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Abstract: Red mud, which could cause numerous problems to the environment, is a hazardous waste
generated from the alumina smelting industry. In general, the storage and harmless utilization of red
mud are hard to implement due to its fine particle size and high alkalinity. This study put forward
a novel process to separate iron (MgFe2O4) and alumina (Al2O3) in red mud by a magnetization
sintering method. The magnesium oxide was added to transform the nonmagnetic Fe2O3 into
magnetic MgFe2O4 to achieve physical separation of iron-bearing minerals, and the alumina-bearing
minerals were converted into dissoluble NaAlO2 minerals in a one-step reaction. The atmospheric
pressure leaching process was adopted in this study for alumina resource recovery. To achieve
clean alumina production, the silicate in the leaching solution was removed by adding the slightly
soluble CaSO4, and the entire process becomes clean and harmless. The feasibility of the process
was verified by thermodynamic analysis, and a series of experiments were performed to detect the
optimum MgO/(Fe2O3 + MgO) ratio and the calcining and leaching conditions. The morphological
and mineralogical characteristics of modified red mud, leaching red mud, and magnetic separation
product were studied by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM)
energy dispersive spectroscopy (EDS). It was observed that under the optimal conditions with
MgO/(Fe2O3 + MgO) of 14.89% to recover iron and aluminum, the corresponding recovery rates
were 67.54% and 73.01% respectively, and the iron grade was 30.46%. The EDS results showed that
the obtained Mg/Fe ratio of the magnetic separation product was 0.4677–0.528, which is slightly
different from that of the standard MgFe2O4 at 0.5. This new method can promote the development
of comprehensive utilization of red mud and iron production.

Keywords: red mud; harmless utilization; mineralogical analysis; MgFe2O4; leaching parameter

1. Introduction

Red mud is the waste discharged from the alumina smelting industry during the
Bayer process, and it has high alkalinity (pH > 12) and heavy metals such as Cr, Cd, Pb,
As, and Hg [1]. Red mud dumps can occupy lots of the land, create dust, alkalize the
land, and contaminate the groundwater. Approximately 1–2.5 tons of Bayer red mud are
generated when producing 1 ton of alumina. Globally, about 175.5 Mt of red mud are
discharged annually with an increasing trend in the next few years, which has restricted
the development of the alumina industry [2,3]. In recent years, researchers have proposed
various treatment methods to reduce the pollution from red mud. Due to the chemical
curing and hydraulicity of amorphous silicates [4], red mud can be used as raw materials for
ceramics, light aggregates, and geological polymers [5–7]. Moreover, as red mud also has a
large specific surface area and adsorption capacity, it can be modified as environmental
remediation materials (RM-ERMs) to achieve the purpose of “waste to waste” [8,9]. In
addition, red mud can also be utilized in the field of catalysis [10,11].
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The Bayer red mud also has a complex composition, mainly including sesquioxide
(Al2O3 and Fe2O3), sodium oxide (Na2O), titanium oxide (TiO2), and silicon oxide (SiO2)
at a total content of more than 70%, along with various trace elements (Sc, Ga, V, and
Zr). Recovery of valuable elements from red mud is promising under the situation of
increasingly depleted natural resources [12]. However, recovering these elements from
red mud is challenging due to the gradual and uniform distribution of the valuable com-
ponents in the mineral phase of red mud during crushing and Bayer leaching cycles [13].
Hydrogrossular (Ca3Al2(SiO4)3−x(OH)4x), diaspore (α-AlOOH), and boehmite (γ-AlOOH)
are the sources of alumina in red mud, and they have low solubility at atmospheric pressure.
The original Al-Si or Al-O crystal structure must be destroyed to enhance alumina solubility.
Bruckard et al. [14] recovered 55% of Al and 90% of Na through the smelting processat
1400 ◦C; Li et al. [15] recovered 89.71% of alumina using the lime-soda sintering process at
1000–1050 ◦C for 90 min; Liu et al. [16] investigated the effect of Ca content on the dissolu-
tion of alumina and sodium during the sintering process and demonstrated that the activity
of SiO2 decreased as the Ca/Si ratio increased to 1.98. Pei et al. [17] explored a low calcium
sintering process of red mud, and after sintering, leaching, and hydrothermal transition,
the recovery rate of Al and Na reached 93% and 96%, respectively. These above-mentioned
studies have already obtained some good achievements in the dissolution of Na and Al
from red mud. Nevertheless, the sintering process enhances the dissolution of Al by adding
calcium oxide to prevent the dissolution of Si [18], and the continuous dissolution of Si
during the leaching process is still inadequately reported.

