Numerical Simulation Study of the Effect of Fine View Pore Structure on Rock Burst
Abstract
:1. Introduction
2. Establishment of the Numerical Model
2.1. Parameters and Boundary Conditions of the Coal Rock Model
2.2. Setting of Pore Position
3. Analysis of the Rupture Process of the Uniaxially Compressed Coal Rock Body
4. Impact Damage Index Analysis of Pore Coal Rock Mass
4.1. Uniaxial Compressive Strength Analysis
4.1.1. Analysis of the Influence Law of Pore Structure on Compressive Strength
4.1.2. Mathematical Relationship between Pore Structure Characteristics and Compressive Strength
4.2. Impact Energy Index Analysis
4.2.1. Effect of Pore Structure on Elastic and Plastic Softening Modulus
4.2.2. Analysis of the Influence Law of Pore Structure on Impact Energy Index
4.2.3. Mathematical Relationship between Pore Structure and Impact Energy Index
4.3. Elastic Energy Index Analysis
5. Discussion
- (i)
- Relationship between pore structure and uniaxial compressive strength
- (ii)
- Relationship between pore structure and impact energy index
- (iii)
- Relationship between pore structure and elastic energy index
6. Conclusions
- The pore structure in the coal rock profoundly affects the evolution of the stress and displacement fields. The analysis shows that the evolution of the displacement fields corresponds to the development of the internal damage and deformation of the model, the stress concentration around the pores is easy to occur, microcracks are generated, and the expansion of these microcracks causes changes in the mechanical properties of the specimen and weakens its ability to accumulate energy.
- The pore structure in the coal rock leads to the reduction in uniaxial compressive strength. by fitting the porosity and pore diameter to the uniaxial compressive strength of the coal rock model, the relationship between uniaxial compressive strength of coal rock and porosity and pore diameter was obtained in the range of porosity (0%~10%) and pore diameter (0.25~2.0 mm) in Equation (7).
- The pore structure in the model has different degrees of attenuating effects on its compressive strength, elastic modulus, and plastic softening modulus, which in turn affect its energy storage and dissipation processes in the uniaxial compression state. By fitting the porosity, pore diameter, and model impact energy index, the relationship between the pore grouping of different pore sizes and the model impact energy index of coal rock in the range of porosity (0%–10%) and pore diameter (0.25–2.0 mm) was calculated by Equation (12).
- The pore model produces plastic deformation earlier in the experiment, weakening the ability to accumulate deformation; during the unloading process, the matrix element that produces plastic deformation loses the ability to recover the deformation, and the friction between the cracks also inhibits the rebound of the material, making the elastic energy index of the specimen decrease. The numerical simulation results show that the pore size is the dominant factor affecting the elastic energy index.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, A.; Dou, L.; Cai, W.; Gong, S.; Liu, S.; Jing, G. Case Study of Seismic Hazard Assessment in Underground Coal Mining Using Passive Tomography. Int. J. Rock Mech. Min. Sci. 2015, 78, 1–9. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, Q.; Wu, Q.; Wang, P.; Xue, Y.; Kong, P.; Gong, B. Fracture Failure Analysis of Hard and Thick Key Layer and Its Dynamic Response Characteristics. Eng. Fail. Anal. 2019, 98, 118–130. [Google Scholar] [CrossRef]
