and tectonic setting of the northern North China Craton. J. Asian Earth Sci. 2015, 114, 115–139. [Google Scholar] [CrossRef]
- Sengör, A.M.C.; Natal’in, B.A. Turkic-type orogeny and its role in the making of the continental crust. Annu. Rev. Earth Planet. Sci. 1996, 24, 263–337. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef]
- Jahn, B.; Brian, W.; Boris, N.; Nick, D. Phanerozoic continental growth in central Asia—Preface. J. Asian Earth Sci. 2004, 23, 599–603. [Google Scholar] [CrossRef]
- Guo, F.; Fan, W.M.; Miao, L.C.; Zhao, L. Early Paleozoic subduction of the Paleo-Asian Ocean: Geochronological and geochemical evidence from the Dashizhai basalts, Inner Mongolia. Sci. China (Ser. D Earth Sci.) 2009, 52, 940–951. [Google Scholar] [CrossRef]
- Liu, R.E.; Huang, Y.M.; Wei, X.F.; Sun, F.J.; Lin, J. Analysis of provenance of Late Paleozoic in the Northern Ordos Basin and its geological significance. J. Mineral. Petrol. 2003, 23, 82–86. [Google Scholar]
- Chen, A.Q.; Chen, H.D.; Xiang, F.; Liu, W.J.; Hou, Z.J.; Shang, Y.Z.; Ye, L.M.; Li, H. Sandstone characteristic and provenance analysis of the Permian Shanxi Formation-Shangshihezi Formation in the northeast of Ordos Basin, China. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2007, 34, 305–311. [Google Scholar]
- Chen, Q.H.; Li, W.H.; Liu, H.W.; Li, K.Y.; Pang, J.G.; Guo, Y.Q.; Yuan, Z. Provenance analysis of sandstone of the Upper Carboniferous to Middle Permian in Ordos Basin. J. Palaeogeogr. 2009, 11, 629–640. [Google Scholar]
- Chen, Q.H.; Li, W.H.; Hu, X.L.; Li, K.Y.; Pang, J.G.; Guo, Y.Q. Tectonic setting and provenance analysis of Late Paleozoic sedimentary rocks in the Ordos Basin. Acta Geol. Sin. 2012, 86, 1150–1612. [Google Scholar]
- Qu, H.J.; Han, X.; Chen, S.; Yang, B.; Du, M.Y.; Dong, Y.Y.; Zhao, C. U-Pb Dating of Detrital Zircon from the Upper Paleozoic Clastic Rocks and Basin-mountain Coupling of the Northeastern Ordos Basin. Geotecton. Metallog. 2020, 44, 501–513. [Google Scholar]
- Dickinson, W.R.; Beard, S.; Brakenridge, R.; Erjavec, J.L.; Ferguson, R.C.; Inman, K.F.; Knepp, R.A.; Lindberg, A.; Ryberg, P.T. Provenance of North American Phanerozoic sandstones in relation to tectonic settings. Geol. Soc. Am. Bull. 1983, 94, 222–235. [Google Scholar] [CrossRef]
- Schieber, J.A. Combined petrographical-geochemical provenance study of the Newland Formation, mid-Proterozoic of Montana. Geol. Mag. 1992, 129, 223–237. [Google Scholar] [CrossRef]
- McCann, T. Sandstone composition and provenance of the Rotliegend of the NE German Basin. Sediment. Geol. 1998, 116, 177–198. [Google Scholar] [CrossRef]
- Condie, K.C.; Lee, D.; Farmer, L. Tectonic setting and provenance of the Neoproterozoic Uinta Mountain and Big Cottonwood groups, northern Utah: Constraints from geochemistry, Nd isotopes, and detrital modes. Sediment. Geol. 2001, 141–142, 443–464. [Google Scholar] [CrossRef]
- Arribas, J.; Alonso, A.; Mas, R.; Tortosa, A.; Rodas, M.; Barrenechea, J.; Alonso-Azcárate, J.; Artigas, R. Sandstone petrography of continental depositional sequences of an intraplate rift basin: Western Cameros Basin (North Spain). J. Sediment. Res. 2003, 73, 309–327. [Google Scholar] [CrossRef]
- Osae, S.; Asiedu, D.K.; Banoeng-Yakubo, B.; Koeberl, C.; Dampare, S.B. Provenance and tectonic setting of late Proterozoic Buem sandstones of southeastern Ghana: Evidence from geochemistry and detrital modes. J. Afr. Earth Sci. 2006, 44, 85–96. [Google Scholar] [CrossRef]
- Ciccioli, P.L.; Limarino, C.O.; Isbell, J.L.; Taboada, A.C.; Pagani, M.A.; Gulbranson, E.L. Interpreting detrital modes and geochemistry of sandstones from the late Paleozoic Tepuel-Genoa Basin: Paleogeographic implications (Patagonia, Argentina). J. S. Am. Earth Sci. 2020, 104, 102858. [Google Scholar] [CrossRef]
- Darby, B.J.; Ritts, B.D. Mesozoic contractional deformation in the middle of the Asian tectonic collage: The intraplate Western Ordos fold-thrust belt, China. Earth Planet Sci. Lett. 2002, 205, 13–24. [Google Scholar] [CrossRef]
- Xu, N.N.; Qiu, L.W.; Eriksson, K.A.; Klyukin, Y.I.; Wang, Y.; Yang, Y.Q. Influence of detrital composition on the diagenetic history of tight sandstones with implications for reservoir quality: Examples from the Permian Xiashihezi Formation and Carboniferous Taiyuan Formation, Daniudi gas field, Ordos Basin, China. Mar. Pet. Geol. 2017, 88, 756–784. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Ma, L. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos basin: A multicycle cratonic basin in central China. AAPG Bull. 2005, 89, 255–269. [Google Scholar] [CrossRef]
