Regional Quantitative Mineral Prospectivity Mapping of W, Sn, and Nb-Ta Based on Integrated Information in Rwanda, Central Africa
Abstract
:1. Introduction
2. Study Area
2.1. Geological Setting
2.1.1. Stratums
2.1.2. Magmatic Rocks
2.1.3. Structures
2.2. Metallogenic Characteristics
2.2.1. Ore-Controlling Factors
2.2.2. Mineral Alteration
3. Data and Methods
3.1. Data Processing
3.2. Modeling
3.3. Prediction
4. Results
4.1. Performance of RF
4.2. Metallogenic Belts and Prospective Areas
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Chica-Rivas, M. Predictive modelling of gold potential with the integration of multisource information based on random forest: A case study on the Rodalquilar area, Southern Spain. Int. J. Geogr. Inf. Sci. 2014, 28, 1336–1354. [Google Scholar] [CrossRef]
- Cargill, S.M.; Clark, A.L. Report on the activity of IGCP Project 98. J. Int. Assoc. Math. Geol. 1978, 10, 411–417. [Google Scholar] [CrossRef]
- Xiang, J.; Xiao, K.; Carranza, E.J.M.; Chen, J.; Li, S. 3D mineral prospectivity mapping with random forests: A case study of Tongling, Anhui, China. Nat. Resour. Res. 2020, 29, 395–414. [Google Scholar] [CrossRef]
- Yin, J.; Li, N. Ensemble learning models with a Bayesian optimization algorithm for mineral prospectivity mapping. Ore Geol. Rev. 2022, 145, 104916. [Google Scholar] [CrossRef]
- Silva dos Santos, V.; Gloaguen, E.; Hector Abud Louro, V.; Blouin, M. Machine learning methods for quantifying uncertainty in prospectivity mapping of magmatic-hydrothermal gold deposits: A case study from Juruena mineral province, northern Mato Grosso, Brazil. Minerals 2022, 12, 941. [Google Scholar] [CrossRef]
- Zuo, R.; Carranza, E.J.M. Support vector machine: A tool for mapping mineral prospectivity. Comput. Geosci. 2011, 37, 1967–1975. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 2015, 71, 804–818. [Google Scholar] [CrossRef]
- Mao, X.; Zhang, W.; Liu, Z.; Ren, J.; Bayless, R.C.; Deng, H. 3D mineral prospectivity modeling for the low-sulfidation epithermal gold deposit: A case study of the axi gold deposit, western Tianshan, NW China. Minerals 2020, 10, 233. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Chen, K.; Yang, Q.; Chen, J.; Wang, J.; Liu, J.; Xiang, Y.; Li, Y.; Rajesh, H.M. Mapping gold mineral prospectivity based on weights of evidence method in southeast Asmara, Eritrea. J. Afr. Earth Sci. 2021, 176, 104143. [Google Scholar] [CrossRef]
- Liu, L.; Lu, J.; Tao, C.; Liao, S. Prospectivity mapping for magmatic-related seafloor massive sulfide on the mid-Atlantic Ridge applying weights-of-evidence method based on GIS. Minerals 2021, 11, 83. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; Laborte, A.G. Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. Ore Geol. Rev. 2015, 71, 777–787. [Google Scholar] [CrossRef]
- Xiong, Y.; Zuo, R. GIS-based rare events logistic regression for mineral prospectivity mapping. Comput. Geosci. 2018, 111, 18–25. [Google Scholar] [CrossRef]
- Zhao, X.; Teng, S.; Lei, S. Mineral resources evaluation model research based on PSO algorithm and BP neural network. J. Inf. Comput. Sci. 2015, 12, 6257–6266. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, K.; Li, D. Back-propagation neural network and support vector machines for gold mineral prospectivity mapping in the Hatu region, Xinjiang, China. Earth Sci. Inform. 2018, 11, 553–566. [Google Scholar] [CrossRef]