- Wang, H.; Shi, R.; Lu, C.; Jiang, Y.; Deng, D.; Zhang, D. Investigation of Sudden Faults Instability Induced by Coal Mining. Saf. Sci. 2019, 115, 256–264. [Google Scholar] [CrossRef]
- Wang, C.; Cao, A.; Zhu, G.; Jing, G.; Li, J.; Chen, T. Mechanism of Rock Burst Induced by Fault Slip in an Island Coal Panel and Hazard Assessment Using Seismic Tomography: A Case Study from Xuzhuang Colliery, Xuzhou, China. Geosci. J. 2017, 21, 469–481. [Google Scholar] [CrossRef]
- Vardar, O.; Zhang, C.; Canbulat, I.; Hebblewhite, B. Numerical Modelling of Strength and Energy Release Characteristics of Pillar-Scale Coal Mass. J. Rock Mech. Geotech. Eng. 2019, 11, 935–943. [Google Scholar] [CrossRef]
- Khan, M.; He, X.; Farid, A.; Song, D.; Li, Z.; Tian, X.; Ni, M. A Novel Geophysical Method for Fractures Mapping and Risk Zones Identification in a Coalmine, Northeast, China. Energy Rep. 2021, 7, 3785–3804. [Google Scholar] [CrossRef]
- Romashov, A.N.; Tsygankov, S.S. Generalized Model of Rock Bursts. J. Min. Sci. 1993, 28, 420–423. [Google Scholar] [CrossRef]
- Salamon, M.D.G. Stability, Instability and Design of Pillar Workings. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1970, 7, 613–631. [Google Scholar] [CrossRef]
- Chen, Z.H.; Tang, C.A.; Huang, R.Q. A Double Rock Sample Model for Rockbursts. Int. J. Rock Mech. Min. Sci. 1997, 34, 991–1000. [Google Scholar] [CrossRef]
- Ma, T.-H.; Tang, C.-A.; Tang, S.-B.; Kuang, L.; Yu, Q.; Kong, D.-Q.; Zhu, X. Rockburst Mechanism and Prediction Based on Microseismic Monitoring. Int. J. Rock Mech. Min. Sci. 2018, 110, 177–188. [Google Scholar] [CrossRef]
- Singh, S.P. Burst Energy Release Index. Rock Mech. Rock Eng. 1988, 21, 149–155. [Google Scholar] [CrossRef]
- Xu, Y.H.; Cai, M. Influence of Strain Energy Released from a Test Machine on Rock Failure Process. Can. Geotech. J. 2018, 55, 777–791. [Google Scholar] [CrossRef]
- Hudson, J.A.; Crouch, S.L.; Fairhurst, C. Soft, Stiff and Servo-Controlled Testing Machines: A Review with Reference to Rock Failure. Eng. Geol. 1972, 6, 155–189. [Google Scholar] [CrossRef]
- Cai, W.; Dou, L.; Si, G.; Cao, A.; He, J.; Liu, S. A Principal Component Analysis/Fuzzy Comprehensive Evaluation Model for Coal Burst Liability Assessment. Int. J. Rock Mech. Min. Sci. 2016, 81, 62–69. [Google Scholar] [CrossRef]
- Kidybiński, A. Bursting Liability Indices of Coal. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1981, 18, 295–304. [Google Scholar] [CrossRef]
- Wang, J.-A.; Park, H.D. Comprehensive Prediction of Rockburst Based on Analysis of Strain Energy in Rocks. Tunn. Undergr. Space Technol. 2001, 16, 49–57. [Google Scholar] [CrossRef]
- Yian, T.; Guangzhong, S.; Zhi, G. A composite index Krb criterion for the ejection characteristics of the burst rock. Chin. J. Geol. 1991, 26, 193–200. [Google Scholar]
- Martin, C.D.; Kaiser, P.K.; McCreath, D.R. Hoek-Brown Parameters for Predicting the Depth of Brittle Failure around Tunnels. Can. Geotech. J. 1999, 36, 136–151. [Google Scholar] [CrossRef]
