Comparative Experiments on the Role of CO2 in the Gold Distribution between Pyrite and a High-Salinity Fluid
Abstract
:1. Introduction
2. Experimental and Analytical Methods
3. Results
3.1. Isochoric Correlations in a Water–Salt Fluid, without CO2
3.2. Isochoric Correlations in a Water–Salt Fluid, with CO2
3.3. Gold Concentration in Pyrite That Was Synthetized in CO2-Bearing and Non-Bearing Fluids
4. Discussion
4.1. Temperature, Pressure and Specific Volume of Fluids
4.2. Gold Solubility in Hydrothermal Environments
4.3. Gold Concentration in Oxidizing Fluids
5. Conclusions
- (1)
- Experimentally obtained isochoric dependencies of the PVT parameters in concentrated sulphate–chloride fluids (with or without CO2) function as the necessary thermobaric constraints in the reconstruction of the physicochemical conditions—in the temperature range of 200–400 °C and pressures up to 700 bars—of hydrothermal, ore-forming processes, which involve oxidized deposits.
- (2)
- In the absence of CO2, concentrated sulphate–chloride fluids with specific volumes of 0.95–1.04 cm3/g are characterized by a wide temperature range within a supercritical state and by homogenization temperatures of approximately 250–325 °C. In the presence of CO2, with molar fractions of XCO2 = 0.18–0.38, high-salinity sulphate–chloride fluids occur in a heterogeneous (heterophase) state across a wide range of temperatures and pressures: t = 192–400 °C and P = 180–700 bar.
- (3)
- The experimental modelling of the behaviour of gold in sulphate–chloride fluids, under conditions similar to oxidizing fluids and as recognized by the manifestation of the pyrite–magnetite association, indicates that Au has high mobility in these types of ore-forming processes. Dissolved Au may reach concentrations of greater than 10 ppm.
- (4)
- The interaction of Au with concentrated sulphate–chloride fluids, both with and without CO2, during the simultaneous synthesis of pyrite, and at a temperature of 340 °C and a pressure of 440 bar, enables the redeposition of Au into pyrite grains. In this way, it reaches very high concentrations (up to 4410 ppm Au in experiments with CO2) as an invisible form of gold. The high distribution coefficient (KD = CAu(solid)/CAu(solution)) in fluids without CO2 (KD = 62) and in its presence (KD = 327) experimentally confirm the possibility that gold concentrates in non-structural forms in sulphide minerals.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borisenko, A.S.; Borovikov, A.A.; Vasyukova, E.A.; Pavlova, G.G.; Ragozin, A.L.; Prokopév, I.R.; Vladykin, N.V. Oxidized magmatogene fluids: Metal-bearing capacity and role in ore formation Russ. Geol. Geophys. 2011, 52, 144–164. [Google Scholar] [CrossRef]
- Borisenko, A.S.; Borovikov, A.A.; Zhitova, L.M.; Pavlova, G.G. Composition of magmatogene fluids and factors of their geochemical specialization and metal-bearing capacity. Russ. Geol. Geophys. 2006, 47, 1308–1326. [Google Scholar]
- Naumov, V.B.; Kamenetsky, V.S.; Thomas, R.; Kononkova, N.N.; Ryzhenko, B.N. Inclusions of silicate and sulfate Melts in chrome diopside from the Inagli deposit. Yakutia Geochem. Intern. 2008, 6, 554. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, C.A.; Gunther, D.; Audetat, A.; Ulrich, T.; Frischknecht, R. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology 1999, 27, 755–758. [Google Scholar] [CrossRef]
- Ulrich, T.; Gunther, D.; Heinrich, C.A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature 1999, 399, 676–679. [Google Scholar] [CrossRef]
- Rusk, B.; Reed, M.; Dilles, J.H.; Klemm, L.; Heinrich, C. Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte. Montana Chem. Geol. 2004, 210, 173–199. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Heinrich, C.A. Vapor transport of metals and the formation of magmatic hydrothermal ore deposits. Econ. Geol. 2005, 100, 1287–1312. [Google Scholar] [CrossRef]