- Sun, T.; Li, H.; Wu, K.; Chen, F.; Zhu, Z.; Hu, Z. Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from Southern Jiangxi Province, China. Minerals 2020, 10, 102. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zheng, X.; Wang, G.; Liu, D.; Cui, N. A multi-model ensemble approach for gold mineral prospectivity mapping: A case study on the Beishan region, western China. Minerals 2020, 10, 1126. [Google Scholar] [CrossRef]
- Li, T.; Xia, Q.; Zhao, M.; Gui, Z.; Leng, S. Prospectivity mapping for tungsten polymetallic mineral resources, Nanling metallogenic belt, south China: Use of random forest algorithm from a perspective of data imbalance. Nat. Resour. Res. 2020, 29, 203–227. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Xie, Z.; Cai, H.; Niu, P.; Liu, H. Mineral prospectivity mapping by deep learning method in Yawan-Daqiao area, Gansu. Ore Geol. Rev. 2021, 138, 104316. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.; Liu, C.; Wang, Y. Mineral prospectivity prediction via convolutional neural networks based on geological big data. J. Earth Sci. 2021, 32, 327–347. [Google Scholar] [CrossRef]
- Kong, Y.; Chen, G.; Liu, B.; Xie, M.; Yu, Z.; Li, C.; Wu, Y.; Gao, Y.; Zha, S.; Zhang, H. 3D mineral prospectivity mapping of Zaozigou gold deposit, west Qinling, China: Machine learning-based mineral prediction. Minerals 2022, 12, 1361. [Google Scholar] [CrossRef]
- Porwal, A.; Carranza, E.M.J. Introduction to the special issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration. Ore Geol. Rev. 2015, 71, 477–483. [Google Scholar] [CrossRef]
- Ford, A. Practical implementation of random forest-based mineral potential mapping for porphyry Cu—Au mineralization in the eastern Lachlan Orogen, NSW, Australia. Nat. Resour. Res. 2019, 29, 267–283. [Google Scholar] [CrossRef]
- Zuo, R. Geodata science-based mineral prospectivity mapping: A review. Nat. Resour. Res. 2020, 29, 3415–3424. [Google Scholar] [CrossRef]
- Zhang, S.; Carranza, E.J.M.; Xiao, K.; Wei, H.; Yang, F.; Chen, Z.; Li, N.; Xiang, J. Mineral prospectivity mapping based on isolation forest and random forest: Implication for the existence of spatial signature of mineralization in outliers. Nat. Resour. Res. 2021, 31, 1981–1999. [Google Scholar] [CrossRef]
- Uwiduhae, J.D.; Claude Ngaruye, J.; Saibi, H. Defining potential mineral exploration targets from the interpretation of aeromagnetic data in Western Rwanda. Ore Geol. Rev. 2020, 128, 103927. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, B.; Xie, M.; Wu, Y.; Kong, Y.; Li, C.; Chen, G.; Gao, Y.; Zha, S.; Zhang, H.; et al. 3D mineral prospectivity mapping of Zaozigou gold deposit, west Qinling, China: Deep learning-based mineral prediction. Minerals 2022, 12, 1382. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, J.; Xu, H.; Jia, Y.; Chen, X.; Jia, Z.; Liu, H. Three-dimensional mineral prospectivity mapping by XGBoost modeling: A case study of the Lannigou gold deposit, China. Nat. Resour. Res. 2022, 31, 1135–1156. [Google Scholar] [CrossRef]
- Daviran, M.; Maghsoudi, A.; Ghezelbash, R.; Pradhan, B. A new strategy for spatial predictive mapping of mineral prospectivity: Automated hyperparameter tuning of random forest approach. Comput. Geosci. 2021, 148, 104688. [Google Scholar] [CrossRef]
- Frutuoso, R.; Lima, A.; Teodoro, A.C. Application of remote sensing data in gold exploration: Targeting hydrothermal alteration using Landsat 8 imagery in northern Portugal. Arab. J. Geosci. 2021, 14, 459. [Google Scholar] [CrossRef]