For iron-bearing red mud, researchers proposed a reduction roasting approach to
transform hematite into magnetite, followed by magnetic separation to achieve enrichment
of Fe minerals due to the magnetic susceptibility difference between iron/iron oxides and
gangue minerals [19,20]. Rao et al. [21] investigated the effect of the reduction process by
adding sodium carbonate and sodium sulfate and identified that the presence of sodium
salts enhanced the growth of metallic iron grains to aggregate at larger sizes. Ding et al. [22]
studied various parameters on the extraction of iron by segregation roasting-magnetic
separation, where gaseous ferric chloride diffused through the surface of the coke and
was reduced to metallic iron at high temperatures. The application of these methods has
also raised some problems. Harmful gases emissions such as carbon monoxide (CO),
chlorine (Cl2), hydrogen sulfide (H2S), and even arsenic hydride (AsH3) seem to be ignored
by previous researchers [23,24] when controlling the restorative atmosphere, and most
prevoious studies are focused on the extraction rate only. The reduction reaction also
requires an excessive amount of reductant to produce greenhouse gas (CO2), thereby
creating a challenge for the gas treatment in the entire process.

Magnesioferrite (MgFe2O4) is a strongly magnetic mineral that belongs to the mag-
netite system, and it can be synthesized by a solid-phase reaction of Fe2O3 and MgO
at elevated temperatures. The crystal structure of magnesioferrite is with the formula
(Mg0.65Fe0.35) A[Fe1.65Mg0.35]BO4 and the Mg2+ and Fe3+ cations are randomly distributed
over its tetrahedral and octahedral sites [25]. Owing to its unique magnetic and high
melting point properties, magnesioferrite has been used in many fields, such as biomedical,
environmental protection, and refractory materials [26–28]. The iron minerals from red
mud can be quickly transformed into MgFe2O4 by a one-step reaction to increase mag-
netism. Xue et al. [29] added 6% of SiO2 to recover iron from basic oxygen furnace (BOF)
slag, and the BOF phases were transformed into MgFe2O4 spinel and β-Ca2SiO4. The total
Fe content was enhanced by 15.8%, from 21.20% to 37.00%. He et al. [30]. investigated
the different oxidation conditions under high temperatures for the recovery of MgFe2O4
from the BOF slag, the results indicated that the maximum recovery rate was achieved
with an oxidation time of 100 min under an airflow rate of 1.25 L/min−1. Therefore, it is
possible to separate MgFe2O4 from calcined slag. The method is a clean process compared
to traditional reduction roasting without adding reductant to control the complex reduction
atmosphere and the generation of harmful gases. The current research is aimed to recycle
most of the alumina and iron remaining in the iron-bearing red mud. Therefore, combining
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the Fe magnetization process with the lime-soda sinter process could have more practical
significance for comprehensively utilizing the red mud. As the additives are cheap, widely
sourced, and harmless, the entire process does not produce harmful gases. In this study, a
series of experiments were performed to optimize the conditions for forming MgFe2O4 and
the alumina extraction rate. The feasibility of the magnetization sintering process and the
mineral phase transformation mechanism were explored. The developed magnetization
sintering process has a few achievements as follows:

(1) A new method is proposed to separate the Fe-mineral (MgFe2O4) from red mud;
(2) Lower sintering temperature and MgO/Fe2O3 mass fraction conditions are investigated
in this research; (3) The optimal leaching condition, including the optimal leaching temper-
ature, time, and liquid/solid(L/S) ratio, can provide some references for alkaline leaching;
(4) The slightly soluble CaSO4 was innovatively used instead of CaO or Ca(OH)2 to re-
duce silicate content; and (5) This process can solve the disposal problems for low-grade
Fe-bearing red mud in the refineries and greatly reduce the emission of red mud.

2. Materials and Methods
2.1. Materials

The red mud (RM) samples were obtained from Alumina Corporation of China, located
in Pingguo County, Guangxi Province, China. The raw red mud was dried in an oven
at 105 ◦C to remove the free water. Then, the dried red mud was filtered using a 74-µm
mesh sieve to remove large quartz particles. The main components of the red mud were
determined by X-ray fluorescence spectroscopy (XRF), and the test results are shown in
Table 1.

Table 1. The main components of the red mud.

Compound Fe2O3 Al2O3 CaO Na2O SiO2 TiO2 SO3 ZrO2 K2O

Mass percentage 27.95 23.36 16.58 8.05 14.93 6.21 0.771 0.364 0.344
Compound Cr2O3 MgO P2O5 V2O5 Cl MnO CeO2 As2O3 Nb2O5

Mass percentage 0.322 0.244 0.236 0.131 0.104 0.0932 0.0687 0.0432 0.0411
Compound ZnO SrO Sc2O3 PbO NiO CuO WO3 Ga2O3 Sum

Mass percentage 0.0131 0.0129 0.0121 0.0106 0.0093 0.0078 0.0061 0.0042 96.5

Analytically pure reagents sodium carbonate (Na2CO3, 99.8%), calcium oxide (CaO,
99.9%), magnesium oxide (MgO, 99.9%), carbon dioxide (CO2, 99%), calcium sulfate (CaSO4,
99%) were purchased from Aladdin (Shanghai, China) and Damao-Reagent (Tianjin, China).

