The Immobility of Uranium (U) in Metamorphic Fluids Explained by the Predominance of Aqueous U(IV)
Abstract
:1. Introduction
2. Thermodynamic Modeling Methods and Limitation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Aqueous Species | |||
---|---|---|---|
H2O | NaHSiO3(aq) | Al3+ | HFeO2− |
H+ | NaAl4(aq) | AlOH2+ | FeCl+ |
OH− | NaAlO2(aq) | Al(OH)2+ | Fe3+ |
H2(aq) | Mg2+ | Al(OH)3(aq) | FeOH+ |
O2(aq) | MgOH+ | Al(OH)4− | FeOH2+ |
H3SiO4− | MgCl− | AlO2− | Fe(OH)3(aq) |
H4SiO4(aq) | MgCl2(aq) | AlOOH(aq) | Fe(OH)4− |
SiO2(aq) | Mg(HSiO3)+ | Fe2+ | FeO+ |
Cl− | Ca2+ | FeOH+ | HFeO2(aq) |
Na+ | CaOH+ | Fe(OH)2(aq) | FeCl2+ |
NaOH(aq) | CaCl+ | Fe(OH)3− | FeCl4− |
NaCl(aq) | CaCl2 | FeO(aq) | FeCl3(aq) |
U3+ | UOH2+ | UO2OH+ | HUO3− |
UO2+ | UO2+ | (UO2)2(OH)22+ | UCl3+ |
UO2− | UO+ | UO2Cl+ | UO2OH(aq) |
U4+ | HUO2(aq) | HUO2+ | UO2Cl2− |
UO22+ | U3+ | UO2(aq) | UO2Cl2(aq) |
UO3(aq) | HUO4− | UO42– | (UO2)2OH3+ |
Aqueous Species | |||
---|---|---|---|
H2O | NaHSiO3(aq) | Al3+ | HFeO2− |
H+ | NaAl4(aq) | AlOH2+ | FeCl+ |
OH− | NaAlO2(aq) | Al(OH)2+ | Fe3+ |
H2(aq) | Mg2+ | Al(OH)3(aq) | FeOH+ |
O2(aq) | MgOH+ | Al(OH)4− | FeOH2+ |
H3SiO4− | MgCl− | AlO2− | Fe(OH)3(aq) |
H4SiO4(aq) | MgCl2(aq) | AlOOH(aq) | Fe(OH)4− |
SiO2(aq) | Mg(HSiO3)+ | Fe2+ | FeO+ |
Cl− | Ca2+ | FeOH+ | HFeO2(aq) |
Na+ | CaOH+ | Fe(OH)2(aq) | FeCl2+ |
NaOH(aq) | CaCl+ | Fe(OH)3− | FeCl4− |
NaCl(aq) | CaCl2 | FeO(aq) | FeCl3(aq) |
U3+ | UOH2+ | UO2OH+ | HUO3− |
UO2+ | UO2+ | (UO2)2(OH)22+ | UCl3+ |
UO2− | UO+ | UO2Cl+ | UO2OH(aq) |
U4+ | HUO2(aq) | HUO2+ | UO2Cl2− |
UO22+ | U3+ | UO2(aq) | (UO2)2OH3+ |
UO3(aq) | HUO4− | UO42− | KAlO2(aq) |
UO2Cl2(aq) | K+ | KOH(aq) | KCl(aq) |
KAl(OH)4(aq) |
Minerals | Formula |
---|---|
Magnetite (Mt) Hematite (Hem) Albite (Alb) Quartz (Qt) Sillimanite (Sil) Kyanite (Ky) Andalusite (And) | Fe3O4 Fe2O3 NaAlSi3O8 SiO2 Al2SiO5 Al2SiO5 Al2SiO5 |
Minerals | Formula |
---|---|
Magnetite (Mt) Hematite (Hem) K-Feldspar (Kfs) Quartz (Qt) Sillimanite (Sil) Kyanite (Ky) Sanidine (Sa) Andalusite (And) | Fe3O4 Fe2O3 KAlSi3O8 SiO2 Al2SiO5 Al2SiO5 KAlSi3O8 Al2SiO5 |
Mineral | End Member | Formula | Activity Model |
---|---|---|---|
Chlorite | Daphnite | Fe5Al2Si3O10 | Symmetrical Wdaphnite-WAl-free chlorite = 14.5 Wdaphnite-Wamesite = 13.5 Wdaphnite-Wclinochlore = 2.5 WAl-free chlorite-Wamesite = 20 WAl-free chlorite-Wclinochlore = 18 Wamesite-Wclinochlore = 18 |
Al-free chlorite | Mg6Si4O10 | ||
Amesite | Mg4Al4Si2O10 | ||
Clinochlore | Mg5Al2Si3O10 | ||
Actinolite | Tremolite | Ca2Mg5Si8O22 | Ideal |
Ferroactinolite | Ca2Fe5Si8O22 | ||
Hornblende | Tremolite | Ca2Mg5Si8O22 | Symmetrical WTremolite-Wglaucophane = 65 Wtremolite-Wpargasite = 33 Wtremolite-Wtschermakite = 20 Wtremolite-Wferroactinolite = 10 Wglaucophane-Wpargasite = 50 Wglaucophane-Wtschermakite = 25 Wglaucophane-Wferroactinolite = 39.3 Wpargasite-Wtschermakite = −38.5 Wpargasite-Wferroactinolite = −1.9 Wtschermakite-Wferroactinolite = 12.5 |
Tschermakite | Ca2Mg3Al4Si6O22 | ||
Pargasite | NaCa2Mg4Al3Si6O22 | ||
Glaucophane | Na2Mg3Al2Si8O22 | ||
