Geogas-Carried Metal Prospecting for Concealed Ore Deposits: A Review of Case Studies in China
Abstract
:1. Introduction
2. Advances in the Concept and Principle of Geogas-Carried Metal Prospecting
2.1. Evolution of the Concept of Gas-Carried Metal Prospecting
2.2. Compositions and Morphology of Nanoscale Metals in Earthgas (NAMEG)
2.3. Sources of Nanoscale Metals in Earthgas (NAMEG)
2.3.1. Composition Comparison
2.3.2. Morphology of Nanoscale Metals in Earthgas (NAMEG)
2.3.3. Lead Isotope Composition
2.3.4. Rare Earth Element Pattern
2.3.5. Relationship between Soil and Ore-Related Nanoscale Metals in Earthgas (NAMEG)
2.4. Influencing Factors of Geogas-Carried Metal Prospecting
3. Discussion
3.1. Formation of Nanometals in the Mineralization Process
3.2. Migration in the Secondary Process
3.3. Application Effectiveness
3.3.1. Different Types of Ore Deposits
3.3.2. Different Geochemical Landscapes and Climates
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, X.J. Tactical and strategic deep-penetration geochemical surveys. Earth Sci. Front. 1998, 5, 171–183, (In Chinese with English Abstract). [Google Scholar]
- Wang, X.Q. Deep penetration exploration geochemistry. Geophys. Geochem. Explor. 1998, 22, 166–169, (In Chinese with English Abstract). [Google Scholar]
- Cameron, E.M.; Leybourne, M.I.; Kelley, D.L. Exploring for deeply covered mineral deposits: Formation of geochemical anomalies in northern Chile by earthquake-induced surface flooding of mineralized groundwaters. Geology 2002, 30, 1007–1010. [Google Scholar] [CrossRef]
- Cameron, E.M.; Hamilton, S.M.; Leybourne, M.I.; Hall, G.E.; McClenaghan, M.B. Finding deeply buried deposits using geochemistry. Geochem. Explor. Environ. Anal. 2004, 4, 7–32. [Google Scholar] [CrossRef]
- Xie, X.J.; Wang, X.Q. Recent developments on deep-penetrating geochemistry. Earth Sci. Front. 2003, 10, 225–238, (In Chinese with English Abstract). [Google Scholar]
- Kristiansson, K.; Malmqvist, L. Evidence for nondiffusive transport of 222Rn in the ground and a new physical model for the transport. Geophysics 1982, 47, 1444–1452. [Google Scholar] [CrossRef]
- Kristiansson, K.; Malmqvist, L.; Persson, W. Geogas prospecting: A new tool in the search for concealed mineralizations. Endeavour 1990, 14, 28–33. [Google Scholar] [CrossRef]
- Krcmar, B. Method of Elements’ Molecular Form Capture in Atmospheric Air Emitted by Geological Structures. Czech Republic Patent No. 268641, 25 November 1988. [Google Scholar]
- Klusman, R.W. Soil Gas and Related Methods for Natural Resource Exploration; John Wiley & Sons: Hoboken, NJ, USA, 1993; pp. 1–473. [Google Scholar]
- Wang, X.Q.; Cheng, Z.Z.; Lu, Y.X.; Xu, L.; Xie, X.J. Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains. J. Geochem. Explor. 1997, 58, 63–72. [Google Scholar] [CrossRef]
- Wang, M.Q.; Gao, Y.Y.; Liu, Y.H. Progress in the collection of Geogas in China. Geochem. Explor. Environ. Anal. 2008, 8, 183–190. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Wang, M.Q.; Zhang, D.E. Application of ‘metals-in-soil-gas’ techniques to mineral exploration in exotic overburden. Geochem. Explor. Environ. Anal. 2011, 11, 63–70. [Google Scholar] [CrossRef]
- Wang, X.Q. The current situation and future of geogas. Foreign Geoexplor. Tech. 1996, 12–18, (In Chinese with English Abstract). [Google Scholar]
- Kristiansson, K.; Malmqvist, L. The depth-dependence of the concentration of 222Rn in soil gas near the surface and its implication for exploration. Geoexploration 1984, 22, 17–41. [Google Scholar] [CrossRef]
- Malmqvist, L.; Kristiansson, K. Experimental evidence for an ascending microflow of geogas in the ground. Earth Planet. Sc. Lett. 1984, 70, 407–416. [Google Scholar] [CrossRef]
- Kristiansson, K.; Malmqvist, L. Trace elements in the geogas and their relation to bedrock composition. Geoexploration 1987, 24, 517–534. [Google Scholar] [CrossRef]
- Wang, X.Q.; Xie, X.J.; Lu, Y.X. Dynamic collection of geogas and its preliminary application in search for concealed deposits. Geophys. Geochem. Explor. 1995, 22, 81–89, (In Chinese with English Abstract). [Google Scholar]
- Tong, C.H.; Li, J.C.; Ge, L.Q.; Yang, F.G. Experimental observation of the nano-scale particles in geogas matters and its geological significance. Sci. China Ser. D Earth Sci. 1998, 41, 325–329. [Google Scholar] [CrossRef]
- Wang, X.Q. Conceptual model of deep-penetrating geochemical migration. Geol. Bull. China 2005, 24, 892–896, (In Chinese with English Abstract). [Google Scholar]
- Cao, J.J. A technique for detecting concealed deposits by combining geogas particle characteristics with element concentrations. Metal Mine 2009, 1–4, (In Chinese with English Abstract). [Google Scholar]
- Cao, J.J.; Hu, X.Y.; Jiang, Z.T.; Li, H.W.; Zou, X.Z. Simulation of adsorption of gold nanoparticles carried by gas ascending from the Earth’s interior in alluvial cover of the middle–lower reaches of the Yangtze River. Geofluids 2010, 10, 438–446. [Google Scholar] [CrossRef]
- Wang, X.Q.; Ye, R. Findings of nanoscale metal particles: Evidence for deep-penetrating geochemistry. Acta. Geol. Sin. 2011, 32, 7–12, (In Chinese with English Abstract). [Google Scholar]
- Zhang, B.M.; Wang, X.Q.; Ye, R.; Zhou, J.; Liu, H.L.; Liu, D.S.; Han, Z.X.; Lin, X.; Wang, Z.K. Geochemical exploration for concealed deposits at the periphery of the Zijinshan copper–gold mine, southeastern China. J. Geochem. Explor. 2015, 157, 184–193. [Google Scholar] [CrossRef]
- Du, L.T. Five gas-spheres and hydrogen, hydrocarbon resources in the earth—With a discuss on geodynamics of gas. Uran. Geol. 1993, 9, 9257–9265, (In Chinese with English Abstract). [Google Scholar]
- Dixon, J.E. Degassing of alkalic basalts. Am. Mineral. 1997, 82, 368–378. [Google Scholar] [CrossRef]