2.2. Methods

The flow chart of the entire experimental process is shown in Figure 1, the red mud
and additives were homogeneously mixed in proportion by a grinder and calcined in a
muffle furnace at different temperatures (900–1150 ◦C) and durations (10–90 min). The
samples were taken out and placed in the dryer for cooling down once the temperature fell
below 650 ◦C. The addition process of magnesium oxide was as follows: the mass of CaO
depended on the CaO/(SiO2 + TiO2) molar ratio in the mixture (1.0, 1.6, 1.8, 2.0, 2.2, and
2.5); the mass of MgO depended on the MgO/(MgO + Fe2O3) mass fraction in the spinel
(13.04%, 14.89%, 16.67%, 18.37%, and 20%). All samples were prepared while keeping the
constant Na/Al molar ratio at 1.2.

The leaching experiments were conducted in deionized water. First, the sintered
samples were crushed and ground to a particle size ≤ 0.074 mm and were then leached
in a water bath magnetic stirring kettle at different temperatures (30–80 ◦C), durations
(10–100 min), and L/S ratios (3:1–25:1). The leaching red mud and filtered solutions
were later obtained by air pump filtration through a 0.45-µm mixed cellulose ester filter
membrane. In this process, the dissolved rate of Al and Si was determined by measuring
the contents of those elements in the leachate by using Inductively Couple Plasma optical
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emission spectrometry method (ICP-OES). The leaching rates of Al and Si were calculated
using Equation (1) as:

η =
m

mRM(Al.Si)
× 100%, (1)

where η (%) is the leaching rate of Al or Si, m is the content of alumina/silicon in the
leachate (g), and mRM(Al.Si) is the content of alumina/silicon in the RM sample (g).
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According to a previous study [31], the slightly soluble CaSO4 can be added for silica
removal, carbonation, and solid roasting to recover calcium silicate, sodium carbonate, and
high-purity alumina oxide, respectively. The reformed sodium carbonate can be recycled
in the calcination process to reduce alkali consumption. The reactions occurred during the
recovery of alumina and the recycling of filtrate were given in Equations (2)–(6) as follows:

Na2O·Al2O3 + 4H20 = 2NaAl(OH)4 = 2NaAlO2 + 4H2O, (2)

CaSO4 = Ca2+ + SO4
2−, (3)

Ca2+ + SiO3
2− = CaSiO3 ↓, (4)

NaAlO2 + CO2 = Al(OH)3 ↓ +Na2CO3, (5)

2Al(OH)3 , Al2O3 + H2O(g) ↑ . (6)

The obtained leaching red mud was separated to obtain a magnetic concentrate in a
wet magnetic separation tube at a magnetic induction of 50 mT, a working voltage of 220 V,
and a working current of 0.15 A. The magnetic slag was treated by the wet digestion method
(hClO4-HNO3). Then, the iron content was determined by the flame atomic absorption
method (AAS). The recovery λ(%) of iron was calculated by Equation (7) as:

λ =
mmag × β

mRM × α
× 100%, (7)

where mmag and mRM are the masses of magnetic concentrate and raw red mud, respectively
(g); and α and β are the iron grades of raw red mud and magnetic concentrate (magnetic
slag), respectively.
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2.3. Characterization

The corresponding oxide contents were determined using the ARL ADVAN”X In-
tellipower 3600 XRF with a divergence angle of 0.25◦. For the mineralogical study, the
Rigaku Ultima VI system X-ray diffractometer (XRD) was adopted in the powdered sample
with Cu-kα radiation and Ni-filter at the 2-Theta degree of 15◦–85◦, and the velocity was
5◦/min.

The morphology and distribution were obtained using Scanning Electron Microscope
(TESCAN MIRA LMS, Brno, Czech Republic) in the secondary electron (SE) mode. The
samples were coated with a 10-mA platinum (Pt) layer to ensure the required conductivity
before testing.

The concentrations of the elements in the leachate were measured using Fisher (iCAP
7200, Waltham, MA, USA) ICP-OES.

3. Results and Discussion
3.1. Characterization of Red Mud

From the XRD results shown in Figure 2, the diffraction pattern demonstrated het-
erogeneous peaks and complex mineral compositions that included hematite (Fe2O3), hy-
drogrossular (Ca3Al2(SiO4)3−x(OH)4x, x > 1.5), cancrinite (Na8(AlSiO4)6(CO3)(H2O)2), Cal-
cite (CaCO3), Quartz (SiO2), and Diaspore (AlO(OH)). Iron was mostly found in hematite,
with only a small amount of it distributed in silicates, carbonates, and sulfides. In addition,
hydrogrossular and cancrinite were the primary sources of alumina and sodium in the
experimental red mud, and these silicate minerals can hardly dissolve in the solution and
only gradually release free calcium and sodium ions with time.
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Figure 3 illustrates the microstructure of the experimental red mud and the EDS
analysis of the minerals, and the corresponding results are presented in Table 2. The red
mud was composed of numerous aggregates formed by the accumulation of fine particles
of different sizes and irregular shapes. Combined with the XRD and EDS analysis, bright
particles (1) and crescent-like particles (3) correspond to hematite and cancrinite, whereas
rod-like particles (2) correspond to cancrinite.
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Table 2. EDS results of raw red mud corresponding to Figure 3b (in %).