- Hanley, J.J.; Mungall, J.E.; Spooner, E.T.C. Fluid and melt inclusion evidence for platinum-group element transport by high salinity fluids and halide melts below the J-M reef, Stillwater Complex, Montana, USA. In Extended Abstracts of the X International Platinum Symposium; Geological Survey of Finland: Oulu, Finland, 2005; pp. 94–97. [Google Scholar]
- Zhitova, L.M.; Kinnaird, J.A.; Gora, M.P.; Shevko, E.P. Magmatogene fluids of metal-bearing reefs in the Bushveld Complex, South Africa: Based on research data on fluid inclusions in quartz. Geol. Ore Depos. 2016, 58, 58–81. [Google Scholar] [CrossRef]
- Reyf, F.G. Immiscible phases of magmatic fluid and their relation to Be and Mo mineralization at the Yermakovka F-Be deposit, Transbaikalia, Russia. Chem. Geol. 2004, 21, 49–71. [Google Scholar] [CrossRef]
- Panina, L.I. Multiphase carbonate-salt immiscibility in carbonatite melts: Data on melt inclusions from the Krestovskiy massif minerals (Polar Siberia). Contr. Miner. Petrol. 2005, 150, 19–36. [Google Scholar] [CrossRef]
- Panina, L.I.; Motorina, I.V. Liquid immiscibility in deep-seated magmas and the generation of carbonatite melts. Geochem. Intern. 2008, 46, 448. [Google Scholar]
- Boiron, M.-C.; Cathelineau, M.; Banks, D.; Fourcade, S.; Vallance, J. Mixing of metamorphic and surficial fluids during the uplift of the Hercynian upper crust: Consequences for gold deposition. Chem. Geol. 2003, 194, 119–141. [Google Scholar] [CrossRef]
- Phillips, G.N.; Evans, K.A. Role of CO2 in the formation of gold deposits. Nature 2004, 429, 860–863. [Google Scholar] [CrossRef]
- Garofalo, P.S.; Ficker, M.B.; Gunther, D.; Bersani, D.; Lottici, P.P. Physical-chemical properties and metal budget of Au transporting hydrothermal fluids in orogenic deposits. Geol. Soc. London Spec. Publ. 2014, 402, 71–102. [Google Scholar] [CrossRef]
- Rusk, B.G.; Reed, M.H.; Dilles, J.H. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper–molybdenum deposit at Butte, Montana. Econ. Geol. 2008, 103, 307–334. [Google Scholar] [CrossRef]
- Bodnar, R.J.; Reynolds, T.J.; Kuehn, C.A. Fluid inclusion systematics in epithermal systems. Rev. Econ. Geol. 1985, 2, 73–97. [Google Scholar]
- Koděra, P.; Lexa, J.; Rankin, A.H.; Fallick, A.E. Epithermal gold veins in a caldera setting: Banská Hodruša Slovakia. Mineral. Depos. 2005, 39, 921–943. [Google Scholar] [CrossRef]
- Catchpole, H.; Kouzmanov, K.; Fontboté, L.; Guillong, M.; Heinrich, C.A. Fluid evolution in zoned Cordilleran polymetallic veins—Insights from microthermometry and LAICP-MS of fluid inclusions. Chem. Geol. 2011, 281, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Kokh, M.A.; Akinfiev, N.N.; Pokrovski, G.S.; Salvi, S.; Guillaume, D. The role of carbon dioxide in the transport and fractionation of metals by geological fluids. Geochim. Cosmochim. Acta 2017, 197, 433–466. [Google Scholar] [CrossRef]
- Kokh, M.A.; Lopez, M.; Gisquet, P.; Lanzanova, A.; Candaudap, F.; Besson, P.; Pokrovski, G.S. Combined effect of carbon dioxide and sulfur on vapor-liquid partitioning of metals in hydrothermal systems. Geochim. Cosmochim. Acta 2016, 187, 311–333. [Google Scholar] [CrossRef]
- Prokopyev, I.R.; Doroshkevich, A.G.; Ponomarchuk, A.V.; Sergeev, S.A. Mineralogy, age and genesis of apatite-dolomite ores at the Seligdar apatite deposit (Central Aldan, Russia). Ore Geol. Rev. 2017, 81, 296–308. [Google Scholar] [CrossRef]
- Song, P.; Yan, Y. Thermodynamics and phase diagram of the salt lake brine system at 298.15 K Computer Coupling of Phase. Diagr. Thermochem. 2003, 27, 343–352. [Google Scholar]