- Sparks, R.S.J. Dynamics of magma degassing. Geol. Soc. Lond. Spec. Publ. 2003, 213, 5–22. [Google Scholar] [CrossRef]
- Chiodini, G.; Cardellini, C.; Di Luccio, F.; Selva, J.; Frondini, F.; Caliro, S.; Rosiello, A.; Beddini, G.; Ventura, G. Correlation between tectonic CO2 Earth degassing and seismicity is revealed by a 10-year record in the Apennines, Italy. Sci. Adv. 2020, 6, eabc2938. [Google Scholar] [CrossRef] [PubMed]
- Oppenheimer, C.; Fischer, T.P.; Scaillet, B. Volcanic degassing: Process and impact. Treatise Geochem. 2014, 4, 111–179. [Google Scholar] [CrossRef]
- Kerrick, D.M.; and Caldeira, K. Metamorphic CO2 degassing from orogenic belts. Chem. Geol. 1998, 145, 213–232. [Google Scholar] [CrossRef]
- Machel, H.G. Relationships between sulphate reduction and oxidation of organic compounds to carbonate diagenesis, hydrocarbon accumulations, salt domes, and metal sulphide deposits. Carbonates Evaporites 1989, 4, 137–151. [Google Scholar] [CrossRef]
- Whiticar, M.J.; Suess, E. Hydrothermal hydrocarbon gases in the sediments of the King George Basin, Bransfield Strait, Antarctica. Appl. Geochem. 1990, 5, 135–147. [Google Scholar] [CrossRef]
- Polito, P.A.; Clarke, J.D.A.; Bone, Y.; Viellenave, J. A CO2-O2-light hydrocarbon-soil gas anomaly above the Junction orogenic gold deposit: A potential, alternative exploration technique. Geochem. Explor. Environ. Anal. 2002, 2, 333–344. [Google Scholar] [CrossRef]
- Conrad, R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev. 1996, 60, 609–640. [Google Scholar] [CrossRef] [PubMed]
- Hinkle, M.E.; Ryder, J.L.; Sutley, S.J.; Botinelly, T. Production of sulphur gases and carbon dioxide by synthetic weathering of crushed drill cores from the Santa Cruz porphyry copper deposit near Casa Grande, Pinal County, Arizona. J. Geochem.Explor. 1990, 38, 43–67. [Google Scholar] [CrossRef]
- Reid, A.D.; Rasmussen, J.D. The use of soil gas CO2 in the exploration for sulphide bearing breccias pipes in northern Arizona. J. Geochem. Explor. 1990, 38, 87–101. [Google Scholar] [CrossRef]
- Plet, C.; Siegel, C.; Woltering, M.; Noble, R.; Pagès, A.; Thorne, R.; Spinks, S.; and Anand, R. Sulfur and CO2 gases emitted during weathering of sulfides: Role of microbial activity and implications to exploration through cover. Ore Geol. Rev. 2021, 134, 104167. [Google Scholar] [CrossRef]
- Nilson, R.H.; Peterson, E.W.; Lie, K.H.; Burkhard, N.R.; Hearst, J.R. Atmospheric pumping: A mechanism causing vertical transport of contaminated gases through fractured permeable media. J. Geophys. Res.-Sol. Earth 1991, 96, 21933–21948. [Google Scholar] [CrossRef]
- Carrigan, C.R.; Hudson, G.B.; Nitao, J.J.; Zucca, J.J.; Heinle, R.A. Trace gas emissions on geological faults as indicators of underground nuclear testing. Nature 1996, 382, 528–531. [Google Scholar] [CrossRef]
- McCarthy, J.H. Mercury vapor and other volatile components in the air as guides to ore deposits. J. Geochem. Explor. 1972, 1, 143–162. [Google Scholar] [CrossRef]
- Boyle, R.W.; Jonasson, I.R. The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. J. Geochem. Explor. 1973, 2, 251–296. [Google Scholar] [CrossRef]
- Taylor, C.H.; Kesler, S.E.; Cloke, P.L. Sulfur gases produced by the decomposition of sulfide minerals: Application to geochemical exploration. J. Geochem. Explor. 1982, 17, 165–185. [Google Scholar] [CrossRef]
- Hale, M. Gas geochemistry and deeply buried mineral deposits: The contribution of the applied geochemistry research group, imperial college of science and technology, London. Geochem. Explor. Environ. Anal. 2010, 10, 261–267. [Google Scholar] [CrossRef]
- Lin, C.G.; Cheng, Z.Z.; Chen, X.; Lü, Z.C.; Pang, Z.S.; Xue, J.L.; Tao, W. Application of multi-component gas geochemical survey for deep mineral exploration in covered areas. J. Geochem. Explor. 2021, 220, 106656. [Google Scholar] [CrossRef]
- Dyck, W. The use of helium in mineral exploration. J. Geochem. Explor. 1976, 5, 3–20. [Google Scholar] [CrossRef]
- Gingrich, J.E. Radon as a geochemical exploration tool. J. Geochem. Explor. 1984, 21, 19–39. [Google Scholar] [CrossRef]
- McCarthy, J.H.; Reimer, G.M. Advances in soil gas geochemical exploration for natural resources: Some current examples and practices. J. Geophys. Res. Sol. Earth 1986, 91, 12327–12338. [Google Scholar] [CrossRef]
- Awadh, S.M.; Ali, K.K.; Alazzawi, A.T. Geochemical exploration using surveys of spring water, hydrocarbon and gas seepage, and geobotany for determining the surface extension of Abu-Jir Fault Zone in Iraq: A new way for determining geometrical shapes of computational simulation models. J. Geochem. Explor. 2013, 124, 218–229. [Google Scholar] [CrossRef]
- Cao, J.J.; Hu, R.Z.; Liang, Z.R.; Peng, Z.L. TEM observation of geogas-carried particles from the Changkeng concealed gold deposit, Guangdong Province, South China. J. Geochem. Explor. 2009, 101, 247–253. [Google Scholar] [CrossRef]
- Cao, J.J.; Liu, C.; Xiong, Z.H.; Qin, T.R. Particles carried by ascending gas flow at the Tongchanghe copper mine, Guizhou Province, China. Sci. China Earth Sci. 2010, 53, 1647–1654. [Google Scholar] [CrossRef]
- Wei, X.J.; Cao, J.J.; Holub, R.F.; Hopke, P.K.; Zhao, S.J. TEM study of geogas-transported nanoparticles from the Fankou lead-zinc deposit, Guangdong Province, South China. J. Geochem. Explor. 2013, 128, 124–135. [Google Scholar] [CrossRef]
- Dai, D.L.; Cao, J.J.; Lai, P.X.; Wu, Z.Q. TEM study on particles transported by ascending gas flow in the Kaxiutata iron deposit, Inner Mongolia, North China. Geochem. Explor. Environ. Anal. 2015, 15, 255–271. [Google Scholar] [CrossRef]
- Luo, S.Y.; Cao, J.J.; Yan, H.B.; Yi, J. TEM observations of particles based on sampling in gas and soil at the Dongshengmiao polymetallic pyrite deposit, Inner Mongolia, northern China. J. Geochem. Explor. 2015, 158, 95–111. [Google Scholar] [CrossRef]