Point O Na Al Si Ca Fe

1 53.58 8.42 5.91 4.09 0.71 27.30
2 60.51 13.02 11.12 10.55 1.01 3.79
3 63.43 4.31 3.08 2.07 0.65 24.46

3.2. Feasibility Analysis of MgFe2O4 Formation in the Sintering Process
3.2.1. Effect of Temperature on Sintering Behavior

The sintering temperature is one of the most significant factors in the phase transfor-
mation process. The macroscopic pictures of the sintering samples sintered at 1000–1150 ◦C
(with the Ca/(Si + Ti) ratio of 1.8 and the MgO mass percentage in spinel of 14.89%) are
presented in Figure 4. It can be directly seen that the sintered product became smaller and
darker with all sintered materials being well attracted by the magnet, indicating that the
sintering reaction became increasingly intense and the magnetic phase was formed between
the Fe2O3 phase and MgO phase when the sintering temperature raised from 1000 ◦C to
1150 ◦C. Partial fusion occurred after the sintering temperature exceeded 1150 ◦C, and can
be attributed to the melting point depression of the reaction system when the addition of
sodium carbonate produced low melting point materials. A small amount of liquid phase
accelerated the solid phase reaction, although too much liquid phase will lead to a dense
sintered clinker that is unfavorable to crushing.
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3.2.2. Thermodynamic Trends in the Generation of Mineral Phases

The main reactions of clinker in the traditional soda-lime sintering process are: (1) Al2O3
and Na2CO3 generate sodium aluminate solid solution; (2) SiO2 and CaO react to generate
2CaO·SiO2; and (3) Fe2O3 and Na2CO3 generate sodium ferrate solid solution and when
alkali dosage is insufficient and calcium oxide is present, the sodium ferrate further reacts
to form calcium ferrate. This transversion can be completed within half an hour under
1200 ◦C. In addition, TiO2 in red mud also reacts with CaO in the form of perovskite
(CaTiO3) at elevated temperatures. The formation and stability of magnesium ferrite based
on the MgO-Fe2O3 binary system in the soda-lime sintering process are rarely reported [32].

A thermodynamic analysis of the reactions in which MgO may be involved was
conducted to further study the reaction pattern after adding MgO to the sintering pro-
cess [33–35]. The various reactions are listed in Table 3 in (1)–(5), along with the relationship
between the Gibbs free energy (∆Gθ) calculated according to thermodynamic data and the
temperature (HSC Chemistry) during their sintering in the standard state (Figure 5). The
reaction between MgO and SiO2 was spontaneous for all temperature conditions, which
is not favorable to the formation of magnesioferrite (MgFe2O4). However, the formation
of dicalcium silicate (Ca2SiO4) has significant precedence over the formation of magne-
sium silicate (Mg2SiO4), melilite(Ca2MgSi2O7), and Diopside (CaMgSi2O6). When the
calcium oxide content is sufficient, the magnetization reaction from MgO to MgFe2O4 in
the sintering process is more significant than the formation of other magnesium-bearing
compounds.

Table 3. Possible chemical reactions during the sintering process of red mud.

Reaction Number Chemical Reaction

(1) 2CaO + MgO + 2SiO2 = Ca2MgSi2O7
(2) MgO + Fe2O3 = MgFe2O4
(3) 2MgO + SiO2 = Mg2SiO4
(4) MgO + CaO + 2SiO2 = CaMgSi2O6
(5) 2CaO + SiO2 = Ca2SiO4
(6) Fe2O3 + Na2CO3 = 2NaFeO2 + CO2 (g)
(7) Fe2O3 + CaO = CaO·Fe2O3
(8) Fe2O3 + 2CaO = 2CaO·Fe2O3
(9) 2 CaO·Fe2O3 + 2MgO + SiO2 = 2MgFe2O4 + Ca2SiO4

(10) 2CaO·Fe2O3 + MgO + SiO2 = MgFe2O4 + Ca2SiO4

The formation of calcium ferrate and sodium ferrate is typical in the lime soda method
of red mud. Once these reactions occur, impurities such as iron oxide and calcium ferrate
will appear in the leaching slag, which is detrimental to the separation of iron. The
thermodynamic calculations of reactions (6)–(8) in the standard state are plotted in Figure 6.
The formation of 2CaO·Fe2O3 and CaO·Fe2O3 was superior to that of Na2O·Fe2O3 under
the experimental conditions. The formed low-magnetic calcium ferrates could stabilize a
part of the free calcium in the system during the sintering process, but they also consumed
some iron oxide. According to reactions (9)–(10), the results of the mutual reactions
eventually pointed to the formation of magnesioferrite and dicalcium silicate. The value of
∆Gθ of the ferrite substitution reactions was negative, indicating that the magnetization
reaction from Fe2O3 to MgFe2O4 spinel can proceed under normal sintering conditions.