Ferroactinolite | Ca2Mg5Si8O22 | ||
Plagioclase | Anorthite | CaAl2Si2O8 | Symmetrical Wabh-Wan = 3.1 |
albite | NaAlSi3O8 | ||
Epidote | Clinozoisite epidote Fe-epidote | Ca2Al3Si3O12 Ca2FeAl2Si3O12Ca2Fe2AlSi3O12 | Symmetrical Wclinozoisite-Wepidote = 0 Wclinozoisite-WFe-epidote = 15.4 Wepidote-WFe-epidote = 3 |
Mineral | End Member | Formula | Activity Model |
---|---|---|---|
Biotite | annite | KFe3AlSi3O10 | Symmetrical Wannite-Wphlogopite = 9 Wannite-Weastonite = −1 Wannite-Wobi = 6 Wannite-Wtbi = 10 Wannite-Wfbi = 8 Wphlogopite-Weastonite = 10 Wphlogopite-Wobi = 3 Weastonite-Wobi = 10 |
phlogopite | KMg3AlSi3O10 | ||
eastonite | KMg2Al3Si2O10 | ||
obi | KFeMg2AlSi3O10 | ||
tbi | KMg2TiAlSi3O12 | ||
fbi | KMg2Al2FeSi2O10 | ||
Chlorite | daphnite | Fe5Al2Si3O10 | Symmetrical Wdaphnite-WAl-free chl = 14.5 Wdaphnite-Wamesite = 13.5 Wdaphnite-Wchlinoclore = 2.5 WAl-free chlorite-Wamesite = 20 WAl-free chlorite-Wchlinoclore = 18 Wamesite-Wchlinoclore = 18 |
Al-free chlorite | Mg6Si4O10 | ||
amesite | Mg4Al4Si2O10 | ||
chlinoclore | Mg5Al2Si3O10 | ||
Cordierite | Fe-cordierite | Fe2Al4Si5O18 | Ideal |
hydro cordierite | Mg2Al4Si5O17 | ||
cordierite | Mg2Al4Si5O18 | ||
Garnet | almandine | Fe3Al2Si3O12 | Symetrical Wamandine-Wpyrope = 2.5 Wamandine-Wkho = 23 |
pyrope | Mg3Al2Si3O12 | ||
kho | Mg3Fe2Si3O12 | ||
Muscovite | muscovite | KAl3Si3O10 | Ideal |
celadonite | KMgAlSi4O10 | ||
Fe-celadonite | KFeAlSi4O10 | ||
Staurolite | Fe-staurolite | Fe4Al18Si8O48H2 | Symetrical WFe-staurolite-WMg-staurolite = −8 |
Mg-staurolite | Mg4Al18Si8O48H2 | ||
Chloritoid | Fe-ctd | FeAl2SiO5 | WFe-ctd-WMg-ctd = −8 |
Mg-ctd | MgAl2SiO5 | ||
ctdo | MgFe2SiO5 |
References
- Langmuir, D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta 1978, 42, 547−569. [Google Scholar] [CrossRef]
- Bonnetti, C.; Liu, X.; Zhaobin, Y.; Cuney, M.; Michels, R.; Malartre, F.; Mercadier, J.; Cai, J. Coupled uranium mineralisation and bacterial sulphate reduction for the genesis of the Baxingtu sandstone-hosted U deposit, SW Songliao Basin, NE China. Ore Geol. Rev. 2017, 82, 108–129. [Google Scholar] [CrossRef]
- Cui, T.; Yang, J.; Samson, I.M. Tectonic deformation and fluid flow: Implications for the formation of unconformity-related uranium deposits. Econ. Geol. 2012, 107, 147–163. [Google Scholar] [CrossRef]
- Ruzicka, V. Monometallic and polymetallic deposits associated with the sub-Athabasca unconformity in Saskatchewan. Geol. Surv. Can. Paper 1989, 1, 67−79. [Google Scholar]
- Cuney, M.; Mercadier, J.; Bonnetti, C. Classification of sandstone-related uranium deposits. J. Earth Sci. 2022, 33, 236−256. [Google Scholar] [CrossRef]
- Taylor, B.E.; Slack, J.F. Tourmalines from appalachian-caledonian massive sulfide deposits; textural, chemical, and isotopic relationships. Econ. Geol. 1984, 79, 1703−1726. [Google Scholar] [CrossRef]
- Lottermoser, B.; Plimer, I. Chemical variation in tourmalines, Umberatana, South Australia. Neues Jahrb. Für Mineral. Mon. 1987, 7, 314−326. [Google Scholar]