- Shen, B.H.; Shen, S.W.; Wu, Q.; Zhang, S.C.; Zhang, B.; Wang, X.D.; Hou, Z.S.; Yuan, D.X.; Zhang, Y.C.; Liu, F.; et al. Carboniferous and Permian integrative stratigraphy and timescale of North China Block. Sci. China (Earth Sci.) 2022, 65, 983–1011. [Google Scholar] [CrossRef]
- Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. The ICS International Chronostratigraphic Chart. Episodes 2023, 36, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.X.; Li, W.H.; Feng, J.P.; Zeng, M.; Bu, Y. Analysis of sedimentary source of reservoir in Daniudi Gas Field in Ordos Basin. Acta Mineral. Sin. 2010, 30, 389–397. [Google Scholar]
- Shang, G.X. An outline of basining structures of North China Late Palaeozoic coal accumulation basin. Coal Geol. China 1995, 30, 17, 1-6. [Google Scholar]
- Zhou, A.C. The Evolution of Late Paleozoic Basins in North Margin of North China Block and the Coupling Relationship between Basin and Range; Northwestern University: Xi’an, China, 2000. [Google Scholar]
- Shao, J.A.; Tang, K.D.; He, G.Q. Early Permian tectono-palaeogeographic reconstruction of Inner Mongolia, China. Acta Petrol. Sin. 2014, 7, 1858–1866. [Google Scholar]
- Chen, B.; Jahn, B.M.; Tian, W. Evolution of the Solonker suture zone: Constraints from zircon U–Pb ages, Hf isotopic ratios and whole-rock Nd–Sr isotope compositions of subduction- and collision-related magmas and forearc sediments. J. Asian Earth Sci. 2009, 34, 245–257. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhai, M.G.; Chen, H.; Zhang, S.H. Paleozoic-Early Jurassic tectonic evolution of North China Craton and its adjacent orogenic belts. Geol. China 2017, 44, 44–60. [Google Scholar]
- Chen, A.Q.; Zhou, H.; Ogg, J.G.; Yang, S.; Hou, M.C.; Jiang, X.W.; Xu, S.L.; Zhang, X.X. Source-to-sink of Late carboniferous Ordos Basin: Constraints on crustal accretion margins converting to orogenic belts bounding the North China Block. Geosci. Front. 2020, 11, 2031–2052. [Google Scholar] [CrossRef]
- Xu, B.; Chen, B. The structure and evolution of Paleozoic -Mesozoic orogenic belt between North China Plate and Siberian Platein northern Inner Mongolia. Sci. China (Ser. D) 1997, 27, 227–232. [Google Scholar]
- Shao, J.A.; Tian, W.; Tang, K.D. Petrogenesis and tectonic settings of the Late Carboniferous high Mg basalts of Inner Mongolia. Earth Sci. Front. 2015, 22, 171–181. [Google Scholar]
- Zhu, J.B.; Ren, J.S. Carboniferous-Permian Stratigraphy and Sedimentary Environment of Southeastern Inner Mongolia, China: Constraints on Final Closure of the Paleo-Asian Ocean. Acta Geol. Sin. 2017, 91, 832–856. [Google Scholar] [CrossRef]
- Tong, Y. Giant late Carboniferous-early Permian alkaline granite belt along the China and Mongolia Border and its implication for the evolution of the CAOB. Geophys. Res. Abstr. 2019, 21, 1. [Google Scholar]
- Sengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Hao, J.; Zai, N.G. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the Central Asian orogenic belt. Tectonics 2003, 22, 1069–1089. [Google Scholar] [CrossRef]
- Li, J.Y.; Wang, K.Z.; Sun, G.H.; Mo, S.G.; Li, W.Q.; Yang, T.N.; Gao, L.M. Paleozoic active margin slices in the southern Turfan-Hami basin: Geological records of subduction of the Paleo-Asian Ocean plate in central Asian regions. Acta Petrol. Sin. 2006, 22, 1087–1102. [Google Scholar]
- Meng, Q.P.; He, Y.K.; Zhang, W.; Wu, T.R.; Zheng, R.G.; Xu, C.; Zhang, Z.Y. Time constraints on the closure of the Paleo-Asian Ocean on the northern margin of North China Craton: Evidence from Xihouhaozisyn-collisional granites in Siziwang Qi area. Geol. Bull. China 2013, 32, 1749–1759. [Google Scholar]
- Yi, X.C.; Ye, G.F.; Jin, S.; Wei, W.B. Constraints on the process and mode of the Paleo-Asian Ocean closure from the lithospheric conductivity structure of the south-eastern Central Asian Orogenic Belt. Tectonophysics 2022, 838, 229485. [Google Scholar] [CrossRef]
- Dai, J.X.; Li, J.; Luo, X.; Zhang, W.; Hu, G.; Ma, C.; Guo, J.; Ge, S. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin, China. Org. Geochem. 2005, 36, 1617–1635. [Google Scholar] [CrossRef]