- Pour, A.B.; Zoheir, B.; Pradhan, B.; Hashim, M. Editorial for the special issue: Multispectral and hyperspectral remote sensing data for mineral exploration and environmental monitoring of mined areas. Remote Sens. 2021, 13, 519. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; Hale, M. Mineral imaging with Landsat thematic mapper data for hydrothermal alteration mapping in heavily vegetated terrane. Int. J. Remote Sens. 2002, 23, 4827–4852. [Google Scholar] [CrossRef]
- Fraser, S.J.; Green, A.A. A software defoliant for geological analysis of band ratios. Int. J. Remote Sens. 1987, 8, 525–532. [Google Scholar] [CrossRef]
- Shevyrev, S.; Carranza, E.J.M. Application of maximum entropy for mineral prospectivity mapping in heavily vegetated areas of Greater Kurile Chain with Landsat 8 data. Ore Geol. Rev. 2022, 142, 104758. [Google Scholar] [CrossRef]
- Chakraborty, R.; Kereszturi, G.; Pullanagari, R.; Durance, P.; Ashraf, S.; Anderson, C. Mineral prospecting from biogeochemical and geological information using hyperspectral remote sensing—Feasibility and challenges. J. Geochem. Explor. 2022, 232, 106900. [Google Scholar] [CrossRef]
- Rossetti, F.; Cozzupoli, D.; Phillips, D. Compressional reworking of the East African Orogen in the Uluguru Mountains of eastern Tanzania at 550 Ma: Implications for the final assembly of Gondwana. Terra Nova 2008, 20, 59–67. [Google Scholar] [CrossRef]
- Tack, L.; Wingate, M.T.D.; De Waele, B.; Meert, J.; Belousova, E.; Griffin, B.; Tahon, A.; Fernandez-Alonso, M. The 1375Ma “Kibaran event” in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime. Precambrian Res. 2010, 180, 63–84. [Google Scholar] [CrossRef]
- Fernandez-Alonso, M.; Cutten, H.; De Waele, B.; Tack, L.; Tahon, A.; Baudet, D.; Barritt, S.D. The Mesoproterozoic Karagwe-Ankole Belt (formerly the NE Kibara Belt): The result of prolonged extensional intracratonic basin development punctuated by two short-lived far-field compressional events. Precambrian Res. 2012, 216–219, 63–86. [Google Scholar] [CrossRef]
- Debruyne, D.; Hulsbosch, N.; Wilderode, J.V.; Balcaen, L.; Vanhaecke, F.; Muchez, P. Regional geodynamic context for the Mesoproterozoic Kibara belt (KIB) and the Karagwe-Ankole belt: Evidence from geochemistry and isotopes in the KIB. Precambrian Res. 2015, 264, 82–97. [Google Scholar] [CrossRef]
- Dewaele, S.; Tack, L.; Fernandez-Alonso, M.; Boyce, A.; Muchez, P.; Schneider, J.; Cooper, G.; Wheeler, K. Geology and mineralisation of the Gatumba area, Rwanda: Present state of knowledge. Etudes Rwandaises 2008, 16, 6–24. [Google Scholar]
- Goldmann, S.; Melcher, F.; Gäbler, H.-E.; Dewaele, S.; De Clercq, F.; Muchez, P. Mineralogy and trace element chemistry of ferberite/reinite from Tungsten deposits in central Rwanda. Minerals 2013, 3, 121–144. [Google Scholar] [CrossRef] [Green Version]
- Hulsbosch, N.; Hertogen, J.; Dewaele, S.; Andre, L.; Muchez, P. Petrographic and mineralogical characterisation of fractionated pegmatites culminating in the Nb-Ta-Sn pegmatites of the Gatumba area (western Rwanda). Geol. Belg. 2013, 16, 105–117. [Google Scholar]
- Pohl, W.L.; Biryabarema, M.; Lehmann, B. Early Neoproterozoic rare metal (Sn, Ta, W) and gold metallogeny of central Africa: A review. Appl. Earth Sci. 2013, 122, 66–82. [Google Scholar] [CrossRef]
- Tumukunde, T.D.; Piestrzynski, A. Vein-type tungsten deposits in Rwanda, Rutsiro area of the Karagwe-Ankole Belt, central Africa. Ore Geol. Rev. 2018, 102, 505–518. [Google Scholar] [CrossRef]