- Gallagher, V.; Kennan, P. Tourmaline on the margin of the Leinster Granite, southeast Ireland: Petrogenetic implications. Irish J. Earth Sci. 1992, 11, 131−150. [Google Scholar]
- Slack, J.F.; Coad, P.R. Multiple hydrothermal and metamorphic events in the Kidd Creek volcanogenic massive sulphide deposit, Timmins, Ontario: Evidence from tourmalines and chlorites. Can. J. Earth Sci. 1989, 26, 694−715. [Google Scholar] [CrossRef]
- Zheng, J.; Shen, P.; Feng, W. Hydrothermal apatite record of ore-forming processes in the Hatu orogenic gold deposit, West Junggar, Northwest China. Contrib. Miner. Petrol. 2022, 177, 27. [Google Scholar] [CrossRef]
- Hazarika, P.; Mishra, B.; Pruseth, K.L. Diverse tourmaline compositions from orogenic gold deposits in the Hutti-Maski greenstone belt, India: Implications for sources of ore-forming fluids. Econ. Geol. 2015, 110, 337−353. [Google Scholar] [CrossRef]
- Sciuba, M.; Beaudoin, G.; Makvandi, S. Chemical composition of tourmaline in orogenic gold deposits. Miner. Deposita 2021, 56, 537−560. [Google Scholar] [CrossRef]
- McGloin, M.V.; Tomkins, A.G.; Webb, G.P.; Spiers, K.; MacRae, C.M.; Paterson, D.; Ryan, C.G. Release of uranium from highly radiogenic zircon through metamictization: The source of orogenic uranium ores. Geology 2016, 44, 15−18. [Google Scholar] [CrossRef]
- White, R.; Powell, R.; Holland, T. Calculation of partial melting equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH). J. Metamorph. Geol. 2001, 19, 139−153. [Google Scholar] [CrossRef]
- Haack, U.; Heinrichs, H.; Boness, M.; Schneider, A. Loss of metals from pelites during regional metamorphism. Contrib. Miner. Petrol. 1984, 85, 116−132. [Google Scholar] [CrossRef]
- Barker, A.; Coogan, L.; Gillis, K. Insights into the behaviour of sulphur in mid-ocean ridge axial hydrothermal systems from the composition of the sheeted dyke complex at Pito Deep. Chem. Geol. 2010, 275, 105−115. [Google Scholar] [CrossRef]
- Shock, E.L.; Sassani, D.C.; Betz, H. Uranium in geologic fluids: Estimates of standard partial molal properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures. Geochim. Cosmochim. Acta 1997, 61, 4245−4266. [Google Scholar] [CrossRef]
- Huang, F.; Sverjensky, D.A. Extended deep earth water model for predicting major element mantle metasomatism. Geochim. Cosmochim. Acta 2019, 254, 192−230. [Google Scholar] [CrossRef] [Green Version]
- Holland, T.; Powell, R. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 1998, 16, 309−343. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Baker, T.; Dubé, B.; Groves, D.I.; Hart, C.J.; Gosselin, P. Distribution, character, and genesis of gold deposits in metamorphic terran. Econ. Geol. 2005, 407–475. [Google Scholar] [CrossRef]
- Zhong, R.; Brugger, J.; Chen, Y.; Li, W. Contrasting regimes of Cu, Zn and Pb transport in ore-forming hydrothermal fluids. Chem. Geol. 2015, 395, 154−164. [Google Scholar] [CrossRef]
- Tanger, J.C.; Helgeson, H.C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures; revised equations of state for the standard partial molal properties of ions and electrolytes. Am. J. Sci. 1988, 288, 19−98. [Google Scholar] [CrossRef]