- Yuan, Z.X. On Upper Paleozoic Subtle Gas Pools in Tabamiao District; Chengdu University of Technology: Chengdu, China, 2005. [Google Scholar]
- Hou, Z.S.; Chen, S.Y.; Liang, Z. Sedimentary features and sequence stratigraphy of the successions around the Carboniferous-Permian boundary in the Ordos Basin: Links to glacial and volcanic impacts. J. Palaeogeogr. 2023, 12, 358–383. [Google Scholar] [CrossRef]
- Li, R.X.; Li, Y.Z. Tectonic evolution of the western margin of the Ordos Basin (Central China). Russ. Geol. Geophys. 2008, 49, 23–27. [Google Scholar]
- Li, Y.; Tang, D.Z.; Wu, P.; Niu, X.L.; Wang, K.; Qiao, P. Continuous unconventional natural gas accumulations of Carboniferous-Permian coal-bearing strata in the Linxing area, northeastern Ordos basin, China. J. Nat. Gas Sci. Eng. 2016, 36, 314–327. [Google Scholar] [CrossRef]
- Yang, M.H.; Liu, C.Y.; Lan, C.L.; Liu, L.; Li, X.; Zhang, K.S. Late Carboniferous-Early Permian sequence stratigraphy and depositional evolution in the Northeast Ordos Basin, North China. Acta Geol. Sin. (Engl. Ed.) 2010, 84, 1220–1228. [Google Scholar]
- Wang, M.J.; He, D.F.; Bao, H.P.; Lu, R.Q.; Gui, B.L. Upper Palaeozoic gas accumulations of the Yimeng uplift, Ordos Basin. Pet. Explor. Dev. 2011, 38, 30–39. [Google Scholar]
- Changqing Oil Field Petroleum Geology Editorial Committee. Petroleum Geology of China (Vol. 12) Changqing Oil Field; Petroleum Industry Press: Beijing, China, 1992. [Google Scholar]
- Li, P.W.; Gao, R.; Guan, Y.; Li, Q.S. The Closure Time of the Paleo-Asian Ocean and the Paleo-Tethys Ocean: Implication for the Tectonic Cause of the End-Permian Mass Extinction. J. Jilin Univ. (Earth Sci. Ed.) 2009, 39, 521–527. [Google Scholar]
- Wilhem, C.; Windley, B.F.; Stampfli, G.M. The Altaids of Central Asia: A tectonic and evolutionary innovative review. Earth-Sci. Rev. 2012, 113, 303–341. [Google Scholar] [CrossRef]
- Li, J.Y.; Zhang, J.; Yang, T.N.; Li, Y.P.; Sun, G.H.; Zhu, Z.X.; Wang, L.J. Crustal tectonic division and evolution of the southern part of the North Asian Orogenic Region and its adjacent areas. J. Jilin Univ. (Earth Sci. Ed.) 2009, 39, 584–605. [Google Scholar]
- Zhang, S.H.; Zhao, Y.; Ye, H.; Liu, J.M.; Hu, Z.C. Origin and evolution of the Bainaimiao arc belt: Implications for crustal growth in the southern Central Asian orogenic belt. Geol. Soc. Am. Bull. 2014, 126, 1275–1300. [Google Scholar] [CrossRef]
- Ma, S.X.; Meng, Q.R.; Qu, Y.Q. A study of detrital zircons of Late Carboniferous-Middle Triassic strata in the northern margin of North China block and its geological implication. Geol. Bull. China 2011, 30, 1485–1500. [Google Scholar]
- Zhao, Y.; Chen, B.; Zhang, S.H.; Liu, J.M.; Hu, J.M.; Liu, J.; Fei, J.L. Pre-Yanshanian geological events in the northern margin of the North China Craton and its adjacent areas. Geol. China 2010, 37, 900–915. [Google Scholar]
- Ma, Q.L.; Xu, X.R.; Du, Y.S. Zircon U-Pb Chronology and Provenance of the Sanhao Conglomerate in Zhoukoudian, Beijing: Implications for Coeval Paleogeography. Geol. Sci. Info. Technol. Info. 2017, 36, 29–35. [Google Scholar]
- Liu, J.; Zhao, Y.; Liu, A.; Zhang, S.; Yang, Z.; Zhou, S. Origin of Late Palaeozoic bauxites in the North China Craton: Constraints from zircon U–Pb geochronology and in situ Hf isotopes. J. Geol. Soc. 2014, 171, 695–707. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhao, Y.; Liu, J.M.; Hu, Z.C. Different sources involved in generation of continental arc volcanism: The Carboniferous–Permian volcanic rocks in the northern margin of the North China block. Lithos 2016, 240, 382–401. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhao, Y.; Song, B. Hornblende thermobarometry of the Carboniferous granitoids from the Inner Mongolia Paleo-uplift: Implications for the tectonic evolution of the northern margin of North China block. Mineral. Petrol. 2006, 87, 123–141. [Google Scholar] [CrossRef]
- Cope, T.D.; Shultzw, M.R.; Graham, S.A. Detrital record of Mesozoic shortening in the Yanshan belt, NE China: Testing structural interpretations with basin analysis. Basin Res. 2007, 19, 253–272. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhao, Y.; Song, B.; Yue, H.Y. Zircon SHRIMP U–Pb and in-situ Lu–Hf isotope analyses of a tuff from Western Beijing: Evidence for missing Late Paleozoic arc volcano eruptions at the northern margin of the North China block. Gondwana Res. 2007, 12, 157–165. [Google Scholar] [CrossRef]