- Hu, G.; Cao, J.J.; Hopke, P.K.; Holub, R.F. Study of carbon-bearing particles in ascending geogas flows in the Dongshengmiao polymetallic pyrite deposit, Inner Mongolia, China. Resour. Geol. 2015, 65, 13–26. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhang, B.M.; Lin, X.; Xu, S.F.; Ye, R. Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China. Ore Geol. Rev. 2016, 73, 417–431. [Google Scholar] [CrossRef]
- Li, D.W.; Cao, J.J.; Ke, H.L.; Liu, C.; Wei, X.J. Study of particles from the Kafang copper deposit in Gejiu city, Yunnan. Geochem. Explor. Environ. Anal. 2017, 17, 367–377. [Google Scholar] [CrossRef]
- Li, Y.K.; Cao, J.J.; Chen, J.; Yi, J. The research of particles carried by ascending gas flow from Qingmingshan Cu-Ni sulfide deposit in Guangxi Province. Acta Petrol. Sin. 2017, 33, 831–842, (In Chinese with English Abstract). [Google Scholar]
- Cao, J.J.; Li, Y.K.; Liu, C.; Yuan, X.L. Research on geogas particles from Bingba copper deposit in Guanling county of Guizhou province. J. Jilin Univ. (Earth Sci. Ed.) 2017, 7, 95–105, (In Chinese with English Abstract). [Google Scholar]
- Lu, M.; Ye, R.; Zhang, B.M.; Yao, W.S.; Han, Z.X. Occurrence and formation of metallic nanoparticles over the concealed ore deposits. J. Nanosci. Nanotechno. 2017, 17, 6077–6082. [Google Scholar] [CrossRef]
- Lu, M.; Ye, R.; Wang, Z.K.; Wang, X.J. Geogas prospecting for buried deposits under loess overburden: Taking Shenjiayao gold deposit as an example. J. Geochem. Explor. 2019, 197, 122–129. [Google Scholar] [CrossRef]
- Jiang, T.; Cao, J.J.; Wu, Z.Q.; Wu, Y.F.; Zeng, J.N.; Wang, Z.H. A TEM study of particles carried by ascending gas flows from the Bairendaba lead-zinc deposit, Inner Mongolia, China. Ore Geol. Rev. 2019, 105, 18–27. [Google Scholar] [CrossRef]
- Cao, J.J.; Liu, C.; Zhang, P.; Li, Y.P.; Xiong, Z.H. The characteristic of geogas particles from Daheishan Basalt Copper Deposit in Huize County of Yunnan. Metal Mine 2011, 6, 113–115, (In Chinese with English Abstract). [Google Scholar]
- Reith, F.; Fairbrother, L.; Nolze, G.; Wilhelmi, O.; Clode, P.L.; Gregg, A.; Parsons, J.E.; Wakelin, S.A.; Pring, A.; Hough, R.; et al. Nanoparticle factories: Biofilms hold the key to gold dispersion and nugget formation. Geology 2010, 38, 843–846. [Google Scholar] [CrossRef]
- Cao, J.J. Migration mechanisms of gold nanoparticles explored in geogas of the Hetai ore district, southern China. Geochem. J. 2011, 45, 9–13. [Google Scholar] [CrossRef]
- Hough, R.M.; Noble, R.R.P.; Reich, M. Natural gold nanoparticles. Ore Geol. Rev. 2011, 42, 55–61. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhang, B.M.; Ye, R. Nanogeochemistry for mineral exploration through covers. Bull. Mineral. Petrol. Geochem. 2012, 35, 43–51, (In Chinese with English Abstract). [Google Scholar]
- Wang, X.Q.; Zhang, B.M.; Ye, R. Nanoparticles observed by TEM from gold, copper-nickel and silver deposits and implications for mineral exploration in covered terrains. J. Nanosci. Nanotechnol. 2017, 17, 6014–6025. [Google Scholar] [CrossRef]
- Gamaletsos, P.N.; Godelitsas, A.; Kasama, T.; Church, N.S.; Douvalis, A.P.; Göttlicher, J.; Steininger, S.; Boubnov, F.; Pontikes, Y.; Tzamos, E.; et al. Nano-mineralogy and-geochemistry of high-grade diasporic karst-type bauxite from Parnassos-Ghiona mines, Greece. Ore Geol. Rev. 2017, 84, 228–244. [Google Scholar] [CrossRef]
- Zhang, B.M.; Han, Z.X.; Wang, X.Q.; Liu, H.L.; Wu, H.; Feng, H. Metal-bearing nanoparticles observed in soils and fault gouges over the Shenjiayao gold deposit and their significance. Minerals 2019, 9, 414. [Google Scholar] [CrossRef]
- Han, Z.X.; Zhang, B.M.; Wu, H.; Liu, H.L.; Qiao, Y.; Zhang, S.K. Microscopic characterisation of metallic nanoparticles in ore rocks, fault gouge and geogas from the Shanggong gold deposit, China. J. Geochem. Explor. 2020, 217, 106562. [Google Scholar] [CrossRef]
- Ju, Y.W.; Li, X.; Ju, L.T.; Feng, H.Y.; Tan, F.Q.; Cui, Y.S.; Yang, Y.; Wang, X.Q.; Cao, J.J.; Qaio, F.; et al. Nanoparticles in the Earth surface systems and their effects on the environment and resource. Gondwana Res. 2022, 110, 370–392. [Google Scholar] [CrossRef]
- Lu, M.Q.; Cao, J.J.; Hu, G.; Wang, Z.Y.; Ma, S.T. Widespread nearly or nanoscale natural amorphous particles in critical zones from ore deposits. Ore Geol. Rev. 2023, 157, 105454. [Google Scholar] [CrossRef]
- Tong, C.H.; Liang, X.Z.; Li, J.C. The tentative geogas survey in the Dongji gold deposit. Geophys. Geochem. Explor. 1992, 16, 445–451, (In Chinese with English Abstract). [Google Scholar]
- Wang, M.Q.; Gao, Y.Y. Tracing source of geogas with lead isotopes: A case study in Jiaolongzhang Pb-Zn deposit, Gansu province. Geochimica 2007, 36, 391–399, (In Chinese with English Abstract). [Google Scholar]
- Zhou, S.C.; Liu, X.H.; Tong, C.H.; Hu, B. Application research of geogas survey in prospecting concealed ore. Acta Geol. Sin. 2014, 88, 736–754, (In Chinese with English Abstract). [Google Scholar]
- Zhang, B.M.; Wang, X.Q.; Xu, S.F.; Yao, W.S.; Ye, R. Models and case history studies of deep−penetrating geochemical exploration for concealed deposits in basins. Geol. China 2016, 43, 1697–1709, (In Chinese with English Abstract). [Google Scholar]
- Tong, C.H.; Liang, X.C.; Li, J.C.; Li, G.D. Geogas anomalies on a hidden gold deposit. Chin. Sci. Bull. 1991, 36, 791–792. [Google Scholar]
- Tong, C.H.; Li, J.C. Geogas prospecting and its mechanism in the search for deep seated or concealed gold deposits. Chin. J. Geophys. 1999, 42, 135–142, (In Chinese with English Abstract). [Google Scholar]
- Yin, B.C.; Wu, Z.H.; Jin, Y.F. Geogas aerosol survey: A new method and technique for prospecting concealed ore deposits and studying the geology of structures at depth. Geol. Geochem 1997, 25–30, (In Chinese with English Abstract). [Google Scholar]
