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Abstract: Mineral resource classification is an important step in mineral exploration and mining
engineering. In this study, copper and molybdenum resources were classified using a combination of
the Turning Bands Simulation (TBSIM) and the Concentration–Volume (C–V) fractal model based
on the Conditional Coefficient of Variation (CCV) for Cu realizations in the Masjed Daghi porphyry
deposit, NW Iran. In this research, 100 scenarios for the local variability of copper were correspond-
ingly simulated using the TBSIM and the CCVs were calculated for each realization. Furthermore,
various populations for these CCVs were distinguished using C–V fractal modeling. The C–V log–log
plots indicate a multifractal nature that shows a ring structure for the “Measured”, “Indicated”,
and “Inferred” classes in this deposit. Then, the results obtained using this hybrid method were
compared with the CCV–Tonnage graphs. Finally, the results obtained using the geostatistical and
fractal simulation showed that the marginal parts of this deposit constitute inferred resources and
need more information from exploration boreholes.

Keywords: mineral resource classification; turning bands simulation (TBSIM); concentration–volume
(C–V) fractal model; conditional coefficient of variation (CCV)

1. Introduction

Mineral resource classification is a significant step in mineral exploration projects for
feasibility studies. At this stage, geostatistical methods can be used to support the assess-
ment of uncertainty and risk. Resource classification can be carried out based on different
criteria such as the distance between drillholes, kriging variance, multiple pass kriging
plans, and uncertainty models that are provided by using geostatistical simulations [1–9].

Alternatively, one of the most important aims of geostatistical simulations is to assess
the joint uncertainty between multiple realizations allowing a more complete representation
of uncertainty for each block and between multiple locations of blocks, which deterministic
approaches such as kriging are not able to produce. Geostatistical simulation methods
reproduce input data parameters based on their statistical characteristics including their
variogram and histogram [10–18].

Conventional geostatistical simulation approaches for continues variables (e.g., the
ore grade) consist of the Sequential Gaussian Simulation (SGS) [19,20], the turning bands
simulation (TBSIM) [21], the LU decomposition [22], the direct sequential simulation [23],
the direct block simulation [24], and the probability field simulation [25]. The TBSIM
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was introduced by Matheron (1973) [26] as an unconditional simulation and developed
by Journel (1974) [27] for the simplification of the Gaussian simulation problem in multi-
dimensional spaces. This method produces a variable in one dimension and spreads them
into 2D and 3D spaces for different realizations [28–31].

Fractal modeling is a proper methodology for the definition of various populations in
natural sciences that is established by Mandelbrot (1983) [32]. The Concentration–Volume
(C–V) fractal model proposed by Afzal et al. (2011) [33] has been used for the detection of
different mineralized zones in different ore deposit types [34,35]. Furthermore, this method
was used for the separation of ore grades’ populations from the different realizations [36].

In this research, the combination of the TBSIM and C–V model is utilized for copper
and molybdenum resource classification in the Masjed Daghi Cu–Mo porphyry deposit,
NW Iran. The coefficient of variations for Cu and Mo were computed based on the TBSIM
and categorized by the C–V fractal modeling. This hybrid method between TBSIM and
C–V fractal model based on the Conditional Coefficient of Variation (CCV) is a proposed
method for this purpose. The average values of CCVs for Cu and Mo are used for resource
classification. At last, the results obtained using this methodology are compared with the
CCV–Tonnage graphs for Cu and Mo that were proposed by Dimitrakopoulos et al. (2009).

2. Geological Setting

The Masjed Daghi deposit is located 35 km east of Jolfa, East Azarbaidjan (NW Iran;
Figure 1). This deposit is situated in the NW part of the Urumieh–Dokhtar magmatic belt
(Arasbaran). This deposit contains 340 Mt with Cu and Mo averages equal to 2700 ppm and
60 ppm, respectively [37]. The host rocks include Eocene andesite, trachyandesite, dacite,
tuffs, and agglomerates, intruded by a shallow diorite porphyry intrusion. Geological and
mineralogical studies show that the quartz diorite subvolcanic unit along with Oligocene
volcanic rocks in the area were severely altered by hydrothermal fluids. There are porphyry
copper type and high sulfidation epithermal gold mineralization [37]. Six types of alteration
zones were developed within magmatic rocks including potassic, potassic–phyllic, phyllic,
phyllic–argillic, intermediate argillic, and propylitic [38].