- Xiao, W.J.; Widley, B.F.; Huang, B.C.; Han, C.M.; Yuan, C.; Chen, H.L.; Sun, M.; Sun, S.; Li, J.L. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. Int. J. Earth Sci. 2009, 98, 1189–1217. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhao, Y.; Kröner, A.; Liu, X.M.; Xie, L.W.; Chen, F.K. Early Permian plutons from the northern North China Block: Constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt. Int. J. Earth Sci. 2009, 98, 1441–1467. [Google Scholar] [CrossRef]
- Eizenhöfer, P.R.; Zhao, G.; Zhang, J.; Sun, M. Final closure of the Paleo-Asian Ocean along the Solonker suture zone: Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics 2014, 33, 441–463. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhao, Y.; Song, B.; Hu, J.M.; Liu, S.W.; Yang, Y.H.; Chen, F.K.; Liu, X.M.; Liu, J. Contrasting Late Carboniferous and Late Permian–Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications. Geol. Soc. Am. Bull. 2009, 121, 181–200. [Google Scholar] [CrossRef]
- Ren, Z.L. Thermal history of Ordos Basin assessed by apatite fission track analysis. Acta Geophys. Sin. 1995, 38, 339–349. [Google Scholar]
- Zhao, M.W.; Behr, H.J. Vitrinite reflectance in Triassic with relation to geothermal history of Ordos Basin. Acta Pet. Sin. 1996, 17, 15–23. [Google Scholar]
- Yang, J.J.; Pei, X.G. Chinese Natural Gas Geology, Volume 4, Ordos Basin; Petroleum Industry Press: Beijing, China, 1996. [Google Scholar]
- Wang, T.H. Structural styles of fronts of thrust-detachment faults in petroleum-bearing areas of Western China. Acta Geol. Sin. 1999, 73, 371–383. [Google Scholar]
- Bradley, D.R.; Andrew, D.H.; Brian, J.D.; Lynde, N.; Adrian, B. Sedimentary record of Triassic intraplate extension in North China: Evidence from the nonmarine NW Ordos Basin, Helan Shan and Zhuozi Shan. Tectonophysics 2004, 386, 177–202. [Google Scholar]
- Bradley, D.R.; Amy, W.; Stephan, A.G.; Brian, J.D. Mesozoic tectonics and sedimentation of the giant polyphase nonmarine intraplate Ordos Basin, western North China Block. Int. Geol. Rev. 2009, 51, 95–115. [Google Scholar]
- Hou, R.Y.; Liu, Z.Q. Reservoir evaluation and development strategies of Daniudi tight sand gas field in the Ordos Basin. Oil Gas Geol. 2012, 33, 118–128. [Google Scholar]
- Tan, C.X.; Li, W.H.; Zhang, H.J.; Zheng, Y. Study of the sedimentary facies of Shanxi formation in Daniudi Gasfield of Ordos Basin. J. Northwest Univ. (Nat. Sci. Ed.) 2011, 41, 107–112. [Google Scholar]
- Wan, Y.L.; Li, Z.D.; Peng, C.; Kong, W.; Xie, Y.X.; Zheng, T. Reservoir characteristics and evaluation of low porosity and permeability sandstone of member of Shanxi Formation in Daniudi Gas Field, Ordos Basin. J. Mineral. Petrol. 2016, 36, 106–114. [Google Scholar]
- Zhang, Q.; Bai, J.F.; Wang, Y. Analytical scheme and quality monitoring system for China Geochemical Baseline. Earth Sci. Front. 2012, 19, 33–42. [Google Scholar]
- Folk, R.L. Petrology of Sedimentary Rocks; Hemphill Publishing Company: Austin, TX, USA, 1974. [Google Scholar]
- Wang, J.W.; Bao, Z.D.; Chen, M.J.; Sun, F.J.; Liu, R.E.; Zhao, M.F.; Sun, Q.Y. Differentiation of sandstones’ tuff fillings and its effect on porosity-An example from the Paleozoic sandstones in Northwestern Ordos. Chin. J. Geol. 2005, 40, 429–438, 456. [Google Scholar]
- Li, X.B.; Wang, J.W. The formation and evolution of volcanic dust fillings of sandstone in coal measures strata of Ordos Basin. Acta Petrol. Mineral. 2007, 26, 42–48. [Google Scholar]
- Bhatia, M.R. Plate tectonics and geochemical composition of sandstones. J. Geo. 1981, 91, 611–627. [Google Scholar] [CrossRef]
- Bhatia, M.R.; Crook, K.A.W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol. 1986, 92, 181–193. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Oxford, UK, 1985. [Google Scholar]
- Zhang, Q.; Li, Y.H.; Chen, G.C.; Han, W.; Wang, J. Geochronology, geochemistry, and Hf isotopic compositions of the Late-Carboniferous volcanic rocks in Tongshengmao of Daqinshan area, Inner Mongolia and their geological implications. Geol. J. China Univ. 2018, 24, 160–171. [Google Scholar]
- Duan, R.H. The Nature and Significance of the Late Neoarchean and Late Paleoproterozoic Tectono-Thermal Events in the Southern Margin of the Yinshan Block of the North China Craton; Chinese Academy of Geological Sciences: Beijing, China, 2021. [Google Scholar]