- Goodship, A.; Dace, A.; O’Hare, P.; Uwiringiyimana, J.; Siddle, R.; Moon, C. Geology and genesis of the Musha-NtungaSn-Ta-Li-Nb vein-pegmatite deposit, Rwanda: First results from deep drilling of a coltan mine in Rwanda and first detailed description of Li minerals. Appl. Earth Sci. 2019, 128, 47–48. [Google Scholar] [CrossRef]
- Hulsbosch, N.; Van Daele, J.; Reinders, N.; Dewaele, S.; Jacques, D.; Muchez, P. Structural control on the emplacement of contemporaneous Sn-Ta-Nb mineralized LCT pegmatites and Sn bearing quartz veins: Insights from the Musha and Ntunga deposits of the Karagwe-Ankole Belt, Rwanda. J. Afr. Earth Sci. 2017, 134, 24–32. [Google Scholar] [CrossRef]
- Dewaele, S.; Henjes-Kunst, F.; Melcher, F.; Sitnikova, M.; Burgess, R.; Gerdes, A.; Fernandez, M.A.; De Clercq, F.; Mucheze, P.; Lehmann, B. Late Neoproterozoic overprinting of the cassiterite and columbite–tantalite bearing pegmatites of the Gatumba area, Rwanda (central Africa). J. Afr. Earth Sci. 2011, 61, 10–26. [Google Scholar] [CrossRef]
- Hulsbosch, N.; Hertogen, J.; Dewaele, S.; Andre, L.; Muchez, P. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochim. Cosmochim. Acta 2014, 132, 349–374. [Google Scholar] [CrossRef]
- Hulsbosch, N.; Boiron, M.C.; Dewaele, S.; Muchez, P. Fluid fractionation of tungsten during granite–pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe-Ankole Belt (Rwanda). Geochim. Cosmochim. Acta 2016, 175, 299–318. [Google Scholar] [CrossRef]
- Dewaele, S.; De Clercq, F.; Hulsbosch, N.; Piessens, K.; Boyce, A.; Burgess, R.; Muchez, P. Genesis of the vein-type tungsten mineralization at Nyakabingo (Rwanda) in the Karagwe-Ankole belt, Central Africa. Miner. Depos. 2016, 51, 283–307. [Google Scholar] [CrossRef]
- Lehmann, B.; Lavreau, J. Geochemistry of tin granites from Kivu (Zaire), Rwanda and Burundi. IGCP 255 Newsl. 1998, 1, 43–46. [Google Scholar]
- Ngaruye, J.C. Petrographic and Geochemical Investigation of Sn-W-Nb-Ta-Pegmatites and Mineralized Quartz Veins in Southeastern Rwanda. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2011. [Google Scholar]
- Lehmann, B.; Halder, S.; Munana, J.R.; Ngizimanac, J.d.l.P.; Biryabarema, M. The geochemical signature of rare-metal pegmatites in central Africa: Magmatic rocks in the Gatumba tin–tantalum mining district, Rwanda. J. Geochem. Explor. 2014, 144, 528–538. [Google Scholar] [CrossRef]
- Van Daele, J.; Hulsboscha, N.; Dewaele, S.; Boiron, M.C.; Piessense, K.; Boyce, A.; Muchez, P. Mixing of magmatic-hydrothermal and metamorphic fluids and the origin of peribatholitic Sn vein-type deposits in Rwanda. Ore Geol. Rev. 2018, 101, 481–501. [Google Scholar] [CrossRef] [Green Version]
- Hulsbosch, N.; Muchez, P. Tracing fluid saturation during pegmatite differentiation by studying the fluid inclusion evolution and multiphase cassiterite mineralisation of the Gatumba pegmatite dyke system (NW Rwanda). Lithos 2019, 354–355, 109285. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, W.; Lehmann, B.; Seltmann, R.; Li, C. Multiple tin mineralization events in Africa: Constraints by in-situ LA-ICPMS cassiterite U-Pb ages. In Proceedings of the 35th International Geological Congress, Cape Town, South Africa, 27 August–4 September 2016. [Google Scholar]
- Dewaele, S.; Hulsbosch, N.; Cryns, Y.; Boyce, A.; Burgess, R.; Muchez, P. Geological setting and timing of the world-class Sn, Nb-Ta and Li mineralization of Manono-Kitotolo (Katanga, Democratic Republic of Congo). Ore Geol. Rev. 2016, 72, 373–390. [Google Scholar] [CrossRef]