Mineralization occurs in breccias and vuggy quartz and quartz–barite veins. Pyrite
and chalcopyrite are the main ore minerals that associate with molybdenite, sphalerite,
galena, and Fe-oxides. The gold contents vary between 0.1 and 30 ppm. The auriferous
veins are surrounded by the argillic, silicic, alunite, and chlorite alteration zones. The
epithermal system at the Masjed Daghi appears to be associated with a porphyry Cu–Mo
system at deeper levels [38].
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Figure 1. Simplified geological map of Masjed Daghi deposit [39] (a) and its location in the structural 
map of Iran [40] (b). The orange circle refers to the study area. 

Figure 1. Simplified geological map of Masjed Daghi deposit [39] (a) and its location in the structural
map of Iran [40] (b). The orange circle refers to the study area.
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3. Material and Methods
3.1. Dataset

The dataset contains 18,679 core samples with 2 m length from 69 boreholes (Figure 2).
These samples were analyzed using the ICP-MS method for Cu, Mo, and related elements
at the ACME CHEMEX Company (Canada). The detection limits for Cu and Mo are 1 ppm
and 0.5 ppm, respectively. The first step in exploratory data analysis includes the detection
of all possible outliers and duplicated samples [41]. The outliers are recognized by the
histograms of these data so there are no censored data and, finally, the outliers are corrected
using the Durfel method [42].
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3.2. TBSIM

The TBSIM was first introduced by Chentsov (1957) [43] in a special case of Brownian
random functions. It has been developed to the stationary and stochastic simulation by
Matheron (1973) [26]. This method aims at simplifying the simulation operation in multi-
dimensional spaces according to simulation in one dimension and spreading them to the
2D/3D spaces [21]. The TBSIM is carried out based on a set of randomly distributed bands
or lines. The general procedure follows [21,44]:
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- Raw data values should be declustered;
- Declustered data are transformed to standard normal distribution;
- Variograms are generated based on the transformed data;
- Turning band simulation using the transformed data and variogram is performed;
- Then, the simulation data must be back-transformed from normal distribution to

the original scale;
- Eventually, the realization maps of TBSIM are generated.

3.3. C–N Fractal Model

The concentration–number (C–N) fractal model was proposed by Hassanpour and
Afzal (2013) [45] based on the number–size (N–S) fractal method [32]. The C–N fractal
model is an essential fractal model used to define the geochemical anomaly or mineralized
zone threshold values in an exploratory dataset. The C–N fractal model was defined as:

N(≥ρ) ∞ ρ−β (1)

where N(≥ρ) indicates the sample number with concentration values greater than the ρ.
The ρ is the concentration of the element and β is a fractal dimension. The main advantage
of this method is the classification of geochemical populations before estimation [46–52].

3.4. C–V Fractal Model

The C–V fractal model was first introduced by Afzal et al. (2011) [33] for the delineation
of mineralized zones and barren host rocks in different types of ore deposits, especially
porphyry ores. It must be added here that, in the C–V model, “C” can be replaced by either
“concentration” (e.g., grade or tonnage) or “probability” (e.g., uncertainty). In this paper,
the researchers used “C” to refer to both uncertainty and concentration. The C–V fractal
model can be expressed as:

V(c ≤ ν) ∞ c −a1; V (c > ν) ∞ c −a2 (2)

where V(c ≤ ν) and V (c > ν) represent volumes (V) with concentration values (c) smaller
and greater than contour values (ν), respectively; a1 and a2 are characteristic expo-
nents [53–55]. In this paper, the Conditional Coefficient of Variation (CCV) values derived
using a TBSIM are classified using the C–V fractal model.