- Tomkins, A.G. Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis. Geochim. Cosmochim. Acta 2010, 74, 3246−3259. [Google Scholar] [CrossRef]
- Sverjensky, D.A.; Harrison, B.; Azzolini, D. Water in the deep Earth: The dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 °C. Geochim. Cosmochim. Acta 2014, 129, 125−145. [Google Scholar] [CrossRef]
- Zhong, R.; Li, Y.; Etschmann, B.; Brugger, J.; Yu, C.; Cui, H. HighPGibbs, a practical tool for fluid-rock thermodynamic simulation in deep Earth and its application on calculating nitrogen speciation in subduction zone fluids. Geochem. Geophys. Geosyst. 2020, 21, e2020GC008973. [Google Scholar] [CrossRef] [Green Version]
- Galvez, M.E.; Connolly, J.A.; Manning, C.E. Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature 2016, 539, 420−424. [Google Scholar] [CrossRef] [PubMed]
- Connolly, J.A.; Galvez, M.E. Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer. Earth Planet. Sci. Lett. 2018, 501, 90−102. [Google Scholar] [CrossRef]
- Shock, E.L.; Helgeson, H.C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C. Geochim. Cosmochim. Acta 1988, 52, 2009−2036. [Google Scholar] [CrossRef]
- Giles, D.; Nutman, A.P. SHRIMP U–Pb monazite dating of 1600–1580 Ma amphibolite facies metamorphism in the southeastern Mt Isa Block, Australia. Aust. J. Earth Sci. 2002, 49, 455−465. [Google Scholar] [CrossRef]
- Bingen, B.; Demaiffe, D.; Hertogen, J. Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: The role of apatite and monazite in orthogneisses from southwestern Norway. Geochim. Cosmochim. Acta 1996, 60, 1341−1354. [Google Scholar] [CrossRef]
- O’Sullivan, G.; Chew, D.; Kenny, G.; Henrichs, I.; Mulligan, D. The trace element composition of apatite and its application to detrital provenance studies. Earth Sci. Rev. 2020, 201, 103044. [Google Scholar] [CrossRef]
- Pyle, J.M.; Spear, F.S.; Rudnick, R.L.; Mcdonough, W.F. Monazite–xenotime–garnet equilibrium in metapelites and a new monazite–garnet thermometer. J. Petrol. 2001, 42, 2083−2107. [Google Scholar] [CrossRef]
- Mercadier, J.; Annesley, I.; McKechnie, C.; Bogdan, T.; Creighton, S. Magmatic and metamorphic uraninite mineralization in the western margin of the Trans-Hudson orogen (Saskatchewan, Canada): A uranium source for unconformity-related uranium deposits? Econ. Geol. 2013, 108, 1037−1065. [Google Scholar] [CrossRef]
- Diener, J.; Powell, R.; White, R.; Holland, T. A new thermodynamic model for clino-and orthoamphiboles in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O. J. Metamorph. Geol. 2007, 25, 631−656. [Google Scholar] [CrossRef]
- Wei, C.; Duan, Z. Phase relations in metabasic rocks: Constraints from the results of experiments, phase modeling and ACF analysis. Geol. Soc. Lond. Spec. Pub. 2019, 474, 25−45. [Google Scholar] [CrossRef]
- Zhong, R.; Brugger, J.; Tomkins, A.G.; Chen, Y.; Li, W. Fate of gold and base metals during metamorphic devolatilization of a pelite. Geochim. Cosmochim. Acta 2015, 171, 338−352. [Google Scholar] [CrossRef]