- Mitri, H.S. Assessment of Horizontal Pillar Burst in Deep Hard Rock Mines. Int. J. Risk Assess. Manag. 2007, 7, 695–707. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Shi, X. Long-Term Prediction Model of Rockburst in Underground Openings Using Heuristic Algorithms and Support Vector Machines. Saf. Sci. 2012, 50, 629–644. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, J.; Xu, W.; Meng, Y. Prediction of Rock Burst Classification Using the Technique of Cloud Models with Attribution Weight. Nat. Hazards 2013, 68, 549–568. [Google Scholar] [CrossRef]
- Cai, W.; Dou, L.; Zhang, M.; Cao, W.; Shi, J.-Q.; Feng, L. A Fuzzy Comprehensive Evaluation Methodology for Rock Burst Forecasting Using Microseismic Monitoring. Tunn. Undergr. Space Technol. 2018, 80, 232–245. [Google Scholar] [CrossRef]
- Sabapathy, R.; Paul, P.S.; Mandal, P.K. Evaluation of Bump-Proneness of Underground Coal Mines Using Burst Energy Coefficient. Arab. J. Geosci. 2019, 12, 1–16. [Google Scholar] [CrossRef]
- Gong, F.; Yan, J.; Li, X.; Luo, S. A Peak-Strength Strain Energy Storage Index for Rock Burst Proneness of Rock Materials. Int. J. Rock Mech. Min. Sci. 2019, 117, 76–89. [Google Scholar] [CrossRef]
- Gong, F.; Wang, Y.; Wang, Z.; Pan, J.; Luo, S. A New Criterion of Coal Burst Proneness Based on the Residual Elastic Energy Index. Int. J. Min. Sci. Technol. 2021, 31, 553–563. [Google Scholar] [CrossRef]
- Dai, L.; Pan, Y.; Li, Z.; Wang, A.; Xiao, Y.; Liu, F.; Shi, T.; Zheng, W. Quantitative Mechanism of Roadway Rockbursts in Deep Extra-Thick Coal Seams: Theory and Case Histories. Tunn. Undergr. Space Technol. 2021, 111, 103861. [Google Scholar] [CrossRef]
- Dai, L.; Pan, Y.; Zhang, C.; Wang, A.; Canbulat, I.; Shi, T.; Wei, C.; Cai, R.; Liu, F.; Gao, X. New Criterion of Critical Mining Stress Index for Risk Evaluation of Roadway Rockburst. Rock Mech. Rock Eng. 2022, 55, 4783–4799. [Google Scholar] [CrossRef]
- Al-Harthi, A.A.; Al-Amri, R.M.; Shehata, W.M. The Porosity and Engineering Properties of Vesicular Basalt in Saudi Arabia. Eng. Geol. 1999, 54, 313–320. [Google Scholar] [CrossRef]
- Palchik, V. Influence of Porosity and Elastic Modulus on Uniaxial Compressive Strength in Soft Brittle Porous Sandstones. Rock Mech. Rock Eng. 1999, 32, 303–309. [Google Scholar] [CrossRef]
- Chang, C.; Zoback, M.D.; Khaksar, A. Empirical Relations between Rock Strength and Physical Properties in Sedimentary Rocks. J. Pet. Sci. Eng. 2006, 51, 223–237. [Google Scholar] [CrossRef]
- Nambiar, E.K.K.; Ramamurthy, K. Air-void Characterisation of Foam Concrete. Cem. Concr. Res. 2007, 37, 221–230. [Google Scholar] [CrossRef]
- Schaefer, L.N.; Kendrick, J.E.; Oommen, T.; Lavallée, Y.; Chigna, G. Geomechanical Rock Properties of a Basaltic Volcano. Front. Earth Sci. 2015, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Hilal, A.A.; Thom, N.H.; Dawson, A.R. On Void Structure and Strength of Foamed Concrete Made without/with Additives. Constr. Build. Mater. 2015, 85, 157–164. [Google Scholar] [CrossRef]
- Jamshidi, A.; Zamanian, H.; Zarei Sahamieh, R. The Effect of Density and Porosity on the Correlation between Uniaxial Compressive Strength and P-Wave Velocity. Rock Mech. Rock Eng. 2018, 51, 1279–1286. [Google Scholar] [CrossRef]