- Pohl, W.L. Metallogeny of the northeastern Kibarabelt, Central Africa—Recent perspectives. Ore Geol. Rev. 1994, 9, 105–130. [Google Scholar] [CrossRef]
- De Clercq, F. Metallogenesis of Sn and W Vein-Type Deposits in the Karagwe-Ankole Belt (Rwanda). Ph.D. Thesis, Katholieke Universitei Leuven, Leuven, Belgium, 2012. [Google Scholar]
- Meyer, J.M.; Kokaly, R.F.; Holley, E. Hyperspectral remote sensing of white mica: A review of imaging and point-based spectrometer studies for mineral resources, with spectrometer design considerations. Remote Sens. Environ. 2022, 275, 113000. [Google Scholar] [CrossRef]
- Liu, L. Application of Gravity Data Processing and Interpretation Technology in Geological Structure Interpretation and Mineral Prediction in Southern Tibet. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2021. (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Chen, Y.; Pei, R.; Wang, D.; Huang, F. Minerogenetic series for mineral deposits: Discussion on minerogenetic series (V). Acta Geosci. Sin. 2016, 37, 519–527. [Google Scholar] [CrossRef]
- Hagemann, S.G.; Lisitsin, V.; Huston, D.L. Mineral system analysis: Quovadis. Ore Geol. Rev. 2016, 76, 504–522. [Google Scholar] [CrossRef]
- Xiao, K.; Xiang, J.; Fan, M.; Xu, Y. 3D mineral prospectivity mapping based on deep metallogenic prediction theory: A case study of the Lala copper mine, Sichuan, China. J. Earth Sci. 2021, 32, 348–357. [Google Scholar] [CrossRef]
- Agterberg, F.P.; Bonham-Carter, G.F.; Cheng, Q.; Wright, D.F. Weights of evidence modeling and weighted logistic regression for mineral potential mapping. In Computers in Geology: 25 Years of Progress; Davis, J.C., Herzfeld, U.C., Eds.; Oxford University Press: New York, NY, USA, 1993; pp. 13–32. [Google Scholar] [CrossRef]
- Zhou, Z. Machine Learning; Tsinghua University Press: Beijing, China, 2016; pp. 171–185. (In Chinese) [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Carranza, E.J.M.; Laborte, A.G. Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Comput. Geosci. 2015, 74, 60–70. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, W.; Xie, L.; Ou, P.; Huang, X. Application of machine learning based mineral prospectivity mapping in the Yuexi antimony orefield, Hunan province. J. East China Univ. Technol. 2021, 44, 28–40. [Google Scholar]
- Wang, S.; Zhou, K.; Wang, J.; Zhao, J. Identifying and mapping alteration minerals using HySpex airborne hyperspectral data and random forest algorithm. Front. Earth Sci. 2022, 10, 871529. [Google Scholar] [CrossRef]
- McKay, G.; Harris, J.R. Comparison of the data-driven random forests model and a knowledge-driven method for mineral prospectivity mapping: A case study for gold deposits around the Huritz group and Nueltin suite, Nunavut, Canada. Nat. Resour. Res. 2016, 25, 125–143. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; Laborte, A.G. Data-driven predictive modeling of mineral prospectivity using random forests: A case study in Catanduanes Island (Philippines). Nat. Resour. Res. 2016, 25, 35–50. [Google Scholar] [CrossRef]
- Demarchi, L.; Canters, F.; Cariou, C.; Licciardi, G.; Chan, J.C.W. Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping. ISPRS J. Photogramm. Remote Sens. 2014, 87, 166–179. [Google Scholar] [CrossRef]