- Cuney, M. The extreme diversity of uranium deposits. Miner. Deposita 2009, 44, 3−9. [Google Scholar] [CrossRef]
- Richard, A.; Rozsypal, C.; Mercadier, J.; Banks, D.A.; Cuney, M.; Boiron, M.-C.; Cathelineau, M. Giant uranium deposits formed from exceptionally uranium-rich acidic brines. Nat. Geosci. 2012, 5, 142−146. [Google Scholar] [CrossRef]
- Komninou, A.; Sverjensky, D. Geochemical modeling of the formation of an unconformity-type uranium deposit. Econ. Geol. 1996, 91, 590−606. [Google Scholar] [CrossRef]
- Timofeev, A.; Migdisov, A.A.; Williams-Jones, A.E.; Roback, R.; Nelson, A.T.; Xu, H. Uranium transport in acidic brines under reducing conditions. Nat. Commun. 2018, 9, 1469. [Google Scholar] [CrossRef] [Green Version]
- Evans, K.A.; Tomkins, A.G. Metamorphic fluids in orogenic settings. Elements 2020, 16, 381−387. [Google Scholar] [CrossRef]
- Hoeve, J.; Sibbald, T.I. On the genesis of Rabbit Lake and other unconformity-type uranium deposits in northern Saskatchewan, Canada. Econ. Geol. 1978, 73, 1450−1473. [Google Scholar] [CrossRef]
- Hostetler, P.; Garrels, R. Transportation and precipitation of uranium and vanadium at low temperatures, with special reference to sandstone-type uranium deposits. Econ. Geol. 1962, 57, 137−167. [Google Scholar] [CrossRef]
- Cui, H.; Zhong, R.; Xie, Y.; Wang, X.; Chen, H. Melt–fluid and fluid–fluid immiscibility in a Na2SO4–SiO2–H2O system and implications for the formation of rare earth deposits. Acta Geol. Sin-Engl. 2021, 95, 1604−1610. [Google Scholar]
- Dale, J.; Powell, R.; White, R.; Elmer, F.; Holland, T. A thermodynamic model for Ca–Na clinoamphiboles in Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O for petrological calculations. J. Metamorph. Geol. 2005, 23, 771−791. [Google Scholar] [CrossRef]
- White, R.; Powell, R.; Holland, T.; Worley, B. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J. Metamorph. Geol. 2000, 18, 497−511. [Google Scholar] [CrossRef]
Altered Oceanic Basalt | Average Pelite | Oxidized Pelite | |
---|---|---|---|
SiO2 | 51.98 | 71.11 | 59.8 |
Al2O3 | 14.80 | 14.38 | 19.6 |
MgO | 7.65 | 2.31 | 1.00 |
FeO | 9.98 | 7.18 | 0.60 |
Fe2O3 | 1.98 | 0.75 | 7.30 |
CaO | 10.48 | - | - |
Na2O | 2.29 | - | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhong, R.; Yu, C.; Cui, H. The Immobility of Uranium (U) in Metamorphic Fluids Explained by the Predominance of Aqueous U(IV). Minerals 2023, 13, 427. https://doi.org/10.3390/min13030427
Zhang M, Zhong R, Yu C, Cui H. The Immobility of Uranium (U) in Metamorphic Fluids Explained by the Predominance of Aqueous U(IV). Minerals. 2023; 13(3):427. https://doi.org/10.3390/min13030427
Chicago/Turabian StyleZhang, Min, Richen Zhong, Chang Yu, and Hao Cui. 2023. "The Immobility of Uranium (U) in Metamorphic Fluids Explained by the Predominance of Aqueous U(IV)" Minerals 13, no. 3: 427. https://doi.org/10.3390/min13030427
APA StyleZhang, M., Zhong, R., Yu, C., & Cui, H. (2023). The Immobility of Uranium (U) in Metamorphic Fluids Explained by the Predominance of Aqueous U(IV). Minerals, 13(3), 427. https://doi.org/10.3390/min13030427