- He, J.; Gao, Q.; Song, X.; Bu, X.; He, J. Effect of Foaming Agent on Physical and Mechanical Properties of Alkali-Activated Slag Foamed Concrete. Constr. Build. Mater. 2019, 226, 280–287. [Google Scholar] [CrossRef]
- Namiki, A.; Tanaka, Y.; Okumura, S.; Sasaki, O.; Sano, K.; Takeuchi, S. Fragility and an Extremely Low Shear Modulus of High Porosity Silicic Magma. J. Volcanol. Geotherm. Res. 2020, 392, 106760. [Google Scholar] [CrossRef]
- Hughes, A.; Kendrick, J.E.; Lamur, A.; Wadsworth, F.B.; Wallace, P.A.; Di Toro, G.; Lavallée, Y. Frictional Behaviour, Wear and Comminution of Synthetic Porous Geomaterials. Front. Earth Sci. 2020, 8, 562548. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G. Nondestructive Rock Porosity Estimation by InfraRed Thermography Applied to Natural Stones. Constr. Build. Mater. 2022, 342, 127950. [Google Scholar] [CrossRef]
- Zengin, E.; Erguler, Z.A. Experimental Investigation of Pore-Fracture Relationship on Failure Behaviour of Porous Rock Materials. Bull. Eng. Geol. Environ. 2022, 81, 1–16. [Google Scholar] [CrossRef]
- Cao, A.; Liu, Y.; Jiang, S.; Hao, Q.; Peng, Y.; Bai, X.; Yang, X. Numerical Investigation on Influence of Two Combined Faults and Its Structure Features on Rock Burst Mechanism. Minerals 2021, 11, 1438. [Google Scholar] [CrossRef]
- Bubeck, A.; Walker, R.J.; Healy, D.; Dobbs, M.; Holwell, D.A. Pore Geometry as a Control on Rock Strength. Earth Planet. Sci. Lett. 2017, 457, 38–48. [Google Scholar] [CrossRef]
- Griffiths, L.; Heap, M.J.; Xu, T.; Chen, C.; Baud, P. The Influence of Pore Geometry and Orientation on the Strength and Stiffness of Porous Rock. J. Struct. Geol. 2017, 96, 149–160. [Google Scholar] [CrossRef]
- Obara, Y.; Tanikura, I.; Jung, J.; Shintani, R.; Watanabe, S. Evaluation of Micro-Damage of Concrete Specimens under Cyclic Uniaxial Loading by X-ray CT Method. J. Adv. Concr. Technol. 2016, 14, 433–443. [Google Scholar] [CrossRef] [Green Version]
- Heap, M.J.; Xu, T.; Chen, C. The Influence of Porosity and Vesicle Size on the Brittle Strength of Volcanic Rocks and Magma. Bull. Volcanol. 2014, 76, 1–15. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Bui, H.H.; Ngo, T.D.; Nguyen, G.D. Experimental and Numerical Investigation of Influence of Air-Voids on the Compressive Behaviour of Foamed Concrete. Mater. Des. 2017, 130, 103–119. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, G.; Zhang, R.; Cao, P.; Liu, Q.; Zhang, J.; Sun, Y.; Li, J.; Shen, Q.; Zhang, L. Numerical Simulation of Static Mechanical Properties of PMMA Microcellular Foams. Compos. Sci. Technol. 2020, 192, 108110. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, J.; Zhu, Y.; Zhang, J.; Luo, G.; Cao, P.; Shen, Q.; Zhang, L. Correlation Between the Structure and Compressive Property of PMMA Microcellular Foams Fabricated by Supercritical CO2 Foaming Method. Polymers 2020, 12, 315. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.M.; Kwan, A.K.H.; Chan, H.C. Mesoscopic Study of Concrete I: Generation of Random Aggregate Structure and Finite Element Mesh. Comput. Struct. 1999, 70, 533–544. [Google Scholar] [CrossRef]
- Wang, S.Y.; Sloan, S.W.; Tang, C.A. Three-Dimensional Numerical Investigations of the Failure Mechanism of a Rock Disc with a Central or Eccentric Hole. Rock Mech. Rock Eng. 2014, 47, 2117–2137. [Google Scholar] [CrossRef]