3.5. Hybrid Regression Models

Different approaches have been proposed and developed for “Mineral Resource
Classification” such as the number of drillholes and samples that are used in the estimation,
probability density function of the grade for each sub-cell, and its estimated variance [3].
Dimitrakopoulos et al. (2009) [3] studied the estimated variances of a block model for a
diamond deposit. In this method, the Conditional Coefficient of Variation (CCV) for each
sub-cell is calculated using the following equation:

CCV(u) =

√
∑K+

K=1
[
zk − z∗E(u)

]2
[F(u; zk)− F(u; zk−1)]

z∗E(u)
(3)

where k are threshold values for discretizing the range of variation of z values. zk is
the mean of the class zk−1. In the case of a within-class linear interpolation model, it
corresponds to the following:

zk = (zk−1 + zk)/2 (4)

A first confidence interval based on the CCV involves fixed threshold CCVs derived
using the fractal simulation that is compared to the CCV obtained using CCV versus the
tonnage graph [3].
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4. Results and Discussion
4.1. Pre-Processing

The first step of this methodology is using a dataset that is obtained using homotopic
sampling patterns [56]. It is assumed that all conditions of the samples have equal length.
Accordingly, the composites with lengths of 2, 5, and 10 m are created and the optimal
length was selected as 10 m based on their histograms and comparison with the raw data.
Based on this composition, the number of data was significantly reduced to 4057 samples.

In the next step, the data are declustered to ensure the global distribution is more
representative using the cell declustering method [20,27]. The cell declustering technique is
implemented in a dimension of 100 m × 100 m × 10 m based on the primary pattern of
the drilling grid. The cell declustering technique [11] is applied in this study to correct the
pseudo-skewness in the global distribution of Cu and Mo. The declustered data are then
transformed to a standard normal distribution [20]. The histogram of raw, composited, and
normal score data are depicted in Figure 3.
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Figure 3. Histogram of raw data for (a) Cu and (b) Mo; histogram of 10 meters’ composite data for
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4.2. Application of TBSIM for CCV Calculation

The TBSIM approach in this study was applied to the CCV simulation of Cu and Mo
in the Masjed Daghi deposit. To implement the TBSIM method, the variograms of Cu and
Mo must be quantified over the transformed Gaussian values. The anisotropy studied by
the experimental variogram in various directions, and the results indicated that the spatial
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distribution is isotropic; therefore, the omnidirectional variograms are calculated, and the
two-structured model is fitted into the variables as depicted in Table 1.

Table 1. Characteristics of fitted variograms for Cu and Mo.

Variable Nugget
First Structure Second Structure

Sill Range (Meters) Sill Range (Meters)

Cu 0 0.3 60 0.7 495
Mo 0.1 0.3 117 0.6 459

The TBSIM was carried out for 100 realizations with a MATLAB code that was pro-
vided by Emery and Lantuejoul (2006) [21] and the realizations were visualized using
SGeMS software. The average (E-type) and variance of each realization for Cu and Mo
indicate the proper reproduction of the mean and variance in the TBSIM as performed
in Figure 4. Furthermore, the variograms of different realizations were compared with
the variograms of the raw data for the validation of the TBSIM operation as depicted in
Figure 5. The CCVs were calculated and visualized for each realization of Cu and Mo
(Figure 6). Finally, the average of these CCVs was calculated for Cu and Mo as E-types
(average realizations), which are represented in Figure 7.
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Figure 5. Variograms of normalize data for Cu (a) and Mo (b) and variogram maps for Cu (c) and 
Mo (d). Figure 5. Variograms of normalize data for Cu (a) and Mo (b) and variogram maps for Cu (c)

and Mo (d).
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Figure 6. Visualization of CCV values for Cu ((a): realization 20, (b): realization 40, (c): realization 60,
and (d): realization 80) and Mo ((e): realization 20 and (f): realization 40); elevation of this
plan equal to 900 m.
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4.3. Mineral Resource Classification using CCV–V Fractal Modeling