According to the binary phase diagram of Fe2O3-MgO with high-temperature calci-
nation in air (P(O2) = 0.21 atm) in Figure 7. The dashed line represents the equilibrium
phase for different MgO contents at 1373 K. The low MgO contents caused the precipitation
of Fe2O3 in decreasing temperatures (Point A). For pure MgFe2O4, the mass fractions of
MgO and Fe2O3 are 20.15% and 79.85%, respectively, corresponding to a mixture fraction
of MgFe2O4 and MgO (Point B) that not only consumes excessive MgO but also has a
negative effect on the separation of magnetic minerals from the mixture. Theoretically,
the mass fraction of the magnesium oxide that only forms MgFe2O4 is in the range of
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16.8%–19.87%. Based on the above analysis, the experimental mass fraction of MgO in
spinel was controlled at 13.04% to 20%.
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3.3. The Formation of Phase in Sintered Product under Different Roasting Parameters
3.3.1. Temperature

The XRD analysis of the sintering samples at different temperatures (the Ca/(Si + Ti)
molar ratio was 1.6 and the MgO mass fraction was 20.0%) are depicted in Figure 8. The
diffraction peaks of PDF#88-1935 in the card database (jade 6.5) and MgFe2O4 in the
sintering products corresponded well to the diffraction angle and height. This indicated
that MgFe2O4 of clinker was formed by solid phase reaction at different temperatures.
However, the impurity composition of red mud and different temperatures affected its
phase content, as verified in the XRD pattern at low temperatures. Impurity minerals such
as Ca3Al2(O4D4)3, Ca2Fe2O5, and Al2SiO5 were observed at 900 ◦C, indicating that the
reaction between magnesium oxide and iron oxide was less advantageous than the side
reaction between iron oxide and other oxides at lower temperatures. With the increase of
the roasting temperature, these impurity phases gradually disappeared or weakened. The
Ca2Fe2O5 phase was hard to detect at 1150 ◦C, whereas the diffraction intensity of MgFe2O4
increased to the maximum. Another essential phase for the dissolution of alumina, i.e.,
sodium aluminate, was mainly generated from 1000 to 1100 ◦C. The small change in the
intensity of the sodium aluminate diffraction peak may be due to the low content of calcium
oxide, which led to incomplete consumption of the silicate in the system. CaO reacted
with silica to produce insoluble substances (β-Ca2SiO4) and prevent the reaction of silicon
and sodium aluminate. After the temperature exceeded 1000 ◦C, the phase composition
remained unchanged, and the main phases were MgFe2O4, CaTiO3, Ca2SiO4, NaAlO2,
Ca2Fe2O5, and Ca3Al2O6.



Minerals 2023, 13, 452 10 of 19
Minerals 2023, 13, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 8. XRD patterns of the sintered red mud at different sintering temperatures. 

3.3.2. Time 
Figure 9 illustrates the XRD patterns at 1100 °C at different sintering times (with the 

Ca/(Si + Ti) molar ratio at 1.8 and the MgO mass fraction at 20.0%). From the figure, the 
MgFe2O4 spinel phase and NaAlO2 phase were found in all sintered samples. When the 
sintered time was 15 min, these phases had formed while the sodium silicon aluminate 
phase was not detected, indicating that the chemical reaction between the compounds had 
preferable kinetic conditions and fast reaction rates. With a longer sintered time, the 
height of the formed MgFe2O4 spinel diffraction peaks gradually increased (from 110 at 15 
min to 128 at 90 min), indicating that the solid phase reaction of MgFe2O4 spinel could not 
reach equilibrium under the experimental conditions, and its content was still increasing. 
However, for the NaAlO2 phase, there were no significant changes observed between 60 
and 90 min, but an increase in the phase diffraction intensity from 30 to 60 min. When the 
sintering time was 90 min, a better Ca2SiO4 phase can be formed with the calcium oxide 
molar ratio was at 1.8 than at 1.6 (Figure 8), indicating that a calcium oxide molar ratio of 
1.8 had a propitious phase to extract alumina. 

Figure 8. XRD patterns of the sintered red mud at different sintering temperatures.