- Shi, C.Y.; Zhang, J.H.; Liu, Y.H.; Huang, X.M.; Huang, Z.F. Some test results of geogas survey in the Laoyanghao gold ore district, Inner Mongolia. Geophys. Geochem. Explor. 1997, 21, 247–253, (In Chinese with English Abstract). [Google Scholar]
- Wu, Z.H.; Jin, Y.F.; Gu, P. Principles of geogas survey and its application in geological exploration. Geophys. Geochem. Explor. 1996, 20, 259–264, (In Chinese with English Abstract). [Google Scholar]
- Teng, Y.G.; Ni, S.J.; Zhang, C.J.; Tuo, X.G.; Tong, C.H. Making use of geogas, XRF, radon detection to distinguish mineralization of structure in gold ore deposit: Taking Axi and Tianwan gold deposits in Sichuan province for example. Earth Sci. J. China Univ. Geosci. 2001, 26, 627–630, (In Chinese with English Abstract). [Google Scholar]
- Tang, J.R.; Yang, Z.F.; Wang, M.Q.; Liu, Y.Q. Method and application of geogas measurements. Geophys. Geochem. Explor. 2004, 28, 193–198, (In Chinese with English Abstract). [Google Scholar]
- Gao, Y.G.; Yang, Z.F.; Wang, M.Q.; Liu, L.H.; Liu, Y.Q.; Tang, J.R.; Guo, L. Geogas reconnaissance technique in the search for concealed deposits in middle-shallow cover area, Heihe downfaulted basin, Qinghai. Geol. Prosp. 2005, 41, 73–77, (In Chinese with English Abstract). [Google Scholar]
- Wang, M.Q.; Gao, Y.Y.; Zhang, D.E.; Ren, T.X.; Liu, Y.H. Breakthrough in mineral exploration using geogas survey in the basin area of northern Qilian region and its significance. Geophys. Geochem. Explor. 2006, 30, 7–12, (In Chinese with English Abstract). [Google Scholar]
- Gao, Y.Y.; Wang, M.Q.; Xia, X.Z.; Wang, T. Geogas tests in the exploration of concealed metallic deposits in some landscape areas. Geophys. Geochem. Explor. 2010, 34, 144–149, (In Chinese with English Abstract). [Google Scholar]
- Wan, W.; Wang, M.Q.; Gao, Y.Y.; Fan, H.H. Tracing the source of metals in geogas from metal deposits in a loess-covered region. Bull. Mineral. Petrol. Geochem. 2016, 35, 1290–1297, (In Chinese with English Abstract). [Google Scholar]
- Shen, Y.S.; Ma, X.H.; Zhang, Y.J.; Yan, L.B.; Wang, Q.M. Discussion on the anomaly characteristics of Lashuixia Cu-Ni deposit in Qinghai by geogas and mercury gas measurement. Gold Sci. Technol. 2009, 17, 54–57, (In Chinese with English Abstract). [Google Scholar]
- Gao, Y.Y.; Wang, M.Q.; Xia, X.Z.; Wang, T. Results of geogas test in exploring blind metallic deposits in alluvial plain. Contrib. Geol. Miner. Resour. Res. 2011, 26, 345–349, (In Chinese with English Abstract). [Google Scholar]
- Wan, W.; Wang, M.Q.; Hu, M.Y.; Gao, Y.Y. Identification of metal sources in geogas from the Wangjiazhuang copper deposit, Shandong, China: Evidence from lead isotopes. J. Geochem. Explor. 2017, 172, 167–173. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhou, S.C.; Tong, C.H.; Hu, B. The method and technique for improving the detection sensitivity of dynamic geogas survey. Geophys. Geochem. Explor. 2012, 36, 1064–1067, (In Chinese with English Abstract). [Google Scholar]
- Hu, B.; Zhou, S.C.; Liu, X.H.; Zhao, C.J.; Bao, X.K. Geogas survey experiment for exploration of concealed polymetallic deposit at great depth. Geophys. Geochem. Explor. 2012, 36, 1068–1072, (In Chinese with English Abstract). [Google Scholar]
- Cen, K.; Liu, X.L.; Peng, Z.; Chen, Y. The Application of the Aerosol Geochemical Exploration Method to the Jinwozi Gold Deposit. Geophys. Geochem. Explor. 2014, 38, 18–22, (In Chinese with English Abstract). [Google Scholar]
- Zhou, S.C.; Liu, X.H.; Bo, H.U. Geological significance of geogas field information. Geophys. Geochem. Explor. 2012, 36, 1044–1049, (In Chinese with English Abstract). [Google Scholar]
- Ding, X.T.; Zhou, S.C.; Zhao, C.J.; Zhao, F.; Liu, G.A.; Liu, J. The geogas and soil geochemical characteristics of Pb-Zn deposit in Dongshan, the western of Yunnan province. Metal Mine 2013, 42, 95–99, (In Chinese with English Abstract). [Google Scholar]
- Liu, C.; Cao, J.J.; Ke, H.L. Geogas characteristic of Yongshengde copper ores in the Northeastern Yunnan, China. Geol. Chem. Miner. 2011, 33, 201–207, (In Chinese with English Abstract). [Google Scholar]
- Liu, Z.; Fang, F.; Sun, S.; Tan, H.T.; Zhang, Z. Hubei li section of uranium anomaly and prospecting foreground analysis. Sichuan Nonferrous Met. 2013, 40–47, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.; Ye, R.; Liu, H.J.; Wu, G.D.; Wang, D.S. Deep-penetrating geochemical microscopic evidence in the hydrothermal uranium deposit exploration. World Nucl. Geosci. 2017, 34, 167–173, (In Chinese with English Abstract). [Google Scholar]
- Liu, Y.H.; Yang, K.; Chen, H.X.; Wang, H.H.; Luo, J.L.; Zhu, H.F. The application and significance of deep prospecting by using geogas survey in Xitian area, Hunan province. Geophys. Geochem. Explor. 2018, 42, 234–240, (In Chinese with English Abstract). [Google Scholar]
- Han, W.; Liu, H.Z.; Wang, C.W.; Song, Y.T.; Wang, Q.L.; Kong, M. Geochemical characteristics and indication significance of geogas survey in the Tianyu Cu-Ni deposit of Hami. Geophys. Geochem. Explor. 2019, 43, 502–508, (In Chinese with English Abstract). [Google Scholar]
- Wan, W.; Wang, M.Q.; Gao, Y.Y.; Qin, H.H.; Lai, D.R. Experimental study of geogas method to prospecting for concealed deposit in red soil regions of the south China. Contrib. Geol. Miner. Resour. Res. 2019, 34, 438–444, (In Chinese with English Abstract). [Google Scholar]
- Wang, Q.B.; Liang, B.; Liu, T.; Xu, Z.Q.; Geng, Y. Detection of concealed ore bodies in Jiajika rare metal orefield using geogas prospecting technology. Bull. Geol. Sci. Technol. 2020, 39, 85–93, (In Chinese with English Abstract). [Google Scholar]