- Norry, M.J.; Dunham, A.C.; Hudson, J.D. Mineralogy and geochemistry of the Peterborough Member, Oxford Clay Formation, Jurassic, UK: Element fractionation during mudrock sedimentation. J. Geol. Soc. 1994, 151, 195–207. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Suczek, C.A. Plate tectonics and sandstone compositions. AAPG Bull. 1979, 63, 2164–2182. [Google Scholar]
- Zai, Y.S.; Deng, J.; Tang, Z.L.; Xiao, R.G.; Song, H.L.; Peng, R.M.; Sun, Z.S.; Wang, J.P.; Xiang, Y.C.; Huang, H.S.; et al. Metallogenic System of Ancient Land Margin; Geological Publishing House: Beijing, China, 2002. [Google Scholar]
- Chen, B. The U-Pb Geochronology of Detrital Zircon and Its Geological Significance of the Upper Paleozoic in the Northeastern Ordos Basin; Northwest University: Xi’an, China, 2020. [Google Scholar]
- Shao, L.; Liu, Z.W.; Zhu, W.L. Application of sedimentary geochemistry ofterrigenous classic rock to basin analysis. Earth Sci. Front. 2000, 7, 297–304. [Google Scholar]
- Yang, J.H.; Wu, F.Y.; Shao, J.A.; Wilde, S.; Xie, L.W.; Liu, X.M. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth Planet. Sci. Lett. 2006, 246, 336–352. [Google Scholar] [CrossRef]
- Zhu, X.Q.; Zhu, W.B.; Ge, R.F.; Wang, X. Late Paleozoic provenance shift in the south-central North China Craton: Implications for tectonic evolution and crustal growth. Gondwana Res. 2014, 25, 383–400. [Google Scholar] [CrossRef]
- Luo, S.S.; Pan, Z.Y.; Lv, Q.Q.; He, W.L.; Wen, S. The Upper Paleozoic detrital zircon U-Pb geochronology and its tectonic significance in southwestern Ordos Basin. Geol. China 2017, 44, 556–574. [Google Scholar]
- Sun, J.; Yang, L.; Dong, Y.; Yang, X.; Peng, Y.; Zhao, J. Permian tectonic evolution of the southwestern Ordos Basin, North China: Integrating constraints from sandstone petrology and detrital zircon geochronology. Geol. J. 2020, 55, 8068–8091. [Google Scholar] [CrossRef]
- Hu, J.L.; Wang, L.L.; Chen, Q.; Huang, D.J.; Liu, L.; Zhang, J.Q.; Wang, Z.W.; Zhu, S.Z. The Early-Middle Permian source to sink filling process and its tectonic-sedimentary response in the southwestern Ordos Basin. Nat. Gas Geosci. 2023, 12, 1–25. [Google Scholar]
- Wang, F.; Liu, X.S.; Zhao, W.B.; Zhang, L.; Hu, J.L.; Tian, J.C.; Chen, R.; Wang, J.; Wu, J.Y.; Xiao, Y.X. Detrital Zircon U-Pb Geochronology Characteristics of Permian Sandstone and Its Constraints on the Tectonic Evolution of the Southern Ordos Basin. Acta Sedimentol. Sin. 2023, 41, 1396–1413. [Google Scholar]
- Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region. Regional Geology of Inner Mongolia Autonomous Region, People’s Republic of China, Ministry of Geology and Mineral Resources, Geological Memoirs; Geological Publishing House: Beijing, China, 1991. [Google Scholar]
- Jia, B.W.; Zhou, A.C.; Guo, M.T. Study on the provenance of the Late Paleozoic volcanic events in Daqingshan area. Chin. Sci. Abstr. 1999, 5, 506–510. [Google Scholar]
- Zhou, A.C.; Jia, B.W.; Ma, M.L.; Zhang, H. The Whole Sequences of Volcanic Event Deposits on the North Margin of the North China Plate and Their Features. Geol. Rev. 2001, 47, 175–183. [Google Scholar]
- Li, M.P.; Shao, L.Y.; Li, Z.X.; Dong, D.X.; Li, J.Q. Lithofacies palaeogeography of lower coal group accumulation period of Carboniferous-Permian in North China. J. China Coal Soc. 2020, 45, 2399–2410. [Google Scholar]
- Zhai, Y.H.; He, D.F.; Kai, B.Z. Tectono-depositional environment and prototype basin evolution in the Ordos Basin during the Early Permian. Earth Sci. Front. 2023, 30, 139–153. [Google Scholar]
- Quan, X.Y. Paleozoic Geological Structure Characteristics, Its Evolution and Oil and Gas Occurrence in Yimeng Uplift and Its Surrounding Areas; Northwest University: Xi’an, China, 2020. [Google Scholar]
- Jia, B.W.; Wu, Y.Q. The provenance and stratigraphic significance of volcanic event layers in Late Paleozoic coal measures from Daqingshan, Inner Mongolia. J. Geol. Min. Res. North China 1995, 10, 203–213. [Google Scholar]
- Liu, W.B.; Chen, Y.T.; Wang, D.Y.; Zheng, C.G.; Huang, G. Study on the characteristics of palaeocurrents by using dipmeter logging data. Sci. Geol. Sin. 1994, 29, 291–297. [Google Scholar]
- Lin, X.X. A Synthetic Thought of Provenance Analysis in the Terrigenous Clastic Rock Basin—An Example in the Lower Permian Shanxi Formation, Northern Ordos Basin; Chengdu University of Technology: Chengdu, China, 2011. [Google Scholar]