- Liang, Z.Z.; Tang, C.A.; Li, H.X.; Xu, T.; Zhang, Y.B. Numerical Simulation of 3-d Failure Process in Heterogeneous Rocks. Int. J. Rock Mech. Min. Sci. 2004, 41, 323–328. [Google Scholar] [CrossRef]
- Liang, Z.Z.; Xing, H.; Wang, S.Y.; Williams, D.J.; Tang, C.A. A Three-Dimensional Numerical Investigation of the Fracture of Rock Specimens Containing a Pre-Existing Surface Flaw. Comput. Geotech. 2012, 45, 19–33. [Google Scholar] [CrossRef]
- Lin, Y.; Li, C.; Ma, J.; Lei, M.; Huang, L. Effects of Void Morphology on Fracturing Characteristics of Porous Rock through a Finite-Discrete Element Method. J. Nat. Gas Sci. Eng. 2022, 104, 104684. [Google Scholar] [CrossRef]
- Dong, L.; Chen, Y.; Sun, D.; Zhang, Y. Implications for Rock Instability Precursors and Principal Stress Direction from Rock Acoustic Experiments. Int. J. Min. Sci. Technol. 2021, 31, 789–798. [Google Scholar] [CrossRef]
- You, W.; Dai, F.; Liu, Y.; Du, H.; Jiang, R. Investigation of the Influence of Intermediate Principal Stress on the Dynamic Responses of Rocks Subjected to True Triaxial Stress State. Int. J. Min. Sci. Technol. 2021, 31, 913–926. [Google Scholar] [CrossRef]
- Hao, Z.; Zuo, Y.; Liu, H.; Zhu, Z.; Lin, J.; Sun, W.; Pan, C.; Zheng, L. Mesoscopic Damage Evolution Characteristics of Jointed Sandstone under Different Loading Conditions. Geomech. Geophys. Geo-Energ. Geo-Resour. 2022, 8, 1–19. [Google Scholar] [CrossRef]
Specimen Number | Density | Uniaxial Compressive Strength | Elastic Modulus E/GPa | Poisson’s Ratio | Angle of Internal Friction |
---|---|---|---|---|---|
1 | 1.44 | 6.87 | 6.37 | 0.34 | 28 |
2 | 1.53 | 7.54 | 6.23 | 0.27 | 30 |
3 | 1.55 | 7.55 | 5.59 | 0.33 | 29.5 |
4 | 1.51 | 7.32 | 5.64 | 0.31 | 27 |
5 | 1.47 | 7.22 | 6.07 | 0.25 | 32 |
Average | 1.5 | 7.30 | 5.98 | 0.3 | 30 |
Materials | Density | Uniaxial Compressive Strength | Elastic Modulus E/GPa | Poisson’s Ratio | Angle of Internal Friction |
---|---|---|---|---|---|
Coal matrix | 1500 | 35.78 | 8.03 | 0.3 | 30 |
Pore structures | 1 × 10−8 | 0.1 | 1 × 10−14 | 0.498 | 30 |
Specimen Number | Porosity (%) | Pore Size (mm) | Uniaxial Compressive Strength (MPa) | Elastic Modulus E/(MPa) | Plastic Softening Modulus λ/(MPa) |
---|---|---|---|---|---|
Program 1 | 0 | 0 | 7.37 | 6330 | 9930 |
Program 2 | 5 | 0.5 | 6.14 | 5646 | 9360 |
Program 3 | 10 | 0.5 | 4.99 | 4956 | 9500 |
Program 4 | 5 | 1 | 5.18 | 5436 | 6780 |
Program 5 | 10 | 1 | 3.83 | 4580 | 5120 |
Program 6 | 5 | 1.5 | 4.79 | 5363 | 7590 |
Program 7 | 10 | 1.5 | 3.29 | 4388 | 4130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Lian, Q.; Shang, J.; Chen, X. Numerical Simulation Study of the Effect of Fine View Pore Structure on Rock Burst. Minerals 2023, 13, 146. https://doi.org/10.3390/min13020146
Yang H, Lian Q, Shang J, Chen X. Numerical Simulation Study of the Effect of Fine View Pore Structure on Rock Burst. Minerals. 2023; 13(2):146. https://doi.org/10.3390/min13020146
Chicago/Turabian StyleYang, Haoru, Qingwang Lian, Jin Shang, and Xinlin Chen. 2023. "Numerical Simulation Study of the Effect of Fine View Pore Structure on Rock Burst" Minerals 13, no. 2: 146. https://doi.org/10.3390/min13020146
APA StyleYang, H., Lian, Q., Shang, J., & Chen, X. (2023). Numerical Simulation Study of the Effect of Fine View Pore Structure on Rock Burst. Minerals, 13(2), 146. https://doi.org/10.3390/min13020146