- Reich, M.; Kesler, S.E.; Utsunomiya, S.; Palenik, C.S.; Chryssoulis, S.L.; Ewing, R.C. Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta 2005, 69, 2781–2796. [Google Scholar] [CrossRef]
- Shuster, J.; Reith, F.; Cornelis, G.; Parsons, J.E.; Parsons, J.M.; Southam, G. Secondary gold structures: Relics of past biogeochemical transformations and implications for colloidal gold dispersion in subtropical environments. Chem. Geol. 2017, 450, 154–164. [Google Scholar] [CrossRef]
- Shuster, J.; Reith, F. Reflecting on gold geomicrobiology research: Thoughts and considerations for future endeavors. Minerals 2018, 8, 401. [Google Scholar] [CrossRef]
- Wyatt, M.A.; Johnston, C.W.; Magarvey, N.A. Gold nanoparticle formation via microbial metallophore chemistries. J. Nanopart. Res. 2014, 16, 2212. [Google Scholar] [CrossRef]
- Reith, F.; Rea, M.A.D.; Sawley, P.; Zammit, C.M.; Nolze, G.; Reith, T.; Rantanen, K.; Bissett, A. Biogeochemical cycling of gold: Transforming gold particles from arctic Finland. Chem. Geol. 2018, 483, 511–529. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, M.Q.; Gao, Y.Y.; Ouyang, H. Tracing the source of geogas materials with the lead isotope method in the Wangjiazhuang copper ore deposit of Zouping, Shandong province. Geophys. Geochem. Explor. 2014, 38, 23–27, (In Chinese with English Abstract). [Google Scholar]
- Liu, X.M.; Chen, Y.L.; Wang, X.Q. Research on isotope identification for anomalous sources of deep-penetration geochemistry: Two cases of Jinwozi Au deposit, Xinjiang and Bairendaba-Weilasituo Polymetallic Deposit, Inner Mongolia. Geoscience 2012, 26, 1104–1116, (In Chinese with English Abstract). [Google Scholar]
- Gao, Y.Y.; Wang, M.Q.; Yang, X.U. Study on the geogas composition of the concealed metal deposit and its background area: Take Zhangquanzhuang gold deposit as an example. Geol. Surv. Res. 2010, 33, 198–206, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.; Ye, R.; Zhang, B.M.; Yang, R.; Qi, F.Y. The tentative geogas survey in the Jinwozi Concealed V210 gold deposit of Gobi area. Geophys. Geochem. Explor. 2012, 36, 263–266, (In Chinese with English Abstract). [Google Scholar]
- Zhang, X.N.; Wang, M.Q.; Xu, G.M. Distortion reason of geogas to indicate concealed deposits and its reacting mechanism. Geol. Surv. Res. 2007, 30, 178–185, (In Chinese with English Abstract). [Google Scholar]
- Lu, F.L. Pilot Study of Geogas Geochemical Exploration for Coverage Area in Arongqi, Inner Mongolia. Master Thesis, China University of Geosciences (Beijing), Beijing, China, 2019. (In Chinese with English Abstract). [Google Scholar]
- Wang, X.J.; Lu, M.; Wang, Z.K.; Ye, R. Characteristics of geogas anomalies measured in the Shenjiayao gold deposit of Shan county, Henan province. Geol. Explor. 2016, 52, 667–677, (In Chinese with English Abstract). [Google Scholar]
- Voltattorni, N.; Lombardi, S.; Beaubien, S.E. Gas migration from two mine districts: The Tolfa (Lazio, Central Italy) and the Neves-Corvo (Baixo Alentejo, Portugal) case studies. J. Geochem. Explor. 2015, 152, 37–53. [Google Scholar] [CrossRef]
- Hu, X.Y.; Cao, J.J. Effect of quaternary sediments of Hengyang basin, Hunan on geo-gas prospecting. Metal Mine 2009, 400, 111–113, (In Chinese with English Abstract). [Google Scholar]
- Hinkle, M.E. Environmental conditions affecting concentrations of He, CO2, O2 and N2 in soil gases. Appl. Geochem. 1994, 9, 53–63. [Google Scholar] [CrossRef]
- Mi, Y.B.; Cao, J.J.; Wu, Z.Q.; Wang, Z.H. Transmission electron microscopy analysis on fault gouges from the depths of the Bairendaba polymetallic deposit, Inner Mongolia, China. J. Nanosci. Nanotechnol. 2017, 17, 6549–6557. [Google Scholar] [CrossRef]
- Hu, G.; Cao, J.J. Occurrence and significance of natural ore-related Ag nanoparticles in groundwater systems. Chem. Geol. 2019, 515, 9–21. [Google Scholar] [CrossRef]
- Liu, X.; Cao, J.J.; Dang, W.Q.; Lin, Z.X.; Qiu, J.W. Nanoparticles in groundwater of the Qujia deposit, eastern China: Prospecting significance for deep-seated ore resources. Ore Geol. Rev. 2020, 120, 103417. [Google Scholar] [CrossRef]
- Hu, G.; Cao, J.J.; Wang, C.Y.; Lu, M.Q.; Lin, Z.X. Study on the characteristics of naturally formed TiO2 nanoparticles in various surficial media from China. Chem. Geol. 2020, 550, 119703. [Google Scholar] [CrossRef]
- Yi, Z.B.; Cao, J.J.; Jiang, T.; Wang, Z.Y. Characterization of metal-bearing particles in groundwater from the Weilasituo Zn-Cu-Ag deposit, Inner Mongolia, China: Implications for mineral exploration. Ore Geol. Rev. 2020, 117, 103270. [Google Scholar] [CrossRef]
- Ge, L.Q.; Tong, C.H.; Shen, S.P.; Yang, F.G.; Xiong, S.T. Geogas characters on concealed fault zone. Nucl. Technol. 1998, 21, 238–241, (In Chinese with English Abstract). [Google Scholar]
- Mörner, N.A.; Etiope, G. Carbon degassing from the lithosphere. Global Planet. Chang. 2002, 33, 185–203. [Google Scholar] [CrossRef]
- Cao, J.J.; Li, Y.K.; Jiang, T.; and Hu, G. Sulfur-containing particles emitted by concealed sulfide ore deposits: An unknown source of sulfur-containing particles in the atmosphere. Atmos. Chem. Phys. 2015, 15, 6959–6969. [Google Scholar] [CrossRef]
- Lippmann-Pipke, J.; Erzinger, J.; Zimmer, M.; Kujawa, C.; Boettcher, M.; Van Heerden, E.; Bester, A.; Moller, H.; Stroncik, N.A.; Reches, Z. Geogas transport in fractured hard rock–Correlations with mining seismicity at 3.54 km depth, TauTona gold mine, South Africa. Appl. Geochem. 2011, 26, 2134–2146. [Google Scholar] [CrossRef]
- Tong, C.H.; Li, X.L.; Li, J.C.; Wu, X.P. Geogas method-a new technique of searching for deep or concealed gold deposits. Comput. Tech. Geophys. Geochem. Explor. 1996, 18, 13–16, (In Chinese with English Abstract). [Google Scholar]
- Cao, J.J. The effect factors and the present state of geogas measurement study. Hunan Geol. 2001, 20, 154–156, (In Chinese with English Abstract). [Google Scholar]