- Valyashko, V.M. Chapter 15—Phase equilibria of water-salt systems at high temperatures and pressures. In Aqueous Systems at Elevated Temperatures and Pressures, Physical Chemistry in Water, Steam and Hydrothermal Solutions; Donald, A.P., Roberto Fernández-Prini, A.H.H., Eds.; Academic Press: Cambridge, MA, USA, 2004; pp. 597–641. [Google Scholar] [CrossRef]
- Krumgalz, B.S. Temperature dependence of mineral solubility in water. part 3. Alkaline and alkaline earth sulfates. J. Phys. Chem. Ref. Data 2018, 47, 023101. [Google Scholar] [CrossRef]
- Naymov, G.B.; Ryzhenko, B.N.; Khodakovsky, I.L. Handbook of Thermodynamic Constants for Geologists; Atomizdat Moscow: Moscow, Russia, 1971; p. 240. (In Russian) [Google Scholar]
- Bowers, T.S.; Helgeson, H.C. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O–CO2–NaCl on phase relations in geologic systems: Equation of state for H2O–CO2–NaCI fluids at high pressures and temperatures. Geochim. Cosmochim. Acta 1983, 47, 1247–1275. [Google Scholar] [CrossRef]
- Ellis, A.J.; Giggenbach, W. Hydrogen ionization and sulphur hydrolysis in high temperature solution. Geochim. Cosmochim. Acta 1971, 35, 247–260. [Google Scholar] [CrossRef]
- Ryabukha, M.A.; Gibsher, N.A.; Tomilenko, A.A.; Bul’bak, T.A.; Khomenko, M.O.; Safonov, A.M. P–T–X parameters of metamorphogene and hydrothermal fluids, isotopy and age of the Bogunai gold deposit, southern Yenisei Ridge (Russia). Russ. Geol. Geophys. 2015, 56, 903–918. [Google Scholar]
- Mao, S.; Zhang, D.; Li, Y.; Liu, N. An improved model for calculating CO2 solubility in aqueous NaCl solutions and the application to CO2–H2O–NaCl fluid inclusions Chemical. Geology 2013, 347, 43–58. [Google Scholar] [CrossRef]
- Akinfiev, N.N.; Zotov, A.V. Thermodynamic description of aqueous species in the system Cu–Ag–Au–S–O–H at temperatures of 0–600 C and pressures of 1–3000 bar. Geochem. Intern. 2010, 48, 714–720. [Google Scholar] [CrossRef]
- Benning, L.G.; Seward, T.M. Hydrosulphide complexing of Au(I) in hydrothermal solutions from 150–400°C and 500–1500 bar. Geochim. Cosmochim. Acta 1996, 60, 1849–1871. [Google Scholar]
- Elatikpo, S.M.; Li, H.; Liu, B.; Zhang, W.D. Metallogenesis of the bakoshi-kundila gold deposit in northern west Nigerian subshield: Insights from pyrite chemical and sulfur isotopic compositions and zircon U-Pb geochronology. Precambrian Res. 2022, 383, 106890. [Google Scholar] [CrossRef]
- Ma, Y.; Shao-Yong, J.; Frimmel, H.E.; Zhu, L.-Y. In situ chemical and isotopic analyses and element mapping of multiple-generation pyrite: Evidence of episodic gold mobilization and deposition for the Qiucun epithermal gold deposit in southeast China. Am. Mineral. 2022, 107, 1133–1148. [Google Scholar] [CrossRef]
- Large, R.R.; Maslennikov, V.V. Invisible gold paragenesis and geochemistry in pyrite from orogenic and sediment-hosted gold deposits. Minerals 2020, 10, 339. [Google Scholar] [CrossRef] [Green Version]
- Tauson, V.L. Gold solubility in the common gold-bearing minerals: Experimental evaluation and application to pyrite. Eur. J. Mineral. 1999, 11, 937–947. [Google Scholar] [CrossRef]
- Tauson, V.L.; Bessarabova, O.I.; Kravtsova, R.G.; Pastushkova, R.M.; Smagunov, V. Separation of forms of gold occurrence in pyrites by studying statistic samples of analytical data. Russ. Geol. Geophys. 2002, 43, 57–67. [Google Scholar]
- Tauson, V.L.; Lipko, S.V.; Shchegolkov, Y.V. Surface nanoscale relief of mineral crystals and its relation to nonautonomous phase formation. Crystallogr. Rep. 2009, 54, 1219–1227. [Google Scholar] [CrossRef]
- Mikhlin, Y.L.; Romanchenko, A.S. Gold deposition on pyrite and the common sulfide minerals: An STM/STS and SR-XPS study of surface reactions and Au nanoparticles. Geochim. Cosmochim. Acta 2007, 71, 5985–6001. [Google Scholar] [CrossRef]