- Parsa, M.; Maghsoudi, A. Assessing the effects of mineral systems-derived exploration targeting criteria for random forests-based predictive mapping of mineral prospectivity in Ahar-Arasbaran area, Iran. Ore Geol. Rev. 2021, 138, 104399. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Xiao, K.; Ding, J.; Fan, J.; Li, N. Dataset of major mineralization belts of China’s key solid mineral resources. Geol. China 2017, 44, 72–81, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Macháček, J.; Dušková, M. Artisanal mining in Rwanda: The trade-off between entrepreneurial activity and environmental impact. In Entrepreneurship and SME Management Across Africa; Springer: Singapore, 2016; pp. 159–172. [Google Scholar] [CrossRef]
Data Type (Resolution) | Original Data (Format) | Secondary Data | Original Source |
---|---|---|---|
Geology (-) | Regional geological map (.jpg) Faults in western Rwanda (.jpg) | Buffer zones of granites boundaries | [25,53] |
Gravity (2′) | Bouguer anomaly (.xlsx) | Bouguer 1000 m-upward map Faults derived from Bouguer 1000 m-upward map Buffer zones of Bouguer faults Linear density map of Bouguer faults | Complete spherical Bouguer gravity anomaly from Bureau Gravimetrique International (BGI) |
Magnetism (2′) | Magnetic anomaly (.xlsx) | Magnetic anomaly 1000 m-upward map | Earth magnetic anomaly grid from National Oceanic and Atmospheric Administration (NOAA) |
Multispectral imageries (30 m) | Landsat 8 OLI path/row: 172061, 172062 173061, 173062 (.tiff) | Faults interpreted in eastern Rwanda from remote sensing Buffer zones of geological remote sensing faults Linear density map of geological remote sensing faults Goethite, illite, and quartz alterations extracted from remote sensing | United States Geological Survey (USGS) |
DEM (30 m) | ASTER GDEM path/row: S02E029, S02E030 S03E028, S03E029 S03E030 (.img) | Faults interpreted in eastern Rwanda from remote sensing | Geospatial Data Cloud (in Chinese) |
Landcover (30 m) | Globeland30 path/row: S36_00_2020LC030 S36_00_2020LC030 (.tiff) | Globeland30 (in Chinese) | |
Roads and rivers (-) | Roads and rivers (.shp) | 50 m buffer zones of roads and rivers | OpenStreetMap |
Mineralization (-) | Known positive sites (deposits or occurrences) of W, Sn, Nb, and Ta (.jpg, .shp) | Negative sites of W, Sn, Nb, and Ta | Private collections |
Original and Secondary Data | Relevant Layers (Sequential Number) |
---|---|
Geological map | Cyohoha group (#1), Pindura group (#2), Gikoro group (#3), metamorphic complex (#4), granites (#5) |
Buffer zones of granites boundaries | 1 km (#6), 2 km (#7), 3 km (#8), 4 km (#9), 5 km (#10), 6 km (#11) |
Buffer zones of Bouguer faults | 1 km (#12), 2 km (#13), 3 km (#14), 4 km (#15) |
Linear density map of Bouguer faults | 0 (#16), 0~0.04 (#17), 0.04~0.07 (#18), 0.07~0.11 (#19), 0.11~0.30 (#20) |
Buffer zones of geological remote sensing faults | 1 km (#21), 2 km (#22), 3 km (#23), 4 km (#24) |
Linear density map of geological remote sensing faults | 0~0.04 (#25), 0.04~0.09 (#26), 0.09~0.16 (#27), 0.16~0.26 (#28), 0.26~0.60 (#29) |
Bouguer 1000 m-upward map | −55.18~−46.01 (#30), −46.01~−33.00 (#31), −33.00~−27.68 (#32), −27.68~−18.51 (#33), −18.51~−9.34 mGal (#34) |
Magnetic anomaly 1000 m-upward map | −39.69~−0.35 (#35), −0.35~10.50 (#36), 10.50~17.25 (#37), 17.25~22.87 (#38), 22.87~55.83 nT (#39) |
Mineral alteration | Goethite (#40), illite (#41), and quartz (#42) |
Ore Genesis | Type of Layers | Original and Secondary Data | Predictor Layers |
---|---|---|---|
Sn, Nb, Ta in pegmatites, W, Sn in qurtz veins | Ore-controlling factors | Geological map | #2, #3, #4 |
Buffer zones of granites boundaries | #11 | ||
Buffer zones of Bouguer faults | #14 | ||
Linear density map of Bouguer faults | #19, #20 | ||
Buffer zones of geological remote sensing faults | #22 | ||