- Zhu, J.; Zhou, S.C.; Liu, J.; Wang, X.H.; Zhang, G.Y. Discussion of factors affecting results of geogas prospecting. Mod. Min. 2014, 537, 62–64. (In Chinese) [Google Scholar]
- Adushkin, V.V.; Andreev, S.N.; Popel, S.I. Cavitation mechanism of formation of nano- and microsize particles of minerals in ore deposits. Geol. Ore Deposits. 2004, 46, 313–320. [Google Scholar]
- Filimonova, L.G.; Trubkin, N.V. Micro-and nanoparticles of zincite and native zinc from disseminated mineralization of metasomatic rocks in the Dukat ore field. Geol. Ore Deposits 2008, 50, 135–144. [Google Scholar] [CrossRef]
- Hough, R.M.; Noble, R.R.P.; Hitchen, G.J.; Hart, R.; Reddy, S.M.; Saunders, M.; Clode, P.; Vaughan, D.; Lowe, J.; Gray, D.J.; et al. Naturally occurring gold nanoparticles and nanoplates. Geology 2008, 36, 571–574. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Reich, M. An overview of the platinum-group element nanoparticles in mantle-hosted chromite deposits. Ore Geol. Rev. 2017, 81, 1236–1248. [Google Scholar] [CrossRef]
- Verdugo-Ihl, M.R.; Ciobanu, C.L.; Slattery, A.; Cook, N.J.; Ehrig, K.; Courtney-Davies, L. Copper-arsenic nanoparticles in hematite: Fingerprinting fluid-mineral interaction. Minerals 2019, 9, 388. [Google Scholar] [CrossRef]
- Li, R.H.; Wang, X.Q.; Yang, L.Q.; Zhang, B.M.; Liu, Q.Q.; Liu, D.S. The characteristic of microstructural deformation of gold bearing pyrite in Jiaodong: The links between nanoscale gold enrichment and crystal distortion. Ore Geol. Rev. 2020, 122, 103495. [Google Scholar] [CrossRef]
- Adushkin, V.V.; Andreev, S.N.; Popel, S.I. Formation of nano-and microspherules of minerals in ore deposits depending on depth of host rock occurrence. Geol. Ore Depos. 2006, 48, 237–243. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhang, B.M.; Liu, X.M. Nanogeochemistry: Deep-penetrating geochemical exploration through cover. Earth Sci. Front. 2012, 19, 101–112, (In Chinese with English Abstract). [Google Scholar]
- Yi, Z.B.; Fu, W.; Zhao, Q.; Lu, H.T.; Fu, X.N.; Li, P.Q.; Luo, P.; Han, Z.X.; Tan, Z.Q.; Xu, C. Characterization of nano-minerals and nanoparticles in supergene rare earth element mineralization related to chemical weathering of granites. Am. Mineral. 2023, 108, 1461–1475. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Utsunomiya, S.; Kogagwa, M.; Green, L.; Gilbert, S.; Wade, B. Gold-telluride nanoparticles revealed in arsenic-free pyrite. Am. Mineral. 2012, 97, 1515–1518. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Reich, M.; Kesler, S.E.; Ewing, R.C.; Hough, R.; Walshe, J. Trace metal nanoparticles in pyrite. Ore Geol. Rev. 2011, 42, 32–46. [Google Scholar] [CrossRef]
- Ye, R.; Zhang, B.M.; Wang, Y. Mechanism of the migration of gold in desert regolith cover over a concealed gold deposit. Geochem. Explor. Environ. Anal. 2015, 15, 62–71. [Google Scholar] [CrossRef]
- Fairbrother, L.; Brugger, J.; Shapter, J.; Laird, J.S.; Southam, G.; and Reith, F. Supergene gold transformation: Biogenic secondary and nano-particulate gold from arid Australia. Chem. Geol. 2012, 320, 17–31. [Google Scholar] [CrossRef]
- Zhmodik, S.M.; Kalinin, Y.A.; Roslyakov, N.A.; Mironov, A.G.; Mikhlin, Y.L.; Belyanin, D.K.; Nemirovskaya, N.A.; Spiridonov, A.M.; Nesterenko, G.V.; Airiyants, E.V.; et al. Nanoparticles of noble metals in the supergene zone. Geol. Ore Deposits 2012, 54, 141–154. [Google Scholar] [CrossRef]
- Shuster, J.; Lengke, M.; Márquez-Zavalía, M.F.; Southam, G. Floating gold grains and nanophase particles produced from the biogeochemical weathering of a gold-bearing ore. Econ. Geol. 2016, 111, 1485–1494. [Google Scholar] [CrossRef]
- Liu, R.; Cao, J.J.; Deng, Y.K.; Wang, G.Q.; Liu, X. Formation of nano- or near-nanoparticles via oxidation in the Dabaoshan concealed deposit, Guangdong province. Arab. J. Geosci. 2020, 13, 1061. [Google Scholar] [CrossRef]
- Osovetsky, B.M. Aggregation of nanogold particles in the environment. Nat. Resour. Res. 2016, 25, 241–253. [Google Scholar] [CrossRef]
- Reith, F.; Cornelis, G. Effect of soil properties on gold-and platinum nanoparticle mobility. Chem. Geol. 2017, 466, 446–453. [Google Scholar] [CrossRef]
- Fu, Y.H.; Wan, Q.; Qin, Z.H.; Nie, X.; Yu, W.B.; Li, S.S. The effect of pH on the sorption of gold nanoparticles on illite. Acta Geochim. 2020, 39, 172–180. [Google Scholar] [CrossRef]
- Christenson, B.W.; Malmqvist, L.; Kristiansson, K.; Finlayson, J.B. Soil Gas Trace Metal Transport-The GEOGAS Method Applied to NZ Epithermal and Geothermal Environments. In Proceedings of the 10th New Zealand Geothermal Workshop, Geothermal Institute of the University of Auckland and the Centre for Continuing Education, Auckland, New Zealand, 2–4 November 1988; pp. 155–160. [Google Scholar] [CrossRef]
- He, D.F. Structure of unconformity and its control on hydrocarbon accumulation. Petrol. Explor. Dev. 2007, 34, 142–149, (In Chinese with English Abstract). [Google Scholar]
- Zou, C.N.; and Tao, S.Z. Geological characteristics of large gas provinces and large gas fields in China. Sci. China Ser. D 2008, 51, 14–35. [Google Scholar] [CrossRef]
- Plet, C.; Noble, R.R.P. Soil gases in mineral exploration: A review and the potential for future developments. Geochem. Explor. Environ. Anal. 2023, 23, geochem2023-008. [Google Scholar] [CrossRef]
- Hu, G.; Cao, J.j.; Lai, P.X.; Hopke, P.K.; Holub, R.F.; Zeng, J.N.; Wang, Z.H.; Wu, Z.Q. Characteristics and geological significance of particles on fractures from the Dongshengmiao polymetallic pyrite deposit, Inner Mongolia, China. Geochem. Explor. Environ. Anal. 2015, 15, 373–381. [Google Scholar] [CrossRef]
- Wang, G.Q.; Cao, J.J.; Dai, D.L. TEM analysis of nano-or near-nanoparticles in fault gouge from the Kaxiutata iron deposit (CHN) and the implications for ore body exploration. J. Geochem. Explor. 2019, 207, 106390. [Google Scholar] [CrossRef]