3.3.2. Time

Figure 9 illustrates the XRD patterns at 1100 ◦C at different sintering times (with the
Ca/(Si + Ti) molar ratio at 1.8 and the MgO mass fraction at 20.0%). From the figure, the
MgFe2O4 spinel phase and NaAlO2 phase were found in all sintered samples. When the
sintered time was 15 min, these phases had formed while the sodium silicon aluminate
phase was not detected, indicating that the chemical reaction between the compounds had
preferable kinetic conditions and fast reaction rates. With a longer sintered time, the height
of the formed MgFe2O4 spinel diffraction peaks gradually increased (from 110 at 15 min
to 128 at 90 min), indicating that the solid phase reaction of MgFe2O4 spinel could not
reach equilibrium under the experimental conditions, and its content was still increasing.
However, for the NaAlO2 phase, there were no significant changes observed between 60
and 90 min, but an increase in the phase diffraction intensity from 30 to 60 min. When the
sintering time was 90 min, a better Ca2SiO4 phase can be formed with the calcium oxide
molar ratio was at 1.8 than at 1.6 (Figure 8), indicating that a calcium oxide molar ratio of
1.8 had a propitious phase to extract alumina.

3.3.3. The Effect of MgO on Sintering Samples

Figure 10 shows the XRD patterns of samples with different MgO mass fractions when
the C/(S + T) ratio was 2.0 at 1100 ◦C and the magnified image at the spinel diffraction
peak of around 35.5◦. The spinel peak strength was relatively low when the MgO mass
fraction was 13.04%, a low-magnesium spinel ((Mg2+, Fe2+)Fe2O4) may be formed. It can
be explained that the partial reduction of the Fe2O3 in the MgO-Fe2O3-MgFe2O4 system
at experimental temperature was found to meet the material equilibrium [36]. When the
MgO content was 16.67%, the spinel phase agreed well with MgFe2O4 in PDF#88-1935.
However, a shift in the spinel diffraction angle (from 35.49◦ at 16.67% to 35.55◦ at 20%)
was observed when the MgO content continually increased to 18.37% and then to 20.0%.
The spinel diffraction peak at this condition was close to the MgAl0.2Fe1.98O4 diffraction
peak. A small number of periclase (MgO) peaks appeared (Figure 10a), indicating that
the magnesioferrite spinel formation reaction at the experimental condition might be
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incomplete. O’Neill et al. [37] argued that magnesioferrite is possibly stoichiometric at
low temperatures, and nonstoichiometric magnesioferrite can be generated at a relatively
high temperature (>1000 ◦C). The case that diffraction peaks shifted to higher angles could
be explained by the lattice defects caused by the excessive MgO or Al2O3 dissolved in
the magnesioferrite spinel lattice. Dieckmann and Schmalzried [38,39] showed that the
formation of magnesioferrite is mainly due to the mobility of a kind of cations rather than
oxygen vacancy. The ionic radii of Mg2+ (0.66 Å), Fe2+ (0.74 Å), Fe3+ (0.64 Å), and Al3+

(0.51 Å) are similar. Therefore, Fe3+ and Fe2+ can be easily substituted by Mg2+ and Al3+.
The intensity and angle of the diffraction peaks of Ca2SiO4 in different MgO contents hardly
changed, indicating that MgO did not react with Ca2SiO4 when calcium oxide content was
in a certain range, which is consistent with the previous thermodynamic analysis.
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3.4. Recovery Efficiencies of Alumina from Red Mud

The XRD pattern showed good intensity for MgFe2O4 spinel diffraction peaks, but
the intensity for sodium aluminate was not obvious. In this section, the single-factor
approach was continued to be applied to examine several key factors that affected alumina
extraction rate, including temperature, MgO mass fraction, C/(S + T) molar ratio, leaching
temperature, leaching time, and liquid/solid ratio (L/S in ml/g). Furthermore, the behavior
of the silicon dissolution of clinker during the leaching process was also studied to improve
the purity of sodium aluminate in the leachate.

3.4.1. Effect of Calcination Conditions on Alumina Extraction

Experiments were conducted under the following leaching parameters: leaching
temperature: 60 ◦C; leaching time: 20 min; and liquid/solid (L/S) ratio: 10:1.

The alumina dissolution rate at different roasting temperatures (the Ca/(Si + Ti) ratio
was 1.8 and the MgO mass fraction was 16.67%) is shown in Figure 11a. The alumina
dissolution rate (72.07%) at 1100 ◦C was the highest. With the roasting temperature
increased to 1150 ◦C, the sintered material may produce a glassy phase in which the
alumina was encapsulated to reduce the extraction efficiency [40]. The most significant
variation in the extraction rate occurred at a temperature of 1000 ◦C, with a consistent
increase in the alumina extraction rate in the range of 1000–1100 ◦C. These results might
suggest that a calcination temperature of 1100.0 ◦C could lead to optimal sintered material
that is favorable for the extraction of alumina, compared to other temperatures. The
variation also indicated that a temperature of 1000 ◦C mainly lead to the production of a
beneficial mineralogical phase (NaAlO2), in which sodium carbonate reacted with alumina
oxides rather than further generating NaAlSiO4 with silicon at lower temperatures (900 ◦C).
NaAlSiO4 can hardly dissolve in the solution, which could be the main reason for the lower
alumina extraction rate at low temperatures.