- Mikhlin, Y.; Romanchenko, A.; Likhatski, M.; Karacharov, A.; Erenburg, S.; Trubina, S. Understanding the initial stages of precious metals precipitation: Nanoscale metallic and sulfidic species of gold and silver on pyrite surfaces. Ore Geol. Rev. 2011, 42, 47–54. [Google Scholar] [CrossRef]
- Widler, A.M.; Seward, T.M. The adsorption of gold(I) hydrosulphide complexes by iron sulphide surfaces. Geochim. Cosmochim. Acta 2002, 66, 383–402. [Google Scholar] [CrossRef]
- Laptev, Y.V.; Rozov, K.B. Interaction of gold with sulfide surface as a factor of its concentration in hydrothermal ore formation. Dokl. Earth Sci. 2006, 411, 1229–1232. [Google Scholar] [CrossRef]
K = 0.80 | K = 0.82 | K = 0.84 | K = 0.86 | K = 0.88 | |||||
ρ = 1.04 cm3/g | ρ = 1.02 cm3/g | ρ = 0.99 cm3/g | ρ = 0.97 cm3/g | ρ = 0.95 cm3/g | |||||
Thom = 325 °C | Thom = 300 °C | Thom = 280 °C | Thom = 265 °C | Thom = 255 °C | |||||
Phom = 75 bar | Phom = 68 bar | Phom = 52 bar | Phom = 48 bar | Phom = 43 bar | |||||
T, °C | P, bar | T, °C | P, bar | T, °C | P, bar | T, °C | P, bar | T, °C | P, bar |
325 | 75 | 300 | 68 | 280 | 52 | 265 | 48 | 255 | 43 |
340 | 204 | 310 | 157 | 290 | 143 | 280 | 188 | 260 | 140 |
350 | 290 | 320 | 245 | 300 | 234 | 290 | 282 | 270 | 236 |
360 | 376 | 330 | 334 | 310 | 325 | 300 | 375 | 280 | 332 |
370 | 462 | 340 | 422 | 320 | 416 | 310 | 469 | 290 | 428 |
380 | 548 | 350 | 511 | 330 | 507 | 320 | 562 | 300 | 524 |
- | - | 360 | 599 | 340 | 598 | - | - | 310 | 620 |
without CO2 | X CO2 = 0.18 | X CO2 = 0.22 | X CO2 = 0.38 | ||||
K = 0.82 | K = 0.67 | K = 0.60 | K = 0.72 | ||||
ρ = 1.02 cm3/g | ρ = 1.32 cm3/g | ρ = 1.49 cm3/g | ρ = 1.43 cm3/g | ||||
T, °C | P, bar | T, °C | P, bar | T, °C | P, bar | T, °C | P, bar |
255 | 43 | 192 | 176 | 190 | 215 | 190 | 315 |
265 | 48 | 225 | 209 | 210 | 245 | 215 | 350 |
280 | 52 | 230 | 215 | 215 | 250 | 235 | 390 |
300 | 68 | 235 | 224 | 230 | 277 | 260 | 454 |
310 | 157 | 270 | 260 | 255 | 320 | 310 | 575 |
320 | 245 | 300 | 310 | 278 | 360 | 330 | 640 |
330 | 334 | 308 | 330 | 325 | 450 | 355 | 750 |
340 | 422 | 315 | 345 | 350 | 525 | - | - |
350 | 511 | 350 | 418 | 357 | 562 | - | - |
360 | 599 | 380 | 500 | 360 | 576 | - | - |
- | - | 390 | 548 | 370 | 615 | - | - |
- | - | 405 | 600 | 372 | 625 | - | - |
- | - | 408 | 618 | 373 | 630 | - | - |
- | - | - | - | 385 | 700 | - | - |
System Composition | T, °C | P, bar | ρ, cm3/g | Solution | Solid | KD = CAu(solid) /CAu(solution) | ||
---|---|---|---|---|---|---|---|---|
Au, ppm | CH2S, m | pH | Au, ppm | |||||
FeS2-Na2SO4–NaCl-H2O | 340 | 440 | 1.03 | 10.1 | 0.03 | 3.9 | 630 | 62 |
FeS2-Na2SO4–NaCl-H2O-CO2 | 342 | 442 | 1.49 | 13.5 | 0.04 | 3.8 | 4410 | 327 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laptev, Y.; Doroshkevich, A.; Prokopyev, I. Comparative Experiments on the Role of CO2 in the Gold Distribution between Pyrite and a High-Salinity Fluid. Minerals 2023, 13, 464. https://doi.org/10.3390/min13040464
Laptev Y, Doroshkevich A, Prokopyev I. Comparative Experiments on the Role of CO2 in the Gold Distribution between Pyrite and a High-Salinity Fluid. Minerals. 2023; 13(4):464. https://doi.org/10.3390/min13040464
Chicago/Turabian StyleLaptev, Yuri, Anna Doroshkevich, and Ilya Prokopyev. 2023. "Comparative Experiments on the Role of CO2 in the Gold Distribution between Pyrite and a High-Salinity Fluid" Minerals 13, no. 4: 464. https://doi.org/10.3390/min13040464
APA StyleLaptev, Y., Doroshkevich, A., & Prokopyev, I. (2023). Comparative Experiments on the Role of CO2 in the Gold Distribution between Pyrite and a High-Salinity Fluid. Minerals, 13(4), 464. https://doi.org/10.3390/min13040464