- Lu, M.; Cao, J.J.; Wang, Z.Y.; Wang, G.Q. Characteristics of Naturally Formed Nanoparticles in Various Media and Their Prospecting Significance in Chaihulanzi Deposit. Minerals 2022, 12, 1289. [Google Scholar] [CrossRef]
- Zhang, B.M.; Wang, X.Q.; Han, Z.X.; Liu, H.L.; Liu, D.S.; Lu, Y.X.; Sun, B.B. Evidence of metal migration over concealed gold deposit in loess terrain and its prospecting significance. Appl. Geochem. 2022, 145, 105422. [Google Scholar] [CrossRef]
- Li, J.; Zhang, B.M.; Gong, Q.J.; Liu, H.L.; Liu, N.Q. Microscopic Morphology and Indicative Significance of Nanoscale Au Particles in Soils and Fault Muds: A Case Study of Jiaojia, Shandong Province. Appl. Sci. 2023, 13, 2126. [Google Scholar] [CrossRef]
- Wang, X.Q.; Xu, S.F.; Chi, Q.H.; Liu, X.M. Gold geochemical provinces in China: A micro- and nanoscale formation mechanism. Acta Geol. Sin. 2013, 87, 1–8, (In Chinese with English Abstract). [Google Scholar]
- Anand, R.R.; Aspandiar, M.F.; Noble, R.R.P. A review of metal transfer mechanisms through transported cover with emphasis on the vadose zone within the Australian regolith. Ore Geol. Rev. 2016, 73, 394–416. [Google Scholar] [CrossRef]
- Reith, F.; Stewart, L.; Wakelin, S.A. Supergene gold transformation: Secondary and nano-particulate gold from southern New Zealand. Chem. Geol. 2012, 320, 32–45. [Google Scholar] [CrossRef]
- Sanyal, S.K.; Shuster, J.; Reith, F. Cycling of biogenic elements drives biogeochemical gold cycling. Earth-Sci. Rev. 2019, 190, 131–147. [Google Scholar] [CrossRef]
- Wang, D.H.; Liu, L.J.; Hou, J.L.; Dai, H.Z.; Tian, S.H. A preliminary review of the application of “five levels + basement” model for Jiajika-style rare metal deposits. Earth Sci. Front. 2017, 24, 1–7, (In Chinese with English Abstract). [Google Scholar]
- Dai, H.Z.; Wang, D.H.; Liu, L.J.; Yu, Y.; Dai, J.J. Geochronology and geochemistry of Li (Be)-bearing granitic pegmatites from the Jiajika superlarge Li-polymetallic deposit in Western Sichuan, China. J. Earth Sci. China 2019, 30, 707–727. [Google Scholar] [CrossRef]
- Xia, X.H. Ore-forming characteristics and genetic discussion of the Dongshengmiao polymetallic pyrite deposits in the Langshan Metallogenic Belt, Inner Mongolia. Miner. Depos. 1992, 11, 374–383, (In Chinese with English Abstract). [Google Scholar]
- Guo, Z.J.; Kong, M.; Zhang, H.; Yang, F.; Xu, R.T.; Wang, C.W.; Wang, Q.B.; Song, Y.T.; Han, W. Landscape division suitable for geochemical exploration. Geophys. Geochem. Explor. 2015, 39, 12–15, (In Chinese with English Abstract). [Google Scholar]
- Liu, D.S.; Chi, Q.H.; Wang, X.Q.; Chen, Y.Y.; Nie, L.S.; Yang, F. National-Scale Cobalt Geochemical Mapping of Exposed Crust in China. Minerals 2022, 12, 1220. [Google Scholar] [CrossRef]
- Sun, Z.J.; Liu, Z.H.; Yu, Z.W.; Li, W.C.; Liang, J.Q. The disturbance mechanism of the eolian sand to the migration of ore-forming elements in stream sediments in Qinghai province. Geophys. Geochem. Explor. 2003, 27, 167–170, (In Chinese with English Abstract). [Google Scholar]
- Yu, J.S.; Sun, Z.J.; Zhang, H.; Liu, H.Z.; Cen, K. Detail landscape soil survey technology for high-cold limnetic hills in the Qinghai province. Geol. Prospect. 2005, 41, 56–59, (In Chinese with English Abstract). [Google Scholar]
- Wang, B.L.; French, H.M. Climate controls and high-altitude permafrost, Qinghai-Xizang (Tibet) Plateau, China. Permafr. Periglac. Process. 1994, 5, 87–100. [Google Scholar] [CrossRef]
- Wu, Q.B.; Zhang, T.J.; Liu, Y.Z. Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Glob. Planet. Chang. 2010, 72, 32–38. [Google Scholar] [CrossRef]
Deposit | Composition | Size (nm) | Morphology | Reference |
---|---|---|---|---|
Dongji Au deposit, Shandong | Si, Al, S, Ca, Fe, Mg, K, Cu | n–n × 102 | Amorphous and microcrystalline aggregates | [18] |
Changkeng Au deposit, Guangdong | Au, Hg-S-O-Si-Cl-K, Pb-N-O-Sn, Pb-S-O-Fe, Zn-Sn-O-Si-Br-Fe | n × 10–n × 102 | Irregular, needle-shaped, or rhombic plate-shaped | [48] |
Tongchanghe Cu mine, Guizhou | Cu, Cu-Fe, Cr-Fe-Cu | Individuals: 5–40; aggregations: 20–150 | Individuals: subcircular, elliptical, polygonal, or elongate; aggregations: subcircular or elliptical | [49] |
Fankou Pb-Zn deposit, Guangdong | Pb-(Mo/Cu), Zn-Sn-Cr, Zn-S-O, Pb-Zn-(Mo), Pb-Zn-Sb-As-Ge | 10–300 | Single particles: irregular, spherical, or trigonal plate-shaped; aggregations: globular, catenarian, or irregularly shaped | [50] |
Zhou’an Cu-Ni deposit, Henna | Cu, Cu-Fe, Cu-Ti, Cu-Ag, Cu-Cr, Cu-Fe-Mn | n–n × 102 | Spherical, ellipsoid, grape-shaped, or polyhedral spheres; with a crystal appearance and an ordered crystal structure | [21] |
Kaxiutata Fe deposit, Inner Mongolia | F-, Cu, Zn, Bi, M-, Pb | n × 10–n × 102 | Semi-oval, triangular, cloud-like, horsetail, elliptical, or irregular | [51] |
Dongshengmiao polymetallic pyrite deposit, Inner Mongolia | S-(Cu/Zn/Pb/Mo), S-Fe-Zn-(Pb), S-Fe-Cu-(Mo), Cr-Mn-Fe | 5–400 | Sub-circular, elliptical, or irregular | [52] |
C-(Fe/Zn/Au/Cu/Pb) | n × 10–n × 102 | Sub-circular or ellipsoid | [53] | |
Jinwozi Au deposit, Xinjiang | Cu, Cu-Fe-Zn, Cu-Ti, Cu-Au | n × 10–n × 102 | Spherical, ellipsoid, grape-shaped, or polyhedral spheres; with a crystal appearance and an ordered crystal structure | [54] |
Yueyang Ag-Au-Cu ore block, Fujian | Au, Cu, Au-Cu-Mo, Au-Cu, Cu-Co-Mo, Cu-Fe | n–n × 102 | Granular, spherical, polygonal spherical, or cluster-like aggregates; with a crystal appearance, and an ordered crystal structure | [22,54] |
Kafang Cu deposit, Yunnan | Cu-Ag-Co-Fe, CuSO4;, WO3, TiO2, Pb and Fe oxides | 20–300 | Irregular, round, slab-flaky, or quadrilateral | [55] |