- Li, J.Y. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. J. Asian Earth Sci. 2006, 26, 207–224. [Google Scholar] [CrossRef]
Well | Depth (m) | Quartz | Feldspar | Mica | Other Minerals | Lithic Fragment | Matrix | Cement | Porosity (%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Granite | Rhyolite | Basalt and Andesite | Tuff | Slate | Phyllite | Schist | Meta-Sandstone | Dynamic Metamorphic Rock | Mudstone | Sandstone | Tuffaceous | Terrigenous | Ankerite | Ferroan Calcite | Siliceous Cement | Calcite | Argillaceous Cement | |||||||
12 | 2777.5 | 38 | 18 | 15 | 5 | 1 | 3 | 2 | 0.5 | 8 | 2 | 0.5 | 1 | 6 | ||||||||||
12 | 2772.2 | 45 | 2 | 1 | 4 | 12 | 15 | 1 | 2 | 2 | 10 | 2 | 0.5 | 1.5 | 2 | |||||||||
12 | 2745.8 | 45 | 15 | 10 | 10 | 1 | 1 | 5 | 2 | 1 | 1 | 1 | 8 | |||||||||||
12 | 2745.0 | 50 | 1 | 0.5 | 8 | 5 | 8 | 1 | 1 | 2 | 15 | 3 | 1 | 3 | 1.5 | |||||||||
12 | 2747.6 | 40 | 19 | 15 | 4 | 1 | 2 | 1 | 8 | 1 | 1 | 2 | 2 | 4 | ||||||||||
13 | 2792.0 | 48 | 1 | 1 | 2 | 4 | 10 | 7 | 1 | 1 | 4 | 12 | 2 | 2.5 | 0.5 | 1 | 3 | |||||||
13 | 2779.2 | 50 | 1 | 3 | 20 | 3 | 1 | 1 | 6 | 1 | 6 | 4 | 0.5 | 1.5 | 2 | |||||||||
13 | 2775.6 | 31 | 22 | 20 | 5 | 0.5 | 5 | 2 | 3 | 4 | 2.5 | 3 | 2 | |||||||||||
13 | 2748.1 | 30 | 1 | 8 | 29 | 5 | 2 | 4 | 10 | 4 | 1 | 0 | 2 | 4 | ||||||||||
13 | 2732.2 | 15 | 5 | 30 | 13 | 0.5 | 5 | 3 | 2 | 6 | 2 | 1 | 8 | 1.5 | 8 | |||||||||
13 | 2729.4 | 35 | 15 | 10 | 3 | 4 | 1 | 1 | 12 | 2 | 2 | 2 | 13 | |||||||||||
11 | 2798.8 | 30 | 2 | 20 | 10 | 4 | 3 | 3 | 8 | 2 | 0.5 | 1.5 | 3 | 13 | ||||||||||
11 | 2776.4 | 50 | 10 | 12 | 1 | 1 | 2 | 0.5 | 8 | 1 | 4 | 1.5 | 0 | 1 | 8 | |||||||||
11 | 2728.8 | 36 | 2 | 0.5 | 8 | 15 | 1.5 | 10 | 2 | 3 | 3 | 8 | 4 | 0.5 | 2 | 4.5 | ||||||||
11 | 2701.2 | 25 | 12 | 1 | 1 | 10 | 7 | 1.5 | 5 | 1 | 3 | 1 | 1 | 3 | 6 | 1 | 20 | 1 | 0.5 | |||||
14 | 2812.5 | 30 | 1 | 20 | 15 | 3 | 1 | 2 | 15 | 2 | 1 | 1 | 2 | 7 | ||||||||||
14 | 2792.1 | 40 | 1 | 11 | 13 | 3 | 2 | 8 | 1 | 3 | 2 | 2 | 2 | 12 | ||||||||||
14 | 2775.2 | 40 | 4 | 1 | 3 | 5 | 15 | 1 | 1 | 2 | 0.5 | 10 | 3 | 8 | 0.5 | 2 | 1 | 3 | ||||||
10 | 2683.5 | 59 | 1 | 0.5 | 5 | 8 | 3 | 1 | 1 | 0.5 | 1 | 10 | 1 | 0.5 | 1 | 0.5 | 2 | 5 | ||||||
10 | 2659.8 | 43 | 8 | 5.5 | 8 | 3 | 2 | 1 | 2 | 12 | 2 | 5 | 1 | 1 | 6.5 | |||||||||
10 | 2645.6 | 40 | 5 | 0.5 | 6 | 13 | 5 | 1 | 3 | 2 | 7 | 3 | 3 | 1 | 3 | 2 | 5.5 | |||||||
10 | 2679.6 | 43 | 12 | 15 | 3 | 1 | 2 | 3 | 8 | 0.5 | 1 | 1 | 0.5 | 10 | ||||||||||
9 | 2591.3 | 27 | 8 | 3 | 2 | 8 | 12 | 1 | 10 | 1 | 1 | 2 | 2 | 10 | 3 | 5 | 0.5 | 3 | 1.5 | |||||
9 | 2570.7 | 30 | 7 | 1 | 8 | 13 | 5 | 1 | 3 | 2 | 2 | 3 | 2 | 5 | 3 | 2 | 7 | 1 | 3 | 2 | ||||
9 | 2569.3 | 21 | 1 | 15 | 25 | 1 | 12 | 1 | 2 | 1 | 5 | 2 | 2 | 0 | 1 | 1 | 2 | 8 | ||||||
87 | 2697.3 | 60 | 5 | 10 | 4 | 1 | 1 | 1.5 | 1 | 9 | 2 | 1 | 0.5 | 1 | 3 | |||||||||
87 | 2684.5 | 25 | 1 | 21 | 10 | 5 | 4 | 10 | 2 | 3 | 2 | 2 | 15 | |||||||||||
86 | 2626.5 | 54 | 1 | 5 | 7 | 2 | 4 | 1 | 3 | 10 | 2 | 2 | 3 | 2 | 4 | |||||||||
86 | 2585.1 | 50 | 0.5 | 0.5 | 5 | 8 | 8 | 1 | 2 | 1 | 2 | 15 | 2 | 1 | 2 | 2 | ||||||||
21 | 2665.6 | 35 | 20 | 15 | 2 | 1 | 5 | 2 | 1 | 1 | 10 | 1 | 1 | 0.5 | 0.5 | 1 | 4 | |||||||
21 | 2646.4 | 30 | 2 | 25 | 12 | 1 | 1 | 2 | 2 | 4 | 10 | 1.5 | 0.5 | 2 | 1 | 6 | ||||||||
21 | 2602.6 | 35 | 5 | 15 | 9 | 8 | 4 | 2 | 2 | 3 | 3 | 1 | 5 | 2 | 6 | |||||||||
22 | 2656.4 | 40 | 5.5 | 10 | 10 | 4 | 1 | 2 | 1 | 6 | 2 | 3.5 | 8 | 1 | 6 | |||||||||
22 | 2654.9 | 40 | 2 | 1 | 12 | 5 | 5 | 3 | 2 | 1 | 13 | 2 | 1 | 13 | ||||||||||
25 | 2676.8 | 40 | 2 | 8 | 10 | 3 | 1 | 10 | 1 | 10 | 2 | 1 | 12 | |||||||||||
25 | 2596.9 | 65 | 2 | 1 | 7 | 8 | 1 | 1 | 4 | 2 | 3 | 1 | 2 | 3 | ||||||||||
24 | 2751.9 | 18 | 2 | 18 | 26 | 3 | 6 | 2 | 5 | 1 | 1 | 12 | 1 | 0 | 1 | 4 | ||||||||
24 | 2708.3 | 50 | 2 | 6 | 10 | 6 | 1 | 1 | 2 | 2 | 10 | 3 | 1 | 3 | 3 | |||||||||
31 | 2808.5 | 55 | 1 | 8 | 5.5 | 5 | 5 | 2 | 1 | 7 | 2 | 0.5 | 1 | 7 | ||||||||||
31 | 2802.6 | 40 | 1 | 10 | 14 | 5 | 1 | 1 | 10 | 2 | 1.5 | 0.5 | 2 | 12 | ||||||||||
108 | 2615.2 | 55 | 1 | 12 | 4 | 2 | 1 | 1 | 1 | 6 | 3 | 0.5 | 0.5 | 1 | 12 | |||||||||
108 | 2548.3 | 45 | 2 | 5 | 12 | 6 | 0.5 | 1 | 2 | 12 | 2 | 0.5 | 2 | 10 | ||||||||||
18 | 2744.5 | 40 | 10 | 2 | 4 | 1 | 1 | 4 | 1.5 | 3 | 25 | 0 | 6 | 2 | 0.5 | |||||||||
18 | 2696.1 | 45 | 1 | 5 | 10 | 8 | 2 | 4 | 2 | 10 | 6 | 2.5 | 3 | 1.5 | ||||||||||