Figure 11b illustrates the alumina extraction rate with different MgO contents under
the experimental conditions (1100 ◦C with the Ca/(Si + Ti) ratio at 1.8). The rate had
no significant difference ranging from 70.5% to 72.4% with an overall decreasing trend,
corresponding to the magnesium oxide content from 13.04% to 20%, which might be
attributed to the re-reaction of the incomplete reaction of excessive MgO with NaAlO2 to
form precipitates during the leaching process.

Figure 11c demonstrates the effect of different Ca/(Si + Ti) ratios (1100 ◦C with the
MgO mass fraction at 16.67%) on alumina extraction. The alumina leaching rate had a
significant enhancement when the Ca/(Si + Ti) ratio increased from 1.0 to 1.8 because CaO
played a role in preventing the high activity of SiO2 from affecting alumina leaching. When
the Ca/(Si + Ti) ratio exceeded 1.8, not only the alumina leaching rate gradually decreased,
but also it resulted in the generation of many impurities, such as Ca2Fe2O5, Ca3Mg(SiO4)2,
and 3CaO·SiO2. More SiO2 was available to form soluble silicate in the leaching process,
causing a possible decline in the purity of sodium aluminate in the solution.

3.4.2. Effect of Leaching Conditions on Alumina Extraction

The leaching experiments were performed under a temperature of 1100 ◦C, a MgO
content of 16.67%, and a Ca/(Si + Ti) ratio of 1.8.

Figure 12a depicts the dissolution rates of Al and Si in the different leaching temper-
atures with a leaching time of 20 min and an L/S ratio of 10:1. The extraction rate of Al
gradually increased with the increase of temperature and reached the equilibrium at 60 ◦C.
The dissolution rate of Si also gradually increased, and this trend was enhanced at higher
temperatures (>70 ◦C). Since the dissolution reaction of Si and Al was exothermic (∆H < 0),
the Gibbs free energy was negative (∆G < 0), indicating that the rise of temperature will
promote the reaction to a certain degree. In general, the leaching reaction of alumina in this
process was more evident at 60 ◦C than at other temperatures.
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Figure 12b demonstrates the extraction results when the temperature was 60 ◦C and the
L/S ratio was 10:1. There were 73.1% of Al and 2.3% of Si dissolved from the sintering sam-
ple within 15 min. However, the recovery fell with a prolonged leaching time, which may be
contributed to the secondary reaction, where NaAl(OH)4, Ca2+, and SiO4

2− produced pre-
cipitates of [Na2O·Al2O3·2SiO2]·NaAl(OH)6−n·H2O and 3CaO·Al2O3·nSiO2·(6 −2n)·H2O.
Specifically, calcium sulfate was added in this process to initiate the reaction of silicate
ions with calcium ions and generate calcium silicate precipitates, which is different from
traditional desilication methods that use CaO or Ca(OH)2 [41]. The slightly soluble calcium
sulfate can provide a low level of Ca2+ ions to avoid excessive consumption of alumina
(AlO2

−) in the solution.
Figure 12c shows the leaching results for different L/S ratios at 60 ◦C and 20 min. The

extraction rate of Al at different L/S ratios hardly changed because the solubility of sodium
aluminate was exceptionally large in water. By contrast, the dissolved arrival rate of silicon
decreased at large L/S ratios, due probably to the high mass concentration of sodium
aluminate interacting with the insoluble Ca2SiO4 to cause the decomposition of calcium
silicate [42]. Therefore, the L/S ratio may not be the main factor affecting the dissolution
of Al in this experiment, and increasing the liquid/solid (L/S) ratio might decrease the
dissolution of silicate in a certain range.

The XRD patterns of the leaching red mud and sintered red mud are illustrated in
Figure 12d. The disappearance of the sodium aluminate phase after the leaching process
was accompanied by the enhancement of diffraction peaks of other phases, indicating that
the content in the leaching residue was enhanced. The partial weakening of the Ca2SiO4
peak and the appearance of the CaCO3 peak were also observed because the calcium ions
dissolved from calcium silicate reacted with carbon dioxide in the air under the stirring
effect of the leaching process.
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3.5. Microstructural Studies