First of all, the C–N fractal modeling was carried out on Cu and Mo raw data for
the detection of the main thresholds (Figure 8). These main thresholds were used for the
separation of the Cu and Mo mineralized zone from barren host rocks. These thresholds
were calculated 0.25% and 60 ppm for Cu and Mo, respectively. The sub-cells with Cu and
Mo grades lower than these thresholds were removed from the resource classification as
barren host rocks. On the other hand, the mineral resource classification was carried out
for sub-cells with Cu ≥ 0.25% and Mo ≥ 60 ppm as the main mineralized zone.
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Based on the calculated CCVs in different sub-cells, the CCV–V log–log plots were
generated for the Cu and Mo CCVs E-types, as depicted in Figure 9. The different popu-
lations were separated according to the changing dips of the segments [35,49]. There are
three and four populations for CCVs of Cu and Mo, respectively. Based on these log–log
plots, the Measured, Indicated, and Inferred copper resources have CCVs < 0.18, 0.18–0.35,
and >0.35, respectively (Table 2). Moreover, there are Measured, Indicated, and Inferred
Mo resources that contain CCV values equal to <0.84, 0.84–0.96. and >0.96, respectively.
On the other hand, the first and second populations in these log–log plots were defined as
Measured and Indicated resources (Figure 9 and Table 2).
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Table 2. Mineral resource classification by CCV–V fractal modeling for Cu and Mo.

Resources Type CCV Range for Cu CCV Range for Mo

Measured <0.18 <0.84
Indicated 0.18–0.35 0.84–0.96
Inferred >0.35 >0.96

Based on study by Dimitrakopolous et al. (2009) [3], the CCV–Tonnage graphs for Cu
and Mo were generated, as depicted in Figure 10 and Table 3. These graphs were generated
based on different realization of Cu and Mo (Figure 10). The resource classification was
carried out based on the turning points in the CCV–Tonnage plots for Cu and Mo. The
Measured and Indicated resources for Cu and Mo are larger than the results derived using
fractal modeling. Their CCV values for the Measured and Indicated resources are <0.2 and
0.2–0.4 for Cu, respectively (Table 3). However, the CCVs variations for Mo resources are
<0.9 and 0.9–1 for Measured and Indicated classes, respectively (Table 3). The location of
different classes were shown in Figures 11 and 12. The classes resulting from using fractal
modeling have better correlations with the density of the boreholes.
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Table 3. Mineral resource classification using CCV–Tonnage graphs for Cu and Mo.

Resources Type CCV Range for Cu CCV Range for Mo

Measured <0.2 <0.9
Indicated 0.2–0.4 0.9–1
Inferred >0.4 >1
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5. Conclusions

In this study, the TBSIM and CCV–V fractal model were used for the delineation of
different mineral resource classes in the Masjed Daghi Cu–Mo porphyry deposit (NW Iran).
The results obtained using this methodology show that there are smaller Measured and
Indicated classes derived using the CCV–V fractal model in comparison with the results
of the CCV–Tonnage graphs. The measured resources for Cu are <0.18 and <0.2 based on
the hybrid and CCV–Tonnage graph, respectively. Furthermore, this resource class is <0.84
and 0.9 as derived using the hybrid and CCV–Tonnage graph, respectively. Consequently,
many sub-cells in the marginal part of this deposit are classified in the Indicated level
using the CCV–Tonnage graph but these sub-cells are categorized to the Inferred class
based on the hybrid of TBSIM and CCV–V fractal model. There are low values of borehole
data, which reveals the higher accuracy of the hybrid method. On the other hand, the
hybrid methodology of the geostatistical simulation and CCV–V fractal modeling can be
used for mineral resource classification in different types of ore deposits. The CCV–V
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fractal modeling can be separated into different resource classes with higher accuracy in
comparison with other methods.
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