18 | 2663.3 | 37 | 1 | 8 | 10 | 8 | 2 | 1 | 9 | 13 | 3.5 | 0.5 | 3 | 4 | ||||||||||
28 | 2619.7 | 25 | 2 | 15 | 22 | 3 | 2 | 4 | 3 | 10 | 3 | 2 | 1 | 2 | 1 | 5 | ||||||||
28 | 2587.8 | 10 | 28 | 35 | 3.5 | 0.5 | 4 | 2 | 5 | 2 | 3 | 1 | 6 | |||||||||||
28 | 2562.9 | 30 | 4 | 1 | 13 | 15 | 8 | 2 | 2 | 8 | 3 | 5.5 | 0.5 | 3 | 5 | |||||||||
94 | 2683.3 | 20 | 2 | 10 | 25 | 1 | 10 | 1 | 3 | 3 | 2 | 15 | 1 | 2.5 | 1.5 | 3 | ||||||||
94 | 2669.1 | 35 | 3 | 19 | 8 | 1 | 3 | 2 | 8 | 2 | 5 | 2 | 1 | 11 | ||||||||||
40 | 2692.3 | 45 | 1 | 12 | 8 | 3 | 1 | 1 | 5 | 5 | 2 | 1 | 2 | 14 | ||||||||||
40 | 2679.1 | 50 | 2 | 3 | 3 | 12 | 10 | 2 | 1 | 1 | 2 | 6 | 2 | 1 | 2 | 3 | ||||||||
1-4-1 | 2879.5 | 69 | 4 | 2 | 0.5 | 6 | 1.5 | 4 | 1 | 12 |
Samples | 13- 2707.4 | 14- 2813.1 | 11- 2781.0 | 11- 2784.0 | 87- 2699.6 | 24- 2760.3 | 87- 2697.7 | 11- 2699.0 | 24- 2753.6 |
---|---|---|---|---|---|---|---|---|---|
Lithology | Tuffaceous Mudstone | Tuffaceous Mudstone | Siltstone | Siltstone | Mudstone | Silty Mudstone | Coal | Tuff | Tuff |
Li | 22.94 | 157.84 | 7.46 | 35.99 | 56.01 | 154.48 | 206.95 | 29.59 | 17.59 |
Be | 1.68 | 7.71 | 4.94 | 1.97 | 2.55 | 4.28 | 5.27 | 3.65 | 11.78 |
Sc | 16.99 | 23.56 | 29.84 | 17.14 | 18.44 | 10.92 | 19.94 | 31.95 | 4.31 |
V | 88.09 | 52.82 | 424.61 | 106.13 | 130.56 | 25.07 | 96.80 | 238.80 | 12.79 |
Cr | 54.91 | 29.33 | 171.34 | 79.12 | 107.72 | 13.00 | 37.89 | 135.74 | 7.40 |
Co | 11.64 | 3.09 | 98.94 | 23.69 | 19.43 | 4.12 | 4.09 | 32.03 | 25.66 |
Ni | 13.69 | 8.82 | 29.70 | 22.38 | 31.25 | 7.80 | 22.01 | 35.18 | 18.18 |
Cu | 29.90 | 17.67 | 11.79 | 28.86 | 36.98 | 8.26 | 13.27 | 8.43 | 10.83 |
Zn | 426.84 | 17.79 | 26.63 | 132.55 | 108.81 | 13.36 | 17.70 | 98.53 | 9.48 |
Ga | 14.38 | 45.76 | 45.66 | 23.73 | 27.09 | 24.84 | 44.88 | 53.01 | 27.34 |
Rb | 63.57 | 14.96 | 272.92 | 102.10 | 139.91 | 9.40 | 51.99 | 184.70 | 1.58 |
Sr | 71.28 | 77.42 | 299.29 | 103.47 | 117.42 | 204.48 | 79.18 | 298.25 | 48.52 |
Y | 35.34 | 77.14 | 40.43 | 34.77 | 30.90 | 38.94 | 35.43 | 45.02 | 28.16 |
Zr | 81.13 | 1970.04 | 268.05 | 147.08 | 139.58 | 404.01 | 656.74 | 396.11 | 114.13 |
Nb | 9.87 | 170.95 | 28.14 | 15.44 | 18.63 | 42.99 | 39.07 | 56.18 | 9.43 |
Mo | 0.18 | 1.92 | 0.16 | 0.42 | 0.44 | 1.27 | 0.70 | 0.27 | 3.68 |
Cd | 1.55 | 0.00 | 0.03 | 0.35 | 0.26 | 0.03 | 0.01 | 0.03 | 0.04 |
In | 0.16 | 0.32 | 0.12 | 0.11 | 0.11 | 0.15 | 0.22 | 0.11 | 0.06 |
Sb | 0.12 | 0.65 | 1.12 | 0.32 | 0.25 | 0.24 | 0.11 | 0.25 | 0.35 |
Cs | 3.42 | 0.94 | 10.18 | 5.74 | 8.68 | 0.48 | 6.48 | 7.38 | 0.09 |
Ba | 308.30 | 316.38 | 814.12 | 361.45 | 611.65 | 92.72 | 427.08 | 537.82 | 41.85 |
Hf | 2.11 | 55.57 | 7.98 | 3.85 | 3.56 | 12.91 | 17.87 | 11.03 | 3.09 |
Ta | 0.71 | 16.21 | 2.10 | 1.11 | 1.19 | 3.16 | 2.60 | 3.02 | 0.59 |
Tl | 0.38 | 0.11 | 1.91 | 0.67 | 0.79 | 0.11 | 0.50 | 0.94 | 1.91 |
Pb | 20.61 | 125.35 | 56.11 | 29.83 | 34.95 | 29.16 | 27.45 | 46.11 | 56.11 |
Bi | 0.22 | 1.31 | 0.88 | 0.34 | 0.38 | 0.82 | 0.84 | 0.22 | 0.88 |
Th | 1.95 | 8.53 | 9.95 | 2.97 | 3.16 | 6.50 | 6.90 | 8.83 | 9.95 |
U | 8.46 | 84.56 | 29.70 | 14.49 | 15.62 | 17.69 | 33.09 | 39.11 | 29.70 |
Samples | 13- 2707.4 | 14- 2813.1 | 11- 2781.0 | 11- 2784.0 | 87- 2699.6 | 24- 2760.3 | 87- 2697.7 | 11- 2699.0 | 24- 2753.6 |
---|---|---|---|---|---|---|---|---|---|
Lithology | Tuffaceous Mudstone | Tuffaceous Mudstone | Siltstone | Siltstone | Mudstone | Silty Mudstone | Coal | Tuff | Tuff |
La | 36.63 | 19.68 | 362.04 | 71.75 | 60.37 | 51.06 | 38.85 | 242.76 | 59.24 |
Ce | 77.01 | 51.55 | 540.65 | 156.64 | 121.20 | 137.51 | 72.64 | 460.75 | 122.45 |
Pr | 8.36 | 6.86 | 49.06 | 20.08 | 13.81 | 15.12 | 7.10 | 49.28 | 16.19 |
Nd | 30.24 | 31.37 | 128.47 | 80.14 | 47.95 | 42.34 | 21.63 | 155.53 | 61.44 |
Sm | 5.93 | 12.50 | 13.48 | 14.81 | 8.56 | 5.85 | 5.49 | 20.46 | 12.22 |
Eu | 1.25 | 1.64 | 2.45 | 1.97 | 1.73 | 0.91 | 1.21 | 2.93 | 1.48 |
Gd | 5.24 | 10.34 | 14.40 | 9.52 | 7.08 | 5.60 | 5.70 | 14.12 | 8.80 |
Tb | 1.00 | 2.82 | 1.44 | 1.58 | 1.27 | 1.14 | 1.19 | 1.67 | 1.47 |
Dy | 5.29 | 16.15 | 6.60 | 8.21 | 5.74 | 6.84 | 6.08 | 7.57 | 6.63 |
Ho | 1.03 | 3.04 | 1.44 | 1.26 | 1.05 | 1.41 | 1.05 | 1.73 | 1.14 |
Er | 3.12 | 8.20 | 5.38 | 3.40 | 2.78 | 4.33 | 2.75 | 5.93 | 3.05 |
Tm | 0.49 | 1.34 | 1.00 | 0.54 | 0.48 | 0.74 | 0.44 | 1.06 | 0.46 |
Yb | 3.11 | 8.98 | 7.20 | 3.87 | 3.09 | 5.02 | 2.70 | 7.52 | 2.84 |
Lu | 0.49 | 1.14 | 1.03 | 0.48 | 0.43 | 0.67 | 0.39 | 1.16 | 1.03 |