Qingmingshan Cu-Ni sulfide deposit, Guangxi | Fe-Co-(Cu/Zn) | 50–500 | Nearly elliptical, nearly spherical, drop-shaped, or nearly rectangle | [56] |
Bingba Cu deposit, Guizhou | Fe-Cu-Zn-(Mn/O/As), Zn-Fe-Kr-SiO2, Pb-Kr-Zn-O | n–300 | Chain-shaped, round, and irregular | [57] |
Gongpoquan porphyry Cu deposit, Gansu | Pb, Cu, Pb-Zn, Cu-Fe-(Mn/Ti), Mn-Fe-Ti, Cu-Ti | n–n × 10 | Sphere, or polygonal granule; with an ordered structure | [58] |
Shenjiayao Au deposit, Henna | Cu, Cu-Au-(Pb), Cu-Ti-Fe-Mo, Cu-Au-Ag-Mg-Fe-S | n–n × 102 | Sphere, oval, polygon, single pellets, chain, or irregular pellets; with an ordered internal structure | [54,59] |
Bairendaba Pb-Zn deposit, Inner Mongolia | Cu, Pb, Cu-Si-O, Zn-Fe-O, Zn-Y-Na-S-O, Pb-K-Na-S-O | n × 10–n × 102 | Round, elliptic, ball-shaped, or flocculent shape | [60] |
Deposit or Area | Element Association | Buried Depth (m) | Sampling Method | Hole (or Sampling) Depth (m) | Trapping Medium | References |
---|---|---|---|---|---|---|
Liaojie Au ore deposit, Yunnan | Zn, As, Sb, Cs, Cr, La, Sm, Sc, K, Au, Ag | 50~200 | SS | [76] | ||
Dongyi Au deposit, Shandong | Au, Cr, Zn, Sb, As, La, Sm, Na, Sc, Fe | ~150; 200~400 | SS | 0.5~0.6 | [72,77] | |
Dayinggezhuang Au deposit, Shandong | Au, As, Sb, Hg, Bi, K | 250~330 | SS | 0.6 | Aqua regia and foam | [16] |
Chaihulanzi Au deposit, Inner Mongolia | Au | 75~100 | AS | (0.5–0.7) | Foam plastic | [78] |
Budunhua Cu deposit, Inner Mongolia | Cu, Au | 430~530 | AS | (0.5–0.7) | Foam plastic | [78] |
Laoyanghao Au ore district, Inner Mongolia | Au, Ag, Cu, Pb, Ni | ~100 | AS | 0.5~1.0 | Foam plastic | [79] |
Salbulack Au deposit, Xinjiang | Au, Sb, Zn, Fe, K, Sc | AS | 0.4~0.5 | [77] | ||
Mofancun prospecting area, Sichuan | Au, Sb, As, K, Al, Fe, La, Zn | AS | 0.4~0.5 | [77] | ||
Chaihuolanzi Au deposit, Inner Mongolia | Au | [80] | ||||
Tuanjie Au deposit, Heilongjiang | Au, As, Sb, La, Sm, Se | SS | 0.4~0.5 | Foam plastic | [81] | |
Gadaban district, Qinghai | Au, Ag, Cu, Zn, Ba, Sr | AS | (0.4) | Aqua regia, nitric acid, and foam plastic | [82] | |
Heihe Basin, Qinghai | Au, Ag, Cu, Pb, Zn | AS | 0.4~0.8 (0.35) | Aqua regia and nitric acid | [83] | |
Beiqilian area (Pb-Zn ore body) | Au, Ba, Zn, Pb | 150 | AS | 0.5~0.8 | Aqua regia | [84] |
Jiaolongzhang Pb-Zn deposit, Gansu | Cu, Pb, Zn, Cd, Ag, Bi, Ni, Sb, Tb, Tl, Yb | ~100 | AS | 0.5–0.8; 0.6–1.0 (0.4–0.5) | Nitric acid | [73,85,86] |
Lashuixia Cu–Ni deposit, Qinghai | Cu, Pb, Zn, Ag, Mn, Co | AS | 0.5~0.8 (0.3~0.4) | Aqua regia | [87,88] | |
Zhangquanzhuang Au Deposit, Hebei | Cu, Pb, Zn, Cd, Ag, Bi, Ni, Sb, Tb, Tl, Yb | ~50 | AS | - | - | [49,85,88,89] |
Wangjiazhuang Cu ore deposit, Shandong | Ag, Cu, Pb, Zn, Bi, Co, Ni, Sb | 80–120 | AS | - | - | [85,89] |
Changpai U exploration area, Guangdong | U | 600, 700 | AS | Nitric acid | [90] | |
Dachang Sn polymetallic ore deposit, Guangxi | Zu, Cu, Pb, W, Mo, Bi, Rb, Cd, Hg, Au | >800 | AS | (0.8) | Nitric acid | [91] |
210 Au deposit, Xinjiang | Au, Ag, Cu, Fe, Sb, Ca, REE | 4.5~15 | AS | (0.5–0.8) | Aqua regia and foam | [65,92] |
Zn-Cu deposits in the Dachang area, Guangxi | Cu, Pb, Zn, W, Mo, Bi, Rb, Cd, Hg, Au | >800 | AS | (0.8) | BV-III grade pure nitric acid and deionized water | [76,93] |
Dongshan Pb-Zn deposit, Yunnan | Pb, Zn, Cu, Au, As, La, Sr | AS | [94] | |||
Huangshaping-Liaojiawan Ag-Pb-Zn polymetallic ore deposit, Hunan | Cu, Pb, Zn, As, W, Mo, Bi, Mn, Ag | 180 | AS | 0.5, 0.8 | BV-III grade pure nitric acid and deionized water | [77,93,95] |
Lijiaduan U deposit, Hubei | U, Pb, Mo, Bi, As, Cu, Mn, Ag, Cd, W, Th, Sc, Li, Cs, Sr, REE | AS | [96] | |||
Renhua U exploration aera, Guangdong | U, REE, Cd, Mn, Pb, Zn | 110~190; >560 | AS | (0.8) | BV-III grade pure nitric acid and deionized water | [74] |
Dongshengmiao polymetallic pyrite deposit, Inner Mongolia | Fe, Cu, Pb, Zn | Tens to hundreds | SS | Plastic film | [52] | |
Yueyang Ag-Au deposit, Fujian | Ag, Au, Cu, As | 80~700 | - | - | Aqua regia and foam plastics | [75] |
Shengjiayao Au deposit, Henan | Au, Cu, Pb, Zn, Ag | <350 | AS | 0.6–0.8 | Aqua regia and foam | [54,59] |
Hongshanzi U prospecting area | U, Pb, Cr, Nd, Th, Mo, Cu, Zn, Ag, W | 150~350 | AS | 0.7–0.8 | Aqua regia and foam plastic | [97] |
Xitian area (W-Sn polymetallic ore deposit), Hunan | Sn, W, Pb, Zn, Ag, Cu, Ni, Co, Sb, Bi, Mo | 190 (bottom elevation) | AS | 0.5~0.8 | Nitric acid | [98] |
Tianyu Cu-Ni deposit, Xinjiang | Ni, Co, Cu, Fe, V | AS | 0.5~1.0 | Nitric acid | [99] | |
Debao Cu deposit, Guangxi | Cu, Pb, Zn, Bi, Ni, Sb, Ag, Cd, Mn, Ce | 100~300 | AS | 0.6~1.0 (0.4~0.5) | Nitric acid | [100] |
Jiajika superlarge Li-polymetallic deposit, Sichuan | Li, Be, Rb, Cs, Na, B | ~100 | AS | 0.5~0.6 | Nitric acid | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Wang, X.; Cheng, Z.; Zhang, B.; Du, Z.; Yan, T.; Yuan, H.; Li, X.; Qiao, Y.; Liu, H. Geogas-Carried Metal Prospecting for Concealed Ore Deposits: A Review of Case Studies in China. Minerals 2023, 13, 1553. https://doi.org/10.3390/min13121553
Wang Q, Wang X, Cheng Z, Zhang B, Du Z, Yan T, Yuan H, Li X, Qiao Y, Liu H. Geogas-Carried Metal Prospecting for Concealed Ore Deposits: A Review of Case Studies in China. Minerals. 2023; 13(12):1553. https://doi.org/10.3390/min13121553
Chicago/Turabian StyleWang, Qiang, Xueqiu Wang, Zhizhong Cheng, Bimin Zhang, Zezhong Du, Taotao Yan, Huixiang Yuan, Xiaolei Li, Yu Qiao, and Hanliang Liu. 2023. "Geogas-Carried Metal Prospecting for Concealed Ore Deposits: A Review of Case Studies in China" Minerals 13, no. 12: 1553. https://doi.org/10.3390/min13121553
APA StyleWang, Q., Wang, X., Cheng, Z., Zhang, B., Du, Z., Yan, T., Yuan, H., Li, X., Qiao, Y., & Liu, H. (2023). Geogas-Carried Metal Prospecting for Concealed Ore Deposits: A Review of Case Studies in China. Minerals, 13(12), 1553. https://doi.org/10.3390/min13121553