Linear density map of geological remote sensing faults | #28, #29 | ||
Mineralization indicators | Bouguer 1000 m-upward map | #30, #31 | |
Magnetic anomaly 1000 m-upward map | #36, #37 | ||
Alteration | #40, #42 |
Ore Genesis | Type of Layers | Original and Secondary Data | Predictor Layers |
---|---|---|---|
Sn, Nb, Ta in pegmatites, W, Sn in qurtz veins | Ore-controlling factors | Geological map | #1, #2, #3, #4 |
Buffer zones of granites boundaries | #11 | ||
Buffer zones of Bouguer faults | #14 | ||
Linear density map of Bouguer faults | #19, #20 | ||
Buffer zones of geological remote sensing faults | #22 | ||
Linear density map of geological remote sensing faults | #28, #29 | ||
Mineralization indicators | Bouguer 1000 m-upward map | #30, #31, #32 | |
Magnetic anomaly 1000 m-upward map | #36, #37 | ||
Alteration | #42 |
Ore Genesis | Type of Layers | Original and Secondary Data | Predictor Layers |
---|---|---|---|
Sn, Nb, Ta in pegmatites, W, Sn in qurtz veins | Ore-controlling factors | Geological map | #1, #3, #4, #5 |
Buffer zones of granites boundaries | #11 | ||
Buffer zones of Bouguer faults | #14 | ||
Linear density map of Bouguer faults | #19, #20 | ||
Buffer zones of geological remote sensing faults | #22 | ||
Linear density map of geological remote sensing faults | #28, #29 | ||
Mineralization indicators | Bouguer 1000 m-upward map | #30 | |
Magnetic anomaly 1000 m-upward map | #36, #37 | ||
Alteration | #41 |
W | Sn | Nb-Ta | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Predictor | W+ | W− | Contrast | Predictor | W+ | W− | Contrast | Predictor | W+ | W− | Contrast |
#19, #20 | 0.68 | −0.81 | 1.49 | #36, #37 | 0.50 | −0.63 | 1.14 | #14 | 0.65 | −1.08 | 1.74 |
#28, #29 | 0.56 | −0.85 | 1.41 | #28, #29 | 0.45 | −0.58 | 1.03 | #5 | 1.29 | −0.23 | 1.53 |
#36, #37 | 0.48 | −0.59 | 1.08 | #11 | 0.68 | −0.35 | 1.02 | #19, #20 | 0.62 | −0.69 | 1.31 |
#11 | 0.68 | −0.35 | 1.03 | #30, #31, #32 | 0.26 | −0.74 | 1.00 | #30 | 0.81 | −0.46 | 1.27 |
#22 | 0.29 | −0.69 | 0.99 | #22 | 0.27 | −0.62 | 0.89 | #36, #37 | 0.49 | −0.60 | 1.09 |
#14 | 0.42 | −0.47 | 0.90 | #3 | 0.52 | −0.19 | 0.71 | #28, #29 | 0.45 | −0.57 | 1.02 |
#30, #31 | 0.38 | −0.45 | 0.83 | #19, #20 | 0.31 | −0.24 | 0.55 | #11 | 0.58 | −0.27 | 0.84 |
#2 | 0.43 | −0.16 | 0.60 | #1 | 0.44 | −0.10 | 0.53 | #41 | 0.57 | −0.06 | 0.62 |
#42 | 0.46 | −0.09 | 0.55 | #14 | 0.27 | −0.25 | 0.53 | #22 | 0.20 | −0.40 | 0.60 |
#4 | 0.34 | −0.15 | 0.49 | #2 | 0.19 | −0.06 | 0.25 | #4 | 0.29 | −0.12 | 0.41 |
#40 | 0.34 | −0.03 | 0.37 | #4 | 0.16 | −0.06 | 0.22 | #1 | 0.30 | −0.06 | 0.35 |
#3 | 0.16 | −0.04 | 0.21 | #42 | 0.05 | −0.01 | 0.06 | #3 | 0.08 | −0.02 | 0.09 |
No. | Training Sets of Positive Samples | Training Sets of Negative Samples | Test Training Sets of Positive Samples | Test Training Sets of Negative Samples |
---|---|---|---|---|
1 | S+1, S+2, S+3, S+4 | S−1, S−2, S−3, S−4 | S+5 | S−5 |
2 | S+1, S+2, S+3, S+4 | S−1, S−2, S−3, S−5 | S+5 | S−4 |
3 | S+1, S+2, S+3, S+4 | S−1, S−2, S−4, S−5 | S+5 | S−3 |
4 | S+1, S+2, S+3, S+4 | S−1, S−3, S−4, S−5 | S+5 | S−2 |
5 | S+1, S+2, S+3, S+4 | S−2, S−3, S−4, S−5 | S+5 | S−1 |
6 | S+1, S+2, S+3, S+5 | S−1, S−2, S−3, S−4 | S+4 | S−5 |
7 | S+1, S+2, S+3, S+5 | S−1, S−2, S−3, S−5 | S+4 | S−4 |
8 | S+1, S+2, S+3, S+5 | S−1, S−2, S−4, S−5 | S+4 | S−3 |
9 | S+1, S+2, S+3, S+5 | S−1, S−3, S−4, S−5 | S+4 | S−2 |
10 | S+1, S+2, S+3, S+5 | S−2, S−3, S−4, S−5 | S+4 | S−1 |
11 | S+1, S+2, S+4, S+5 | S−1, S−2, S−3, S−4 | S+3 | S−5 |