LaN/YbN | 11.79 | 2.19 | 50.26 | 18.52 | 19.54 | 10.18 | 14.38 | 32.29 | 50.26 |
∑REE | 179.18 | 175.62 | 1134.65 | 374.25 | 275.53 | 278.51 | 167.2 | 972.48 | 297.84 |
∑HREE | 19.76 | 52.01 | 38.5 | 28.87 | 21.92 | 25.74 | 20.29 | 40.76 | 24.81 |
∑LREE | 159.42 | 123.61 | 1096.16 | 345.38 | 253.61 | 252.77 | 146.92 | 931.72 | 273.03 |
∑LREE/∑HREE | 8.07 | 2.38 | 28.48 | 11.96 | 11.57 | 9.82 | 7.24 | 22.86 | 11.00 |
Eu/Eu* | 0.69 | 0.44 | 0.54 | 0.51 | 0.68 | 0.48 | 0.66 | 0.53 | 0.44 |
GdN/YbN | 1.37 | 0.93 | 1.62 | 1.99 | 1.86 | 0.90 | 1.71 | 1.52 | 2.51 |
Section/Well of Sample | Formation | (Prominent Age Populations)/Major Age (Ma) | Reference | |||
---|---|---|---|---|---|---|
North | Liuyin, Shanxi | Shanxi Fm. | (281~517)/ 301 | (1711~2514)/ 1883 | / | Qu et al., 2020 [13] |
Well Shen 68 | Shanxi Fm. | (289~356)/ 304 | (2491~1717)/ 1842, 2423 | / | Chen, 2020 [87] | |
Well Shuang 157 | Shanxi Fm. | (2420~1701)/ 1873, 2440 | / | / | Chen, 2020 [87] | |
Xishan, Beijing | the middle of Shanxi Fm. | (262~368) | (2435~2291) | / | Yang et al., 2006 [89] | |
South | Yangcheng, Shanxin | the bottom of Shanxi Fm. | 299 | 1 836 | / | Zhu et al., 2014 [90] |
Well Qingtan 1 | the 1st member of Shanxi Fm. | (287~339)/ 337 | (385~466)/ 432 | / | Luo et al., 2017 [91] | |
Pingliang, Ganshu | Shanxi Fm. | (282–344)/ 286 | (1717~2100)/ 1945 | (2188~2497)/ 2355 | Sun et al., 2020 [92] | |
Well Qingtan 1, Well Su51, Well Chengtan 2, Erdaogou, Pingliang, Ganshu, | Shanxi Fm. | (300~450)/ ca. 300 | (1824~1873) | (2440~2569) | Hu et al., 2023 [93] | |
Tongchuan, Shanxi | Shanxi Fm. | 364 | 450 | 794 | Wang et al.,2023 [94] | |
946 | 2446 | / |
Sub-layer/ Well | Samples | Rhyolite Fragment (%) | Tuff Fragment (%) | Tuffaceous Matrix (%) | Volcanogenic Components (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIN | MAX | AVG | MIN | MAX | AVG | MIN | MAX | AVG | MIN | MAX | AVG | ||
S2-2-2 | 5 | 5.0 | 10.0 | 8.2 | 4.0 | 8.0 | 6.0 | 3.0 | 13.0 | 8.0 | 12.0 | 31.0 | 22.2 |
S2-2-1 | 14 | 5.0 | 25.0 | 10.5 | 3.0 | 15.0 | 7.4 | 4.0 | 15.0 | 8.4 | 12.0 | 55.0 | 26.3 |
S2-1-2 | 2 | 13.0 | 15.0 | 14.0 | 5.0 | 10.0 | 7.5 | 7.0 | 8.0 | 7.5 | 25.0 | 33.0 | 29.0 |
S2-1-1 | 3 | 10.0 | 13.0 | 11.7 | 5.0 | 10.0 | 7.7 | 6.0 | 10.0 | 8.7 | 21.0 | 33.0 | 28.1 |
S1-3-2 | 5 | 5.5 | 18.0 | 12.7 | 3.0 | 15.0 | 7.0 | 5.5 | 12.0 | 8.7 | 14.0 | 45.0 | 28.4 |
S1-3-1 | 6 | 7.0 | 29.0 | 16.5 | 1.0 | 15.0 | 4.8 | 5.0 | 15.0 | 9.2 | 13.0 | 59.0 | 30.5 |
S1-2-2 | 4 | 8.0 | 15.0 | 11.3 | 1.0 | 5.0 | 2.8 | 8.0 | 10.0 | 9.5 | 17.0 | 30.0 | 23.5 |
S1-2-1 | 3 | 2.0 | 10.0 | 6.3 | 2.0 | 4.0 | 3.0 | 6.0 | 10.0 | 8.3 | 10.0 | 24.0 | 17.6 |
S1-1-2 | 2 | 10.0 | 20.0 | 15.0 | 4.0 | 5.0 | 4.5 | 4.0 | 8.0 | 6.0 | 18.0 | 33.0 | 25.5 |
S1-1-1 | 5 | 2.0 | 20.0 | 9.2 | 2.0 | 7.0 | 3.8 | 4.0 | 12.0 | 7.6 | 8.0 | 39.0 | 20.6 |
28 | 4 | 15.0 | 35.0 | 22.0 | 3.0 | 10.0 | 6.1 | 5.0 | 10.0 | 8.3 | 31.0 | 43.5 | 36.4 |
9 | 6 | 5.0 | 20.0 | 12.8 | 5.0 | 12.0 | 7.9 | 5.0 | 15.0 | 8.8 | 23.0 | 35.0 | 29.9 |
22 | 5 | 4.0 | 18.0 | 8.6 | 2.0 | 10.0 | 5.0 | 6.0 | 13.0 | 10.6 | 18.0 | 32.0 | 24.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, X.; Wang, Q.; Wang, D.; Lei, T.; Chen, H.; Wang, J.; Jiang, W.; Zhang, W.; Luo, L.; Liu, J.; et al. Provenance of Volcanogenic Deposits from the Shanxi Formation of the Daniudi Gas Field, Ordos Basin, and Its Tectonic Implications. Minerals 2023, 13, 1546. https://doi.org/10.3390/min13121546
Qu X, Wang Q, Wang D, Lei T, Chen H, Wang J, Jiang W, Zhang W, Luo L, Liu J, et al. Provenance of Volcanogenic Deposits from the Shanxi Formation of the Daniudi Gas Field, Ordos Basin, and Its Tectonic Implications. Minerals. 2023; 13(12):1546. https://doi.org/10.3390/min13121546
Chicago/Turabian StyleQu, Xuejiao, Qiao Wang, Dunfan Wang, Tao Lei, Hao Chen, Jia Wang, Wei Jiang, Wei Zhang, Long Luo, Jianping Liu, and et al. 2023. "Provenance of Volcanogenic Deposits from the Shanxi Formation of the Daniudi Gas Field, Ordos Basin, and Its Tectonic Implications" Minerals 13, no. 12: 1546. https://doi.org/10.3390/min13121546
APA StyleQu, X., Wang, Q., Wang, D., Lei, T., Chen, H., Wang, J., Jiang, W., Zhang, W., Luo, L., Liu, J., Jiang, N., Gao, X., & Tan, X. (2023). Provenance of Volcanogenic Deposits from the Shanxi Formation of the Daniudi Gas Field, Ordos Basin, and Its Tectonic Implications. Minerals, 13(12), 1546. https://doi.org/10.3390/min13121546