The morphology and EDS results of the sintered red mud with MgO (with a MgO con-
tent of 16.67%) and CaO (the Ca/(Si + Ti) molar ratio was 1.8), and its leaching red mud and
magnetic separation product sintered at 1100 ◦C for 90 min are shown in Figures 13 and 14.
The SEM images of the sintered material are obtained with magnifications from 500× to
5k×. On the one hand, the original red mud mainly consisted of irregular particles in very
small agglomerates (Figure 3a), which contained various impurities. In contrast, the sin-
tered materials crystallized extensively with each other to form larger particles, indicating
good sintering conducive to the separation of Fe-bearing materials. On the other hand,
the particles also showed a crack structure, the production of this structure may be related
to the decomposition of the added carbonate that produced gas, and the crack structure
increased the specific surface area of the particles, which supplied a good solid-liquid
reaction basis for the later leaching process. Combining the EDS results (Table 4) and XRD
analysis, the mineral phase of the sintered red mud, leaching red mud and magnetic separa-
tion production mainly consisted of NaAlO2, MgFe2O4, C2S, and C2F. NaAlO2 contained a
small amount of silicon and iron. MgFe2O4 was mixed with alumina and calcium, in which
the Mg/Fe ratio was 0.4677–0.528, which is slightly different from that of the standard
MgFe2O4 of 0.5. The Ca/Si ratio of C2S particles and the Ca/Fe ratio of C2F particles were
close to 2.0 and 1.0, respectively, showing good elemental analyticity.
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Table 4. EDS results of different points (1–9) corresponding to those in Figures 13a and 12d,f (in %).

Point Mineral Phases O Na Mg Al Si Ca Ti Fe

1 NaAlO2 52.13 22.28 0.15 16.91 2.44 1.41 0.41 4.26
2 MgFe2O4 47.23 1.42 13.30 4.60 1.16 3.42 0.42 28.44
3 C2S 63.11 3.00 0.24 1.58 10.00 19.87 0.81 1.4
4 C2F 57.89 1.32 0.34 2.18 1.25 18.48 0.97 17.56
5 C2S 68.59 0.62 0.39 0.81 9.72 17.78 0.40 1.70
6 MgFe2O4 58.74 0.15 11.55 2.90 1.24 2.49 0.37 22.55
7 CaCO3 71.80 0.13 0.64 0.72 1.14 22.07 0.96 2.64
8 MgFe2O4 59.13 0.32 10.70 2.62 1.60 4.45 0.93 20.26
9 MgFe2O4 56.70 0.54 11.89 2.11 1.93 2.82 2.42 22.58

3.6. Magnetic Separation of Iron from Leaching Red Mud

The magnetic separation results of the leaching red mud are shown in Table 5 and
Figure 15. The total iron grade and recovery rate of the magnetic slag were 30.46% and
67.54%, respectively, under a MgO content of 14.89% and a temperature of 1100 ◦C. The
total Fe grade of the magnetic slag increased by 13.68% compared to that of raw red
mud (17.28%). Moreover, some researchers performed direct magnetic recovery of iron
from red mud without any treatment. The recovery rate was only 25% and the total Fe
grade of magnetic slag increased by about 10%, indicating unsatisfactory results. After
separation, the residual slag can produce high-value-added construction materials or heavy
metal adsorption materials in the environmental field due to its lower Na content at about
0.61%. The result of this study is helpful to significantly improve alumina recovery and
vastly reduce the amount of red mud generated in the refineries, and the technology is
promotional for the comprehensive utilization of red mud and iron production.

Table 5. The grade and recovery of the de-alkalized red mud at 50 mT.

Sample MgO/(Fe2O3 + MgO) (wt%) Temperature (◦C)

13.04 14.89 16.67 18.37 20.0 900 1000 1050 1100
Grade (%) 29.75 30.46 30.70 30.49 29.69 19.86 34.38 33.68 29.43

Recovery (%) 56.24 67.54 60.92 56.96 58.43 14.60 16.18 43.18 66.85
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4. Conclusions

A new magnetization process that included magnetization sintering, atmospheric-
pressure leaching, and magnetic separation was proposed to comprehensively utilize
iron-bearing red mud. According to the experimental results, the conclusions can be drawn
as follows: (1) The generation of MgFe2O4 and NaAlO2 phases was closely related to the
sintering temperature. The optimal sintering temperature was 1100 ◦C, and the main
phases were MgFe2O4, CaTiO3, Ca2SiO4, NaAlO2, Ca2Fe2O5, and Ca3Al2O6; (2) The for-
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mation of MgFe2O4 spinel had a higher iron recovery rate when the MgO/(Fe2O3 + MgO)
mass fraction was 14.89% (corresponding to Fe recovery and grade are 67.94% and 30.46%,
respectively), as the forming reaction between Fe2O3 and MgO is nonstoichiometric at
relatively elevated temperatures; (3) The addition of CaO within a certain range can reduce
the thermodynamic activity of SiO2 in the reactants while facilitating the extraction of Al
from the roasting products; (4) The leaching temperature and time of solution have greater
significance than the L/S ratio in the dissolution of Al and Si from the sintering material,
and 73.1% of Al and 2.3% of Si were dissolved under the optimal condition; and (5) the
obtained Mg/Fe ratio of the magnetic separation product was in a range of 0.4677–0.528,
which is slightly different from that of the standard MgFe2O4 at 0.5.
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