12 | S+1, S+2, S+4, S+5 | S−1, S−2, S−3, S−5 | S+3 | S−4 |
13 | S+1, S+2, S+4, S+5 | S−1, S−2, S−4, S−5 | S+3 | S−3 |
14 | S+1, S+2, S+4, S+5 | S−1, S−3, S−4, S−5 | S+3 | S−2 |
15 | S+1, S+2, S+4, S+5 | S−2, S−3, S−4, S−5 | S+3 | S−1 |
16 | S+1, S+3, S+4, S+5 | S−1, S−2, S−3, S−4 | S+2 | S−5 |
17 | S+1, S+3, S+4, S+5 | S−1, S−2, S−3, S−5 | S+2 | S−4 |
18 | S+1, S+3, S+4, S+5 | S−1, S−2, S−4, S−5 | S+2 | S−3 |
19 | S+1, S+3, S+4, S+5 | S−1, S−3, S−4, S−5 | S+2 | S−2 |
20 | S+1, S+3, S+4, S+5 | S−2, S−3, S−4, S−5 | S+2 | S−1 |
21 | S+2, S+3, S+4, S+5 | S−1, S−2, S−3, S−4 | S+1 | S−5 |
22 | S+2, S+3, S+4, S+5 | S−1, S−2, S−3, S−5 | S+1 | S−4 |
23 | S+2, S+3, S+4, S+5 | S−1, S−2, S−4, S−5 | S+1 | S−3 |
24 | S+2, S+3, S+4, S+5 | S−1, S−3, S−4, S−5 | S+1 | S−2 |
25 | S+2, S+3, S+4, S+5 | S−2, S−3, S−4, S−5 | S+1 | S−1 |
Serial Number | Area (km2) | Mean Total Mineralization Potential |
---|---|---|
IV-1 | 3687.56 | 0.4526 |
IV-2 | 4786.89 | 0.4559 |
IV-3 | 3420.35 | 0.4925 |
IV-4 | 4244.73 | 0.6013 |
IV-5 | 2265.03 | 0.2899 |
IV-6 | 5338.66 | 0.3295 |
IV-7 | 1338.03 | 0.3223 |
Serial Number | Area (km2) | Mean Likelihood of Deposits |
---|---|---|
W-A2-1 | 314.64 | 0.9074 |
W-A2-2 | 342.99 | 0.8835 |
W-B2-1 | 402.35 | 0.8841 |
W-B2-2 | 224.33 | 0.8217 |
W-C7-1 | 165.97 | 0.8086 |
W-C7-2 | 135.97 | 0.8964 |
W-C7-3 | 76.18 | 0.8348 |
W-C7-4 | 162.62 | 0.7704 |
W-C7-5 | 108.67 | 0.8083 |
W-C7-6 | 102.57 | 0.7389 |
W-C7-7 | 124.62 | 0.7884 |
Serial Number | Area (km2) | Mean Likelihood of Deposits |
---|---|---|
Sn-A3-1 | 321.54 | 0.9105 |
Sn-A3-2 | 330.57 | 0.8942 |
Sn-A3-3 | 251.61 | 0.8684 |
Sn-B3-1 | 249.88 | 0.8888 |
Sn-B3-2 | 200.76 | 0.8225 |
Sn-B3-3 | 189.22 | 0.9125 |
Sn-C11-1 | 121.87 | 0.8841 |
Sn-C11-2 | 144.26 | 0.9138 |
Sn-C11-3 | 64.31 | 0.8541 |
Sn-C11-4 | 78.64 | 0.7577 |
Sn-C11-5 | 133.77 | 0.7942 |
Sn-C11-6 | 59.08 | 0.9005 |
Sn-C11-7 | 96.98 | 0.8245 |
Sn-C11-8 | 68.02 | 0.8190 |
Sn-C11-9 | 48.30 | 0.9059 |
Sn-C11-10 | 63.60 | 0.8716 |
Sn-C11-11 | 49.01 | 0.8302 |
Serial Number | Area (km2) | Mean Likelihood of Deposits |
---|---|---|
NbTa-A3-1 | 353.93 | 0.8832 |
NbTa-A3-2 | 137.55 | 0.8984 |
NbTa-A3-3 | 271.84 | 0.8612 |
NbTa-B3-1 | 262.62 | 0.8302 |
NbTa-B3-2 | 112.05 | 0.8645 |
NbTa-B3-3 | 167.10 | 0.7061 |
NbTa-C5-1 | 236.08 | 0.7877 |
NbTa-C5-2 | 236.88 | 0.7682 |
NbTa-C5-3 | 370.46 | 0.8315 |
NbTa-C5-4 | 60.29 | 0.7910 |
NbTa-C5-5 | 86.28 | 0.7525 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Chen, J.; Liu, T.; Li, Y.; Yin, Q.; Du, H. Regional Quantitative Mineral Prospectivity Mapping of W, Sn, and Nb-Ta Based on Integrated Information in Rwanda, Central Africa. Minerals 2023, 13, 189. https://doi.org/10.3390/min13020189
Chen Z, Chen J, Liu T, Li Y, Yin Q, Du H. Regional Quantitative Mineral Prospectivity Mapping of W, Sn, and Nb-Ta Based on Integrated Information in Rwanda, Central Africa. Minerals. 2023; 13(2):189. https://doi.org/10.3390/min13020189
Chicago/Turabian StyleChen, Zhuo, Jianping Chen, Tao Liu, Yunfeng Li, Qichun Yin, and Haishuang Du. 2023. "Regional Quantitative Mineral Prospectivity Mapping of W, Sn, and Nb-Ta Based on Integrated Information in Rwanda, Central Africa" Minerals 13, no. 2: 189. https://doi.org/10.3390/min13020189
APA StyleChen, Z., Chen, J., Liu, T., Li, Y., Yin, Q., & Du, H. (2023). Regional Quantitative Mineral Prospectivity Mapping of W, Sn, and Nb-Ta Based on Integrated Information in Rwanda, Central Africa. Minerals, 13(2), 189. https://doi.org/10.3390/min13020189